
Wavelet Basis Functions for Precomputed
Radiance Transfer

Ian Vollick and Christian Lessig

Abstract

Precomputed Radiance Transfer (PRT) aims at computing global illu-
mination effects such as soft shadows and object interreflection in real-
time. This is accomplished by precomputing the factors of the Render-
ing Equation and projecting them into a suitable basis which allows to
combine them efficiently at runtime. Several basis function have been
proposed for PRT. Recently, Haar wavelets have been employed which
provide superior results, especially for high frequency effects.
In this report, the computation of the triple product integral of lighting,
BRDF and visibility in the Haar basis is detailed and an efficient imple-
mentation of this algorithm is presented. The influence of the input signal
resolution and of nonlinear approximations of the basis representation of
the input signals on the quality of the renderings is examined.

1 Introduction

Computing global illumination effects in real-time is a difficult task. Especially effects
which require a large number of samples such as soft shadows are hard to compute ef-
ficiently. The problem is described by the Rendering Equation [Kajiya 1986]. For non-
emmissive surfaces it is defined as

B(x, ω0) =
∫

Ω

L(x, ω)V (x, ω)ρ(x, ω, ω0)(ω · n(x))dω, (1)

whereB is the reflected light at a surface location x in the scene, ω0 is the viewing direction
and the integral is computed over all possible direction of incident lighting Ω. For conve-
nience we absorb the cosine term of the incident lighting, (ω · n(x)), into the BRDF. The
binary visibility function V (x, ω) is 0 if the surface point x is in shadow for light incident
from direction ω, otherwise it is 1. For a scene with n objects, the visibility term can be
written as the product of n dynamic occlusion fields Oi [Sun 2006]

V (x, ω) = O1(x, ω)
n∏

i=2

Oi(x, ω), (2)

where O1 is the local visibility at x due to self occlusion, and each of the Oi represents the
potential occlusion by object i in the scene. Inserting Equation 2 into Equation 1 yields

B(ω0) =
∫

Ω

L(ω)O1(ω)
n∏

i=2

Oi(ω)ρ(ω, ω0)dω. (3)

Equation 3 does no longer depend on x because only a fixed surface location and distant
illumination are considered. The integrand for computing the reflected light is now a prod-
uct of n+2 functions Fi(ω) — the lighting, the BRDF and the n dynamic occlusion fields.
For PRT, these factors are precomputed and combined at runtime.

To perform the runtime computations efficiently, all factors Fi(ω) are projected into an
orthonormal basis B

Fi(ω) =
M∑

k=1

fi,kbk(ω), (4)

where the bk(ω) are the M basis functions of B and the fi,k are the basis coefficients of
Fi(ω) in B.
The integral of n+ 2 functions represented in a common basis is

B(ω) =
∫ n+2∏

i=1

M∑

ki=1

fi,kbk(ω)dω. (5)

Note that only the basis functions depend on ω. Therefore, the basis coefficients can be
factored out of the integral yielding

B(ω) =
n+2∏

i=1

M∑

k=1

fi,kj

∫
bk(ω)dω. (6)

The product of n basis functions b0(ω), b1(ω), ..., bn(ω), the integral coefficient
Cn(b0, b1, ..., bn), is given by

Cn(b1, b2, ..., bn) =
∫ n∏

k=1

bk(ω)dω. (7)

Multiplying out the product and rearranging the coefficients yields

B(ω) =
M∑

k1=1

M∑

k2=1

...

M∑

kn+1=1

n+2∏

i=1

fi,kCn+2(bk1 , bk2 , ..., bkn+1). (8)

The integral in its basis representation can therefore be determined by computing the sum
of all products of basis function coefficients and integral coefficients.
Equation 7 and Equation 8 show that the integral coefficients Cn solely depend on the basis
function but not on the signals. Thus, the Cn can be precomputed. Moreover, for many
bases a significant number of integral coefficients are 0. For a fixed basis B, this sparsity
of the Cn can be exploited to optimize the computation of Equation 8.
However, even with a moderate number of factors in the product the computation of B(ω)
remains expensive because the sparsity in the integral coefficients decreases rapidly with
increasing n. Therefore, the integrand is usually reduced to a product of two or three
factors.

Most PRT techniques use a two factor integral to compute B(ω) efficiently. Except
[Zhou 2005] and [Sun 2006], all approaches assume a static scene so that the configuration
of the occlusion fields is fixed and can be represented by one factor V (x, ω). Combining
the visibility and the BRDF yields the transport operator

T (ω) = V (ω)ρ(ω, ω0). (9)

Equation 3 then reduces to a two factor product

B(ω0) =
∫

Ω

L(ω)T (ω, ω0)dω. (10)

For an orthonormal basis B, computing Equation 10 in its basis representation is efficient
because the integral coefficients reduce to Kronecker deltas, i.e.

C2(bk0 , bk1) = δk0,k1 =
{

1 if k0 = k1

0 otherwise ,∀(k0, k1), k0, k1 ∈ B.

B(ω) is therefore the dot product of the basis coefficients

B(ω) =
M∑

k0=1

M∑

k1=1

C2(bk0 , bk1)f0,k0f1,k1 (11)

=
M∑

k0=1

M∑

k1=1

δ(k0, k1)f0,k0f1,k1 (12)

= f0 · f1, (13)
(14)

where f0 and f1 are the vectors containing all basis coefficients of F0(ω) and F1(ω), re-
spectively. The computation of Equation 10 in an orthonormal basis with only diffuse
materials reduces to

B(ω) = l · t, (15)

where l and t are the vectors containing all basis coefficients of L(ω) and T (ω), respec-
tively. For view depend effects such as glossy BRDFs t becomes a matrix.
Spherical Harmonics (SH) [MacRobert 1948] are a popular basis for computing Equa-
tion 15. This basis can efficiently represent diffuse, low frequency lighting yielding
real-time frame rates even for complex scenes [Sloan 2002] [Sloan 2003a] [Sloan 2003b].
However, for high frequency lighting such as sharp shadows or glossy materials an in-
tractable number of SH coefficients would be necessary [Ng 2003]. Piecewise bi-linear
functions defined on the hemisphere [Lehtinen 2003], hemispherical basis function derived
from associated Legendre polynomials [Gautron 2004] and different clustering techniques
[Sloan 2003b] have been proposed to improve or replace Spherical Harmonics. However,
none of these approaches is efficient for high frequency effects.
Ng et al. [Ng 2003] compute Equation 15 in the Haar basis. They demonstrate that Haar
wavelets can efficiently represent both low and high frequency effects. However, comput-
ing B(ω) is still more expensive than for low frequency effects and interactive frame rates
are only possible with either fixed view or only diffuse materials.

To be able to change the BRDF at runtime, Ng et al. [Ng 2004] do not combine visibility
and BRDF. Equation 3 then becomes

B(ω0) =
∫

Ω

L(ω)V (ω)ρ(ω, ω0)dω. (16)

In contrast to Equation 10, no interreflection between objects can be taken into account
in this case. Moreover, computing Equation 16 in its basis representation in an arbitrary
orthonormal basis B does not simplify as in Equation 15. The triple product integral is
therefore

B(ω) =
M∑

k0=0

M∑

k1=0

M∑

k2=0

C3(bk0 , bk1 , bk2)Lk0Vk1ρk2 . (17)

Here, the integral coefficients C3(bk0 , bk1 , bk2) are denoted as tripling coefficients. Ng et
al. [Ng 2004] show that the tripling coefficients are sparse for many common bases such
as Dirac impulses, the 2D Fourier Series, Spherical Harmonics and Haar wavelets.
For Dirac impulses, the computation of Equation 17 is efficient because the C3 are gener-
alized Kronecker deltas

C3(bk0 , bk1 , bk2) = δk0,k1,k2 =
{

1 if k0 = k1 = k2

0 otherwise .

However, Dirac impulses, or point samples, provide very poor compression because they
localize only in space but not in frequency. Therefore, a very large number of coefficients
are necessary to represent low-frequency lighting effects such as soft shadows [Ng 2004].
Ng et al. also show that the Haar basis is the most efficient basis form the set men-
tioned above. In fact, Haar wavelets are well suited for nonlinear approximation so that
only the k% largest coefficients have to be to compute Equation 17. This yields an al-
gorithm with sublinear time complexity. Usually about 0.1 - 1% of the coefficients are
sufficient to achieve results which are visually almost indistinguishable from the full solu-
tion [Ng 2004]. Because the integral coefficients are far less sparse than for the two product
integral rendering still takes several minutes.

In the remainder of the report, an derivation and explanation of using Haar wavelets for
efficiently computing n factor and triple product integrals is provided, detailing some of
the points left open in the original papers by Ng et al. [Ng 2004] and Sun and Mukgerjee
[Sun 2006]. We also analyze the influence of different input signal resolutions and of non-
linear approximation on the quality of the renderings.
The next section presents an introduction into Haar wavelets and their properties. This is
followed by an explanation of the use of the Haar basis for PRT. The report concludes with
a presentation of results of our implementation and a discussion of areas for future work.

2 Haar Wavelets

2.1 Multiresolution Analysis

It is often desirable to work with signals on a number of scales. For example, one may
want to separate high frequency noise from a smooth signal or change the low frequency
structure of a signal while maintaining the high frequency characteristics. A multiresolu-
tion analysis of the signal is often used to facilitate these sorts of operations. It is obtained
by representing the signal as a linear combination of basis functions. Each basis function

is defined so that it captures only certain spatial or frequency-dependent characteristics of
the signal. More formally, we seek a basis B with basis functions bi(t) such that a signal
y(t) can be represented as

y(t) =
N∑

i=0

fibi(t). (18)

One very commonly used basis is the Fourier basis which yields a frequency analysis of
the input signal. However, the Fourier basis does not localize the signal in space and a
Fourier representation of a signal is rarely sparse. That is, in Equation 18, a large number
of coefficients fi are significantly nonzero. In this report we are interested in finding a basis
B which yields a sparse representation. This may be accomplished with wavelet bases.

Wavelet bases have become a popular alternative for multiresolution analysis. Like the
Fourier basis, wavelets allow a perfect reconstruction of the original signal and all basis
functions are scaled copies of a small set of parent functions. For the Fourier transform
these functions are cosnx and sinnx. For wavelets a variety of different basis functions
exist. One crucial difference between the Fourier and wavelet basis functions is that the
wavelet basis functions are scaled and translated versions of the parent basis functions. In
contrast, the Fourier basis functions are only scaled versions of cosnx and sinnx. An-
other difference is that the effective support of wavelet basis functions, i.e. the domain over
which they are significantly nonzero, is finite. These differences allow a wavelet basis to
localize a signal in space and frequency. Wavelet decompositions also tend to be sparse for
typical signals and so wavelet bases are useful for compression or to accelerate algorithms
based on basis function coefficients [Stollnitz 1996].
The simplest wavelet basis is the Haar basis introduced by Alfred Haar in 1909
[Stollnitz 1996].

2.2 1D Haar Transform

2.2.1 Introduction

Consider a discrete signal f with 25 elements, for example the pixel values of one row of an
image. The signal is decomposed in to a hierarchy of successively coarse approximations
H , with H = {f l}4i=0, where f l is an approximation of f of length 2l.
A simple way of obtaining f4 is to take the average of each pair of adjacent values in f .
The approximation f4 is therefore given by

f4[i] =
1
2
(f [2i] + f [2i+ 1]). (19)

The information that is lost due to averaging can be formalized as

f4
d [i] =

1
2
(f [2i]− f [2i+ 1]). (20)

Given f4
d and f4, we can restore f as follows

f [2i] = f4[i] + f4
d [i] (21)

f [2i+ 1] = f4[i]− f4
d [i]. (22)

Figure 1: φ(2,0), φ(2,1), φ(2,2) and φ(2,3) (Courtesy [Stollnitz 1996])

Thus, Equation 19 and Equation 20 describe a lossless decomposition of f into two parts.
The approximation f4[i] captures the low frequency content of the signal f while f4

d [i]
captures the high frequency content. It should be noted that the low frequency or average
part of a signal usually contains most of the significant information. For example removing
the high frequency part of an audio recording of a speech will produce an audio signal
that may sound unnatural, but in which the spoken words are still understandable. On
the other hand, removing the low frequency part will result in an incomprehensible signal
[Stollnitz 1996].

In the same way f has been decomposed into f4 and f4
d , we can decompose the average

signal f4, into two signals f3 and f3
d . This process can be repeated until f0 is reached.

Now given f l and f l
d we can reconstruct f l+1 as follows

f l+1[2i] = f l[i] + f l
d[i] (23)

f l+1[2i+ 1] = f l[i]− f l
d[i]. (24)

It follows that any of the approximate signals f l can be reconstructed using f0 and
f1

d , . . . , f
4
d by repeated application of Equation 23 and Equation 24. Since we can re-

construct f4 using f1
d , . . . , f

4
d , we can also reconstruct f by Equation 21 and Equation 22.

Hence, f0, f1
d , . . . , f

4
d are the coefficients of a lossless decomposition of f . Moreover, for

typical signals f , many of the detail coefficients f l
d will be zero or close to zero. This is

because the detail signals capture differences in adjacent elements of the approximations
f i and for typical signals most adjacent values are strongly correlated.

For many applications, the coefficients f0, f1
d , . . . , f

4
d are represented in one vector f ′. This

vector has the same number of elements as f . The signal f ′ is an unnormalized representa-
tion of the 1D discrete Haar transform of f . The vector f ′ may be compressed using RLE.
Additionally, also coefficients which are close to zero can be set to zero before performing
the compression which improves its efficiency. This is called nonlinear approximation.

2.2.2 Haar Wavelets

In order to better understand the notion of a Haar wavelet, we will reformulate the transform
in terms of hierarchical vector spaces rather than a hierarchy of signals. The derivations
below are based on [Stollnitz 1996].

Let V n represent the subspace of all piecewise constant functions over 2n, non-overlapping
subintervals of [0, 1) of equal size. An orthonormal basis for V n is {φ(n,i)}2n−1

i=0 , where
φ(l,i)(t) :=

√
2lφ(2lt− i) and

φ(t) :=
{

1 if t ∈ [0, 1)
0 otherwise .

The basis functions φ(l,i)(t) are called scaling functions. They are scaled and translated
copies of the function φ(t) which is called the father wavelet. The parameter l governs the
scale of the function, and the parameter i controls its translation. The basis functions for
V 2 are illustrated in Figure 2.2.2.

The function φ(t), the basis function for V 0, can be written as a linear combination of the
basis functions for V 1

φ(t) =
1√
2

(
φ(1,0)(t) + φ(1,1)(t)

)

= φ(2t) + φ(2t− 1).

This is true since

φ(2t) :=
{

1 if t ∈ [0, 0.5)
0 otherwise

and

φ(2t− 1) :=
{

1 if t ∈ [0.5, 1)
0 otherwise .

This means that φ(t) ∈ V 1. Since every function g ∈ V 0 is a multiple of φ(t), g is also
an element of V 1. This implies that V 0 ⊂ V 1. Similarly, it can be shown that V 1 ⊂ V 2,
V 2 ⊂ V 3 and so on. Hence, the vector spaces V i in which the approximations lie are
nested and form a hierarchy.

A discrete signal f is equivalent to a piecewise constant function over 25 equally sized
subdivisions of [0, 1). Therefore f is an element of V 5. Let fn be the projection of f onto
V n. Since the basis for V l is orthonormal, this projection is

f l(t) =
2l∑

i=0

fiφ
(l,i)(t),

where the coefficients fi are given by
〈
f, φ(i,j)

〉
. Here, 〈u, v〉 :=

∫ 1

0
u(x)v(x)dx is the

standard inner product. All coefficients of the hierarchical decomposition can again be
represented in one vector

{
〈
f, φ(0,0)

〉
,
〈
f, φ(1,0)

〉
,
〈
f, φ(1,1)

〉
, . . . ,

〈
f, φ(4,24−1)

〉
}.

As mentioned above, these coefficients are not likely to be sparse.

Now, letWn be a subset of V n+1 such thatWn 6= V n+1, andWn∪V n = V n+1. Wavelets
are defined as a linearly independent set of functions spanning Wn [Stollnitz 1996]. The
wavelet basis functions corresponding to the vector spaces V n above are known as the
Haar wavelet basis functions. These basis functions can be defined to be orthonormal, and
soWn is the orthogonal complement of V n in V n+1. The normalized Haar basis functions
for Wn are {ψ(n,i)}2n−1

i=0 , where ψ(l,i)(t) :=
√

2lψ(2lt+ i) with

ψ(t) =

{ 1 if t ∈ [0, 0.5)
−1 if t ∈ [0.5, 1)
0 otherwise

.

The functions φ and ψ, are referred to as the father and mother wavelets, respectively. Also,
the bases for the various V i are referred to as scaling functions.

Given thatWn∪V n span V n+1[Stollnitz 1996], and hence V 0∪W 0∪· · ·∪Wn span V n+1,
the basis functions for V i for i > 0 are linear combinations of wavelets and the father
wavelet. This implies that any function fi can be reconstructed using f0 and the projection
of f onto the wavelet spaces W i. Therefore, to represent the hierarchical decomposition
one only needs to retain the vector of coefficients f ′ resulting from the projection of f onto
V 0,W 0, . . . ,Wn. Specifically,

f ′ = (
〈
f, φ(0,0)

〉
,
〈
f, ψ(0,0)

〉
,
〈
f, ψ(1,0)

〉
, . . . ,

〈
f, ψ(4,24−1)

〉
).

This result is equivalent to the one obtained in Section 2.2.1. Since the basis functions are
normalized, f ′ is referred to as the normalized Haar transform of f , or simply the Haar
transform of f . Analogous to the unnormalized case, many of the coefficients will be zero
or close to zero.
In general, if g ∈ V n then H(g), the Haar transform of g, is

H(g) = (
〈
g, φ(0,0)

〉
,
〈
g, ψ(0,0)

〉
,
〈
g, ψ(1,0)

〉
, . . . ,

〈
g, ψ(n,2n−1)

〉
).

2.2.3 Matrix Representation

The Haar transform is a linear operations. Therefore, if g ∈ V n then there exists a matrix
T such that H(g) = T (V n(g)), where V n(g) denotes the coordinates g in V n. The
columns of T are given by the Haar transforms of the basis functions for V n [Jensen 2000].
Therefore the size of T depends on n. For example, if n = 2 and we use the unnormalized
Haar transform, we have

T =

1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0
0 0 1

2 − 1
2

 .

Note that the inverse Haar transform used to reconstruct the original signal is simply T−1.
Although it is mathematically convenient to work with the matrix representation of the
wavelet transform, it is not used in practice since T becomes very large as g grows in
length. Instead, efficient implementations make use of the fast wavelet transform (provided
the wavelets are orthogonal), or the filter or lifting scheme representations of the transform.

2.2.4 Filter Representation

Matlab uses convolution of filters with the discrete signal g of length 2n to obtain g′. Notice
that if g is convolved with the vector (1/

√
(2), 1/

√
(2)), one obtains a signal of length

2n − 1 consisting of the averages of every pair of values. Taking the odd-indexed elements
of this signal gives gn−1. Similarly, the odd-indexed values from the convolution of g with
(1/

√
(2),−1/

√
(2)) yields gn−1

d . This process may be repeated n times to obtain g′. The
vectors (1/

√
(2), 1/

√
(2)) and (1/

√
(2),−1/

√
(2)) are often written in an unnormalized

form: [1, 1] and [1,−1] 1. In this form they are called filter tab vectors.

1Matlab uses the filter tab [−1, 1]. However, because we did not use the Wavelet Toolbox, our
implementation follows [Stollnitz 1996].

Figure 2: Standard diagram of a one-step lifting scheme.

2.2.5 Lifting

Lifting was first proposed by W. Sweldens as another method for performing the discrete
wavelet transform [Jensen 2000]. One lifting step (in its basic form) has three parts:

1. Split The input, a discrete signal g, is split into two halves, s and d, where s
contains the odd-indexed elements of g, and d contains the even.

2. Predict The values of s are used to “predict” the values of d and the values of d
are altered to reflect how they differ from the prediction.

3. Update. Finally, the altered version of d is used to update the signal s to maintain
a desired property. Usually this is done to ensure that s and g share the same mean
value.

The lifting scheme is often described graphically as in Figure 2. In general, one lifting
step may involve many predictions and updates as well as uniform scalings of s and d. A
hierarchical decomposition using the Lifting Scheme is performed by using the output s
signal from one lifting step as the input signal for the next. The final result of lifting is
the concatenation of all outputs from all lifting steps. Lifting is memory efficient since the
transform can be computed in place. Also, since predictions, updates and scales can be
reversed, it is trivial to obtain an inverse lifting transform.

For the discrete Haar transform the prediction is that the signal is constant [Jensen 2000],
i.e. it is expected that s[i] equals d[i]. Consequently, in the prediction step d[i] is set to
d[i] − s[i]. In the update step, s[i] is set to s[i] + (d[i]/2) in order for s and g to have the
same mean. This lifting step is repeatedly applied to the signal s from the previous lifting
step until the output is of length one. At this point, the concatenation of s with the detail
coefficients d from all steps gives an unnormalized discrete Haar transform with all but the
first coefficient scaled by a factor of 2. Normalization can be done by uniformly scaling s
and d.

2.3 2D Haar Transform

The simplest way to perform the Haar transform on a 2D discrete signal a 1D transform
on the columns. This is known as the standard decomposition such as an image is to first
perform a 1D transform on the rows and then perform a 1D transform on the columns. This
is known as the standard decomposition [Stollnitz 1996]. The non-standard decomposition
involves performing one step of the Haar transform alternately on the rows and columns.
The non-standard transform is used in most applications because it better adapts to the
2D domain. The filter representation of the non-standard transform consists of 4 filter tab
matricies

Figure 3: Visualization of φ(0,0,0), ψ(0,0,0)
11 , ψ(0,0,0)

10 , ψ(0,0,0)
01 , φ(1,0,0), ψ(1,0,0)

11 , ψ(1,0,0)
10 ,

and ψ(1,0,0)
01 . Ignoring normalization, black squares indicate regions where the functions

equal −1, white 1, and grey 0.

1 1
1 1 ,

1 -1
1 -1 ,

1 1
-1 -1 , and

1 -1
-1 1 .

Convolving with the first filter gives the coarse approximation coefficients. Convolving
with the second gives the detail coefficients corresponding to horizontal differences in the
2D signal. Similarly, convolving with the third gives those coefficients corresponding to
vertical differences in the 2D signal. The fourth filter tab accounts for diagonal differences.
The coefficients obtained by convolving with these filters correspond again to the coeffi-
cients obtained by projecting the image onto basis functions. In order to project the image,
we will treat it as a piecewise constant function over equal-sized, square subdomains of
[0, 1) × [0, 1). Just as in the case of 1D signals, the approximations of this image will lie
in a hierarchy of vector spaces, and these vector spaces will be spanned by a hierarchy of
wavelets.

The wavelet basis functions of the 2D Haar transform are

ψ
(l,i,j)
01 = 2lφ(2lx+ i)ψ(2ly + j)

ψ
(l,i,j)
10 = 2lψ(2lx+ i)φ(2ly + j)

ψ
(l,i,j)
11 = 2lψ(2lx+ i)ψ(2ly + j),

where l denotes the level of the wavelet and (i, j) indicate the position of the wavelet. The
scaling functions are given by

φ(l,i,j) = 2lφ(2lx+ i)φ(2ly + j)

Some examples of these wavelets are shown in Figure 2.3. Since these wavelets are based
on the product of 1D Haar wavelet basis functions, they are referred to as tensor-product
wavelets.

Unlike the standard and non-standard decompositions, there are some wavelet transforma-
tions that are truly 2D. That is, they cannot be expressed as a sequence of 1D wavelet

transform steps and corresponding basis functions are therefore not products of 1D ba-
sis functions. One example is the quincunx transformation which is based on the Lifting
scheme [Jensen 2000].

2.4 Special Properties of Haar Wavelets

Haar wavelets exhibit a large set of desirable properties. Specifically,

• Orthonormality For orthogonal wavelets, the wavelet transform can be per-
formed in linear time using the Fast wavelet transform [Cody 1993].

• Symmetry Symmetry is a valuable property for many applications
[Stollnitz 1996]. For example, it means that the wavelet will be better at
maintaining time localization [Jensen 2000].

• Minimal Support Haar wavelets have compact support. Moreover, this support
is smaller than that of any other wavelet. The efficiency of many computations
depends on the size of the support of a basis.

• Maximal Vanishing Moments The number of vanishing moments of a wavelet
ψ is the highest number k such that for all 0 ≤ j < k,

∫ 1

0
ψ(x)xjdx = 0

[Stollnitz 1996]. Haar wavelets have one vanishing moment, the highest num-
ber possible given their support size. Having k vanishing moments means that the
wavelet will have a very sparse representations of signals which are polynomials
of degree less than or equal to k [Mathworks].

Haar wavelets are unique in that they are the only wavelets which are at once symmetric,
orthonormal and have finite support. Unfortunately, Haar wavelets are neither smooth nor
continuous, and cannot be differentiated.

2.5 Other Wavelets

Haar wavelets are only one of many wavelet bases. In general, wavelet bases fall into three
main categories.

2.5.1 Orthonormal Wavelets

There are three requirements for wavelet basis to be an orthogonal multiresolution basis
[Stollnitz 1996].

1. The basis functions for each approximation space V i, the scaling functions, must
be orthogonal.

2. The basis functions for each wavelet space W i, the wavelets, must be orthogonal.
3. Every wavelet basis function must be orthogonal to every scaling basis function

defined at a coarser scale.

It is possible, through scaling, to convert an orthogonal basis into an orthonormal basis. The
Daubechies wavelet bases, of which Haar is a special case, are all examples of orthogonal
wavelet bases [Wikipedia a].

2.5.2 Semiorthogonal Wavelets

Like orthogonal wavelets, semiorthogonal wavelets are orthogonal to coarser scaling func-
tions, but are not necessarily orthogonal to each other [Stollnitz 1996]. For some combi-
nations of properties such as smoothness, compact support, and symmetry, one must resort
to semiorthogonal wavelets [Stollnitz 1996]. One example of semiorthogonal wavelets are
the spline wavelets.

2.5.3 Biorthogonal Wavelets

Biorthogonal wavelets differ from semiorthogonal wavelets in that they are not orthogonal
to coarser scaling functions, or to each other. The scaling functions also need not be orthog-
onal. One useful feature of biorthogonal wavelets is that they can be constructed through
lifting [Stollnitz 1996].

It is possible to convert any basis to an orthonormal basis using Gram-Schmidt normal-
ization. Performing Gram-Schmidt normalization on wavelets and scaling functions gives
their respective dual bases. Biorthogonal wavelet bases are such that [Stollnitz 1996]:

1. The dual wavelet bases are orthogonal to the scaling function bases.
2. The dual scaling function bases are orthogonal to the wavelet bases.

3 Precomputed Radiance Transfer using Haar Wavelets

In this section different bases for PRT are evaluated and it is shown that the Haar basis is
well suited for computing an n factor product integral such as Equation 3. The discussion
in this section is mainly based on [Ng 2004] and [Sun 2006].

3.1 Comparison of Basis Functions for PRT

Computing an n factor product integral in a basis representation is efficient because the
integral coefficientsCn are sparse, i.e. most of them are zero or close to zero (cf. Section 1).
However, the degree of sparsity depends on the chosen basis. Additionally, bases also
differ with respect to other desirable properties such as the possibility to perform nonlinear
approximations. In the following, we therefore analysis the efficiency of different bases for
computing the n factor product integral.

General Basis A general basis is efficient for representing a signal with a small number
of coefficients. The basis functions are chosen depending on the input signal. For example,
Liu et al. [Liu 2004] use Singular Value Decomposition (SVD) to project the BRDF into a
custom basis. The singular values are the basis coefficients and the basis functions are rep-
resented by the rows of the two triangular matricies resulting from the SVD. Liu et al. use
nonlinear approximation to reduce the storage requirements and the runtime computations.
They show that the 10 largest singular values are sufficient to achieve the same accuracy
than with 6-th or 7-th order spherical harmonics which require 36 and 49 basis coefficients,
respectively.
However, the basis depends on the input signal and is not known a priori. Therefore, the
sparsity in the integral coefficients, if it exists, cannot be employed to make the computa-
tions more efficient. Thus, the integral has to be computed by brute force yielding a time
complexity of O(MnO

(n)
ic), where O(n)

ic is the complexity to compute a n-th order integral
coefficient.

Dirac Basis The representation of a signal S in the Dirac basis δ is a discretized version of
S. The Dirac basis functions have minimal local support and are non-overlapping yielding
integral coefficients Cδ

n which are generalized Kronecker deltas,

Cδ
n(bk1 , bk2 , ..., bkn) = δbk1 ,bk2 ,...,bn =

{
1 if k1 = k2 = ... = kn

0 otherwise . (25)

The complexity for computing the n factor product integral in the Dirac basis is O(Mn).
However, this basis only localizes in the spatial domain and not in the frequency domain

Basis Time Complexity Comment
General basis O(MnOIC) No a priori knowledge can be

exploited
Dirac basis O(Mn) Nonlinear approximation not

possible.
Recursive spherical harmonics O(M5/2n) For low frequency lighting only

O(m5/2n)
Haar basis (recursive) O(Mn) Nonlinear approximation can-

not be exploited
Haar basis (tree structured) O(mn)

Table 1: Comparison of computing the n factor product integral in different basis functions
with M basis coefficients, m denotes the number of coefficients retained after nonlinear
approximation and m¿M .

[Ng 2004]. Thus, a large number of coefficients has to be retained to capture low frequency
effects. Using nonlinear approximation in the Dirac basis therefore leads to significant
artifacts.

Spherical Harmonics Spherical Harmonics (SH) [MacRobert 1948] are a basis function
defined on the sphere and the equivalent of the Fourier series in this domain. The n factor
product integral in the SH basis can be evaluated recursively [Sun 2006]. Then, at a single
time only two factor products have to be computed. Ng et al. [Ng 2004] show that com-
puting the two factor product using Spherical Harmonics has a complexity of O(M5/2).
Computing the n factor product has therefore a complexity of O(M5/2n). In practice,
often only low order Spherical Harmonics are used, i.e. m ¿ M , yielding a complexity
of O(m5/2). However, using only a very small number of SH coefficients significantly
bandlimits the effects which can be represented.

Haar Basis, Recursive Computation Computing a two factor product integral in the
Haar basis has a complexity of O(M). Recursively evaluating the n factor product has
therefore a complexity of O(Mn). Because wavelets are localized in both, the space and
the frequency domain, nonlinear approximation can be employed efficiently yielding an
algorithm with sub-linear time complexity.
However, using nonlinear approximation is expensive because it has to be performed
at runtime for each two factor product which has been computed. Thereby sorting the
coefficients and selecting the k% largest has a best case complexity of O(n logn). Thus,
it is not applicable for the efficient computation of the n factor product integral. The
complexity to compute the n factor product in the Haar basis using a recursive computation
therefore remains O(Mn).

Haar Basis, Tree-based Computation Sun et al. [Sun 2006] propose a tree-structured
Haar integral algorithm to compute the n factor product integral. This algorithm exploits
the predetermined sparsity in the integral coefficients yielding a complexity of O(mn),
with m¿M . A detailed description of the tree-structured Haar integral algorithm can be
found in Section 3.2, Section 3.3 and Section 3.4

The complexity of the different basis functions to compute the n factor product integral
is summarized in Table 1. The table shows that the Haar basis, with the tree-structured
Haar integral algorithm, is the most efficient basis from those taken into account for this
comparison.

In the remainder of this section we first discuss some mathematical properties of the n
factor product in the Haar basis before detailing how the computations can be implemented
efficiently.

3.2 Haar Basis Function Products

Let ϕ(l,i,j) be a Haar wavelet basis function

ϕ(l,i,j) ∈ {φ(l,i,j), ψ
(l,i,j)
01 , ψ

(l,i,j)
10 , ψ

(l,i,j)
11 }.

Then the product of two Haar wavelet functions is

2αϕ(l,a,b)
r = ϕ

(k,i,j)
1 (u, v)⊗ϕ(l,a,b)

2 (u, v) =
∏

(u,v)∈Imk+1

ϕ
(k,i,j)
1 (u, v)ϕ(l,a,b)

2 (u, v), (26)

where

Im = (1, 1), ..., (2k+1, 2k+1), k > l

is the set of all squares at level k + 1. For example in Figure 4, k = 2 and the finest scale
has 4x4 wavelet squares. The basis functions at level k are used to analyse a signal of 8x8
pixels at level k + 1.

The following theorems show that the product of two Haar basis functions is again a Haar
basis function, with magnitude 2α. The proofs of the theorems are straightforward using
the filter tab matrices of the Haar basis functions and Equation 26. For the limited number
of cases the correctness can be shown by iterating over the set of all possible combinations.
For each theorem we provide one part of the proof as example. If the wavelets are at
different scales, then the wavelet at the coarser scale is projected onto the finer scale and
the multiplication is performed there. See Theorem 4 for an example.
It should be noted that the multiplication of Haar basis functions is commutative.

Theorem 1 The product of two non-overlapping Haar basis functions ϕ(k,m,n)
1 and ϕ(l,i,j)

2
at arbitrary scales is 0.

Example Theorem 1: Multiplication of two Haar basis functions at the same scale with
different translation.

2l

1 -1 0 0
1 -1 0 0
0 0 0 0
0 0 0 0

⊗ 2l

0 0 1 1
0 0 -1 -1
0 0 0 0
0 0 0 0

= 4l

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= 0

Theorem 2 Product of two Haar basis functions ϕ(l,i,j)
1 and ϕ(l,i,j)

2 at level l with identical
support.

1. If ϕl
1 and ϕl

2 are wavelets basis functions of the identical type then ϕl
r is the

scaling function at (l, i, j), with magnitude 4l.

2. If ϕl
1 and ϕl

2 are wavelets basis functions of different types then ϕl
r is the third

wavelet basis function at level l, with magnitude 2l.

Figure 4: Different examples for the multiplication of two Haar basis functions (Courtesy
[Sun 2006])

3. If ϕl
1 and ϕl

2 are both the scaling function then ϕl
r is also the scaling function at

level l, with magnitude 2l

4. If ϕl
1 is a wavelet basis function and ϕl

2 is the scaling function then ϕl
r is again

the wavelet basis function ϕl
1, with magnitude 2l.

Example Theorem 2: Multiplication of two identical wavelets basis functions at level l = 0.

2l 1 -1
-1 1 ⊗ 2l 1 -1

-1 1 = 4l 1 1
1 1 ,

Theorem 3 Product of two overlapping Haar basis functions ϕ(k,m,n)
1 and ψ(l,i,j)

2 at dif-
ferent scales.

The product of two Haar basis functions ϕ(k,m,n)
1 and ϕ(k,m,n)

2 , with k > l, is the wavelet
basis function defined at the finer scale, ϕ1, scaled by ±2k. The sign is determined by the
quadrant of ϕ2 in which ϕ1 lies. For Haar basis functions ϕ1 overlaps ϕ2 always in exactly
one quadrant.

Example Theorem 3: Product of two wavelets basis functions. The first factor is defined
at level 1 and the second at level 2. Note that the first factor is projected onto level before
performing the multiplication.

2l

1 -1 0 0
1 -1 0 0
0 0 0 0
0 0 0 0

⊗ 2k

1 1 -1 -1
1 1 -1 -1
1 1 -1 -1
1 1 -1 -1

= 2k

2l

1 -1 0 0
1 -1 0 0
0 0 0 0
0 0 0 0

 .

Figure 4 shows further examples of the product of two wavelets.

3.3 Integral of Haar basis function

The integral of a Haar basis function is

I =
∫ ∫

ϕ(l,i,j) di dj =
1
4l

∑

j

∑

i

Ψ(l,i,j)(i, j), (27)

where Ψ(l,i,j) is the filter tab matrix of ϕ(l,i,j). The result of the integration is given in
Theorem 4.

Theorem 4 Integral of Haar basis functions.

1. The integral of a wavelet basis function I =
∫ ∫

ψ(l, i, j)didj = 0.

2. The integral of a scaling basis function is I =
∫ ∫

φ(l, i, j)didj = 2−l

Theorem 4 can be shown using the filter tab matricies of the Haar basis functions and
Equation 27. For example the integral of φ(1,0,1)

I =
∫ ∫

2l

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

didj (28)

= 2l 1
4l

∑

j

∑

i

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

(29)

=
(

1
2l

1
2l

)
· 2l · 4 = 2−l · 4 (30)

3.4 n Factor Product Integral

The theorems in the previous subsection show that the product of two Haar basis functions
is again a Haar basis function. The product of n Haar basis functions can then be computed
as a sequence of two factor products.
The integral coefficients Cn are defined in Equation 7 as,

Cn(b1, b2, ..., bn) =
∫ n∏

k=1

bk(ω)dω. (31)

It can be seen easily that the Cn are n factor product integrals. Theorem 5 summarizes the
previous theorems and defines the value of the integral coefficients for the Haar basis.

Theorem 5 Generalized Haar Integral Coefficient Theorem [Sun 2006]

The n-th order Haar integral coefficient Cn has a nonzero value, if and only if the number
of three kinds of wavelet basis functions ψ(l,i,j)

01 , ψ(l,i,j)
10 and ψ(l,i,j)

11 at the finest scale have
the same parity. In this case, the integral coefficient is ±2

P
l −2lo where

∑
l is the sum of

the scales of all operand basis functions and l0 is the scale of the finest basis function. The
sign of the integral coefficient is the result of the multiplications of the sign of the squares
of all but the wavelets at the finest scale where the wavelets at the finest scale fall into.

The full proof of Theorem 5 can be found in [Sun 2006]. Here, only some important ideas
of the proof are presented. It should be emphasized that all wavelets at the finest scale l0
have to be defined in the same square (l0, i, j) for the product to be nonzero (Theorem 1).
Initially, any scalar scaling factor will be ignored.
The parity of the multiplicity of the wavelet basis function at the finest scale has to be
identical. Only in this case is the product of all factors a scaling function and the integral
is nonzero (Theorem 4). If the multiplicities of all wavelet basis functions are even, e.g.
there are two wavelets of each type, then the product of each pair of wavelet basis functions

Figure 5: Visual multiplication of multiple Haar basis functions over different scales (Cour-
tesy [Sun 2006])

of the same type is a scaling function (Theorem 2.1). Repeatedly applying Theorem 2.1
shows that the result is again the scaling function (Theorem 2.3). If the multiplicities of
all wavelet basis functions at the finest scale are odd, e.g. there are three wavelets of each
type, then the product of each pair of wavelet basis functions of the same type is the scaling
function (Theorem 2.1). Exactly one wavelet basis function of each wavelet type remains
at the finest scale. The product of two of these wavelets basis function is the third wavelet
basis function (Theorem 2.2) which, multiplied with the remaining wavelet basis function,
forms a scaling function. Any scaling function at the finest scale does not change these
results (Theorem 2.3).
The normalization factors can be treated separately by factoring them out. The product of
all factors yields 2

P
l . The second part of the total scaling factor, 2−2l0 , consists of the

normalization factor of the integration and the normalization factor of the scaling function
resulting from n factor product. The sign of the integral coefficient results directly from the
repeated application of Theorem 3. Figure 5 depicts the computation of different integral
coefficients.

3.5 Haar Basis Tree and Efficient Computation of the Integral Coefficients

The time complexity for computing Theorem 5 with a brute force implementation is
O(Mnn), when one assumes that the complexity of computing an integral coefficients
is O(n). In this subsection we show how the complexity of the computations can be re-
duced to O(mn), with m¿M .
Theorem 6 summarizes the properties of the basis function squares (l, i, j) for the Haar
basis.

Theorem 6 Multi-resolution properties of squares for the Haar basis.

• Each parent square at level l has 4 child squares at level l + 1.

• The child squares are fully contained in the support of the parent square.

• The union of all child squares is the parent square.

• All child squares are disjoint.

Based on Theorem 6, all squares (l, i, j) and the corresponding Haar basis functions can be
represented in a Haar basis tree as shown in Figure 6. It follows from Theorem 6 that only
squares in the same branch of the tree overlap. It then can be concluded from Theorem 5

Figure 6: Haar basis tree (Courtesy [Sun 2006])

that nonzero integral coefficients occur only if all factors are Haar basis functions along
one branch in the tree. The n factor product integral can therefore be computed efficiently
by traversing the Haar basis tree.
In an implementation, the Haar basis tree can be stored in an augmented quadtree which
closely resembles the tree shown in Figure 6 [Sun 2006]. One important optimization is that
the scalar factor and the sign in Theorem 5 can be computed incrementally while traversing
the tree. Then, when computing the n factor product for a basis function defined at (l, i, j),
only the signed parent sums psum and the Haar basis functions on level l in the same branch
of the tree have to be combined. Using the parent sum to compute the n factor product
integral yields an algorithm with linear complexity. Nonlinear approximation can be used
to further accelerate the computation. The tree then only has to be traversed until all but
one coefficients are nonzero. Note that for this algorithm the nonlinear approximation can
be precomputed. The final algorithm to compute the n factor product integral has therefore
a sublinear complexity of O(mn). The complete algorithm for efficiently computing the n
factor product integral is given in [Sun 2006].

3.6 Efficient Computation of Triple Integral Products

The remainder of this section will detail the efficient computation of the triple product inte-
gral of lighting, BRDF and visibility. We also explain our implementation of this algorithm.
The following discussion is based on [Ng 2004].

The inputs to the algorithm are three signals—lighting, BRDF and visibility. These are
parametrized as cubemaps with identical resolution and projected into the Haar basis. The
resulting scalar approximation coefficients, the coefficients corresponding to the scaling
function, is stored in scale *. The detail coefficients over the different levels for hori-
zontal, vertical and diagonal wavelets, ψ∗01, ψ∗10, and ψ∗11 are stored in the detail coefficient
vectors dh *, dv * and dd *, respectively. All detail coefficient vectors for a signal have
the same length.

For example, for an 16x16 input signal, there are three levels and 8, 4 and 1 wavelet co-
efficients, respectively. The detail vector for the horizontal decomposition then takes the
form

dh = [d(0,0,0)
h , d

(1,0,0)
h , d

(1,0,1)
h , d

(1,1,0)
h , d

(1,1,1)
h , d

(2,0,0)
h , d

(2,0,1)
h , ..., d

(2,3,3)
h]

where coefficient d(l,i,j)
h is the coefficient corresponding to the wavelet basis function

ψ
(l,i,j)
01 . Each index into the detail coefficient vectors therefore corresponds to one wavelet

square.

For computing the triple product integral efficiently Theorem 5 can be further specialized
(cf. also Theorem 1 to Theorem 2).

Theorem 7 Haar Tripling Coefficient Theorem [Ng 2004]

The tripling coefficient is nonzero, if and only if

1. all three basis functions are the scaling function, in this case C3 = 1.

2. all three basis functions occupy the same square and all are different wavelet
types. C3 = 2l, where the square is at level l.

3. two basis functions are the identical wavelets basis function, and the third is either
the scaling function or a wavelet that overlaps at a strictly coarser level. C3 =
±2l, where the third function exists at level l.

For efficiency, the contributions from each of the three cases in Theorem 7 are computed
separately and the results are combined:

% i n i t i a l i z e wi th c o n t r i b u t i o n from c a s e 1
i n t e g r a l = s c a l e l ∗ s c a l e p ∗ s c a l e v ;

% add c o n t r i b u t i o n from c a s e 2
i n t e g r a l = i n t e g r a l + c a s e 2 (d h l , d v l , d d l , . . .

dh p , dv p , dd p , . . .
dh v , dv v , dd v , . . .
N) ;

% add c o n t r i b u t i o n from c a s e 3
i n t e g r a l = i n t e g r a l + c a s e 3 (s c a l e l , d h l , d v l , d d l , . . .

s c a l e p , dh p , dv p , dd p , . . .
s c a l e v , dh v , dv v , dd v , . . .
N) ;

Given the representation for the approximation coefficients and the detail coefficient vec-
tors, the contribution of case two of Theorem 7 can be computed by iterating over all
elements of the detail vectors.

f u n c t i o n i n t e g r a l = c a s e 2 (d h l , d v l , d d l , . . .
dh p , dv p , dd p , . . .
dh v , dv v , dd v , . . .
N)

% l e v e l c o u n t e r
l e v e l = 0 ;

% t r i p l i n g c o e f f i c i e n t f o r t h e c u r r e n t l e v e l

t c o e f f = 2 ˆ l e v e l ;
% number o f c o e f f i c i e n t s p r o c e s s e d on a l l p r e v i o u s l y p r o c e s s e d l e v e l s
c o e f f s p r o c e s s e d = 0 ;

% number o f c o e f f i c i e n t s on t h e c u r r e n t l e v e l
c o e f f s l e v e l = 1 ;

% r e s u l t
i n t e g r a l = 0 . 0 ;

% do f o r a l l s q u a r e s a t a l l l e v e l s
f o r i = 1 : l e n g t h (d h l)

i n t e g r a l = i n t e g r a l + t c o e f f ∗ . . .
(d h l (i) ∗ dv p (i) ∗ dd v (i) . . .
+ d h l (i) ∗ dd p (i) ∗ dv v (i) . . .
+ d v l (i) ∗ dh p (i) ∗ dd v (i) . . .
+ d v l (i) ∗ dd p (i) ∗ dh v (i) . . .
+ d d l (i) ∗ dh p (i) ∗ dv v (i) . . .
+ d d l (i) ∗ dv p (i) ∗ dh v (i)) ;

% u p d a t e v a l u e s t h e n f o l l o w i n g d e t a i l c o e f f i c i e n t s c o r r e s p o n d
% t o t h e n e x t f i n e r d e c o m p o s i t i o n l e v e l
i f ((i − c o e f f s p r o c e s s e d) == c o e f f s l e v e l)

l e v e l = l e v e l + 1 ;
t c o e f f = 2ˆ l e v e l ;
c o e f f s p r o c e s s e d = c o e f f s p r o c e s s e d + c o e f f s l e v e l ;
c o e f f s l e v e l = 4ˆ l e v e l ;

end
end

% end f u n c t i o n
end

Efficiently computing case three of Theorem 7 is more complex because for each square
all overlapping squares at coarser levels have to be determined. First it can be noted that,
for a fixed ψ(l,i,j), the parent sum is independent of the wavelet type yielding the following
implementation

f u n c t i o n c = c a s e 3 (s c a l e l , d h l , d v l , d d l , . . .
s c a l e p , dh p , dv p , dd p , . . .
s c a l e v , dh v , dv v , dd v , . . .
N)

c = 0 . 0 ;

% a l l t r a n s l a t i o n s a t a l l s c a l e s
f o r i = 1 : l e n g t h (d h l)

% psum i s i n d e p e n d e n t o f t h e w a v e l e t t y p e
psum v = psum (s c a l e v , d e t a i l s v , i) ;
psum p = psum (s c a l e p , d e t a i l s p , i) ;
psum l = psum (s c a l e l , d e t a i l s l , i) ;

% f o r e v e r y w a v e l e t t y p e

% h o r i z o n t a l
c = c + d h l (i) ∗ dh p (i) ∗ psum v ;

c = c + dh v (i) ∗ dh p (i) ∗ psum l ;
c = c + d h l (i) ∗ dh v (i) ∗ psum p ;

% v e r t i c a l
c = c + d v l (i) ∗ dv p (i) ∗ psum v ;
c = c + d v l (i) ∗ dv v (i) ∗ psum p ;
c = c + dv v (i) ∗ dv p (i) ∗ psum l ;

% d i a g o n a l
c = c + d d l (i) ∗ dd p (i) ∗ psum v ;
c = c + d d l (i) ∗ dd v (i) ∗ psum p ;
c = c + dd v (i) ∗ dd p (i) ∗ psum l ;

end

end

The helper function psum() computes the sum of all nonzero tripling coefficients resulting
from case 3 of Theorem 7. A naive implementation is listed below:

f u n c t i o n ps = psum (s c a l e , d e t a i l s , i)
% @param s c a l e 1x1 a p p r o x i m a t i o n / s c a l i n g f u n c t i o n c o e f f i c i e n t
% @param d e t a i l s 3xN d e t a i l c o e f f i c i e n t s o f a l l t h r e e w a v e l e t t y p e s , each
% d e t a i l v e c t o r has N e l e m e n t s
% @param i 1x1 l i n e a r i n d e x of w a v e l e t s q u a r e (l , i , j)

% s c a l i n g f u c n t i o n has t o be a lways t a k e n i n t o a c c o u n t
ps = s c a l e ;

% g e t t h e i n d e x of i i n t h e 2D c o e f f i c i e n t m a t r i x a t t h e l e v e l o f i
% i . r e l i s t h e l i n e a r , r e l a t i v e i n d e x of s q u a r e i w i t h i n a l l s q u a r e s a t l e v e l
% i . l e v e l
[x i y i] = ge t Index2DRel (i . r e l , i . l e v e l) ;

% do f o r a l l l e v e l s which a r e s t r i c t l y c o a r s e r
f o r l = 0 : (i . l e v e l − 1)

% do f o r a l l w a v e l e t s t r a n s l a t i o n s i n t h e c u r r e n t l e v e l
f o r k = 1 : c n u m c o e f f s

% g e t 2D i n d e x of k i n t h e 2D c o e f f i c i e n t m a t r i x o f l
[x c , y c] = ge t Index2DRel (k , l) ;

% on ly s q u a r e s which o v e r l a p i a r e r e l e v a n t
i f (d o e s O v e r l a p (x i , y i , x c , y c))

% e f f e c t i v e i n d e x i n t h e l i n e a r i z e d , m u l t i−l e v e l r e p r e s e n t a t i o n
i n d e x = c o e f f s p r o c e s s e d + k ;

% do f o r a l l w a v e l e t t y p e s a t t h e c u r r e n t l e v e l and t r a n s l a t i o n
f o r m = 1 : 3

% t h e q u a d r a n t o f i w. r . t . l−k
c uvw = g e t S i g n Q u a d r a n t (m, x i , y i , x c , y c) ;
c uvw = c uvw ∗ (2 ˆ l) ;

% add c o n t r i b u t i o n
ps = ps + c uvw ∗ d e t a i l s (m, i n d e x) ;

end % end f o r a l l t h r e e w a v e l e t s

end % t h e r e i s an o v e r l a p
end % end f o r each w a v e l e t a t t h e c u r r e n t l e v e l

c o e f f s p r o c e s s e d = c o e f f s p r o c e s s e d + c n u m c o e f f s ;

end % end f o r a l l l e v e l s

As already mentioned, this algorithm can be optimized. First, psum can be updated incre-
mentally from the values of the previous level as discussed above; second, also the tripling
coefficients can be precomputed for a fixed size of the input signals. A more efficient
implementation for computing psum is presented in Section 4.

3.7 Coordinate frame of computation

The BRDF, ρ(ω, ω0), in Equation 3 is defined in the local coordinate frame of a surface
location. The lighting environment, however, is defined in the global coordinate frame. To
compute the product of these functions and the visibility, all factors have to be defined in
the same coordinate frame. The visibility can be computed easily in a local or global coor-
dinate frame. However, either the lighting environment or the BRDF have to be rotated for
computing the product.
We follow the approach proposed by Ng et al. [Ng 2004] and represent the BRDF in the
global coordinate frame. The BRDF is then a 6D function, ρ̂(ω, ω0, n), where n is the sur-
face normal at a surface location. For the special case of a diffuse BRDF ρ̂ is independent
of the view direction ω0 so that vertex colors computed for a scene containing only diffuse
BRDFs are correct independent of the view direction. We employ this property in our plots
in Appendix 8.

4 Implementation

We implemented a full rendering pipeline for computing the triple integral product of light-
ing, BRDF and visibility. For rendering, Equation 17 is computed for each vertex of the
model. The final images are obtained with a standard rendering pipeline where the vertex
colors are interpolated across the surfaces of the model.
The physically-motivated ray tracer pbrt [Pharr 2004] has been extended and used for the
visibility precomputation. Most of the remaining functionality to compute the triple prod-
uct integral is implemented in Matlab [Mathworks]. In the first phase of the project we also
used the Wavelet Toolbox for Matlab which allows to compute the wavelet decomposition
and nonlinear approximations for many of the standard wavelets such as Haar, Daubechies
and Symlet, in 1D and 2D. Although this functionality could not be used for the final im-
plementation2, it was valuable to understand some of the concepts of wavelets and to verify
our own implementation.

4.1 Lighting

High Dynamic Range images and and analytic light sources are used as lighting environ-
ments. We use HDR images from [Debevec 1997] and generate analytic light sources using
an image editing program. All lighting environments are parametrized as cross maps. The
original images are converted to the pfm format. We used PFSTools [PFStools] for this
and implemented a pfm file reader in Matlab.
Five lighting environments have been used for the experiments discussed in Section 6. The
first one is an HDR image of St. Peters Basilica in Rome. The remaining four lighting
environments are analytic light source with different solid angles varying from an almost

2Currently, only one license for the wavelet toolbox is available and these only on the cdf system.

point-like light source to a big area light source. For computing the triple product integral
with input signal resolutions of 64x64, 128x128 and 512x512, the sides of the cross maps
have to be resampled. This can locally and globally shift the mean of the image color. At
the moment we correct only the global shift per face. To avoid the costly resampling, mean
correction and projection into the Haar basis for each new rendering, these computations
are performed only once and the result is cached.

4.2 BRDF

The BRDF is defined in a global coordinate frame. Ng et al. [Ng 2004] compute the BRDF
by interpolating a precomputed material field. In contrast, we compute the BRDF for each
vertex. This is more accurate but also more expensive. The computation of the BRDF
parametrized as cubemap is performed directly in Matlab. Currently only monochrome,
diffuse BRDFs are supported because we were mainly interested in the frequency charac-
teristic of the rendered effects and used shadows to analyse these. It would be straightfor-
ward to extend the current implementation to also handle colored and glossy BRDFs.

4.3 Visibility

Two techniques to sample the visibility for a surface location have been implemented as
pbrt plugins. First, we have written a visibility ray caster which samples the hemisphere
above a surface point. This extension naturally integrates into pbrt. Second, we added a
graphics hardware accelerated renderer based on OpenGL to pbrt. This extension com-
putes visibility cubemaps either in a local or a global coordinate frame. Because pbrt is
by design a ray tracing system, adding this functionality was not trivial. A more detailed
discussion of the extensions and its implementations can be found in a design document
which is provide along with this report. The precomputed visibility maps are RLE encoded
and stored in files. The compression is efficient because the maps contain only binary infor-
mation and the visibility is for most scenes a piecewise constant function. For computing
the triple product integral, the maps are read into Matlab, decoded and projected into the
Haar basis. At the moment, we precompute the visibility maps for different resolutions sep-
arately. Precomputing only the highest resolution and downsampling these maps to obtain
lower resolution versions should be possible with no or negligible distortion.

4.4 Triple Integral Product

In the following, we will detail an efficient implementation to compute the value of the
parent sum psum (cf. Section 3). The implementation discussed here differs from those in
[Ng 2004], mainly because we used Matlab instead of C++ 3.

The optimized algorithm to compute psum is based on the tree-structured Haar integral
algorithm described in Section 3 and consists of three phases. In the first phase, a pre-
computation step, the aggregated value of the non-zero tripling coefficients for each square
(l, i, j) from case three of Theorem 7 is determined. As mentioned earlier, psum can be
accumulated while traversing the Haar basis tree and therefore only the contribution from
the direct parent level has to be precomputed. This computation depends solely on the
the size of the input signal and therefore the number of wavelet coefficients. Hence, we
precompute the coefficients once for the different resolutions of the input signals which
are used. Given the tripling coefficients at the direct parent level and the detail coefficient
vectors details *,

3To achieve optimal performance in Matlab the implementation has to be vectorized. Vector-
ization in the context of Matlab means that all operations should be performed as vector or matrix
operations; constructs such as loops and branching are in contrast very expensive.

details * = [dh *, dv *, dd *];

of the three signals, the value of psum can be computed for each square and each input
signal. This computation involves only one loop over all decomposition levels and is there-
fore efficient in Matlab.
The index map, computed in the code listing below, contains the indicies in details *
of the wavelet coefficients at the direct parent level.

% l i n e a r l i s t o f i n d i c i e s a t t h e l a s t s c a l e
% two rows so t h a t t h e each i n d e x i s r e p e a t e d once i n t h e f i n a l l i s t
index map = repmat (s t a r t c o e f f s l l : e n d c o e f f s l l , 2 , 1) ;

% g e n e r a t e t h e rows i n t h e i n d e x l i s t ma t r i x , t h e r e b y t h e i n d i c i e s i n t h e
% t h e f i r s t column c o r r e s p o n d t o t h e i n d i c i e s n e c e s s a r y t o a c c e s s t h e
% p a r e n t sums of t h e s q u a r e s i n t h e f i r s t row of t h e f i l t e r t a b m a t r i x
% r e p r e s e n t a t i o n
index map = r e s h a p e (index map , e l e m s s i d e , s i z e (index map , 2) / h e l e m s s i d e) ;

% d u p l i c a t e each column of index map
% t h i s g e n e r a t e s a s q u a r e m a t r i x b e c a u s e t h e number o f w a v e l t s i n x
% and y d i r e c t i o n i s i d e n t i c a l f o r t e n s o r p r o d u c t w a v e l e t s
i i m a p = c e i l (0 . 5 : 0 . 5 : h e l e m s s i d e) ;
index map = index map (: , i i m a p) ;

The parent sums for one level can therefore be computed as

% l i n e a r i z e i n d i c i e s so t h a t i t can be used t o i n d e x w a v e l e t d e t a i l
% c o e f f i c i e n t v e c t o r s
index map = index map (:) ;

% t r i p l e c o e f f i c i e n t s r e l e v a n t f o r t h e c u r r e n t l e v e l
c c o e f f s = s t a r t c o e f f s c u r r e n t : e n d c o e f f s c u r r e n t ;
t c o e f f s = t c o e f f s a l l (c c o e f f s , :) ;

% compute p a r e n t sum
c p r o d u c t = d o t (t c o e f f s ’ , d e t a i l s l (index map , :) ’) ;
p s u m p a r e n t l (c c o e f f s) = p s u m p a r e n t l (index map) + c p r o d u c t ;

c p r o d u c t = d o t (t c o e f f s ’ , d e t a i l s p (index map , :) ’) ;
p s u m p a r e n t p (c c o e f f s) = p s u m p a r e n t p (index map) + c p r o d u c t ;

c p r o d u c t = d o t (t c o e f f s ’ , d e t a i l s v (index map , :) ’) ;
p s u m p a r e n t v (c c o e f f s) = p s u m p a r e n t v (index map) + c p r o d u c t ;

Performing the computations outlined above for each decomposition level, starting at the
coarsest scale, efficiently computes the value of psum for all squares (l, i, j). The contri-
butions of case three of Theorem 7 can then be computed as sum of dot products:

% h o r i z o n t a l
c = c + d e t a i l s l (: , 1) .∗ d e t a i l s p (: , 1) .∗ p s u m p a r e n t v ;
c = c + d e t a i l s v (: , 1) .∗ d e t a i l s p (: , 1) .∗ p s u m p a r e n t l ;
c = c + d e t a i l s l (: , 1) .∗ d e t a i l s v (: , 1) .∗ p s u m p a r e n t p ;

% v e r t i c a l
c = c + d e t a i l s l (: , 2) .∗ d e t a i l s p (: , 2) .∗ p s u m p a r e n t v ;
c = c + d e t a i l s v (: , 2) .∗ d e t a i l s p (: , 2) .∗ p s u m p a r e n t l ;
c = c + d e t a i l s l (: , 2) .∗ d e t a i l s v (: , 2) .∗ p s u m p a r e n t p ;

% d i a g o n a l
c = c + d e t a i l s l (: , 3) .∗ d e t a i l s p (: , 3) .∗ p s u m p a r e n t v ;
c = c + d e t a i l s v (: , 3) .∗ d e t a i l s p (: , 3) .∗ p s u m p a r e n t l ;
c = c + d e t a i l s l (: , 3) .∗ d e t a i l s v (: , 3) .∗ p s u m p a r e n t p ;

c = sum (c) ;

To perform the nonlinear approximation, we precompute an index list index approx *
of the k% largest coefficients for each signal. In contrast to [Ng 2004] where all coefficients
which are not part of the approximation are discarded, we also keep the full coefficient vec-
tors. Therefore, our implementation provides more accuracy when combining the different
factors because index approx * can be used to index into the full coefficient vectors of
all three factors. However, this comes at the price of considerably larger memory require-
ments. Similar to [Ng 2004] we use the index list of the BRDF to compute the contribution
of Theorem 7.2. For the contribution from Theorem 7.3 the index list of the BRDF is used
for those summands which involve psum v and psum l. The index list of the lighting is
used for the summands which involve psum p.

4.5 Runtime Environment

We performed our computations on a cluster with 20 nodes. The computations for each
vertex are independent from those of any other vertex and therefore each node can indepen-
dently process a subset of the vertices. We use a python script to distribute the computation
across several nodes.

5 Error Measures

For this project we are investigating the effect of using different degrees of nonlinear ap-
proximation and different resolutions of the input signals on PRT rendering with Haar
wavelets. Hence, we require a ground truth rendering and an error measure by which to
compare the approximate reconstructions with the ground truth. For our ground truth, we
use a rendering of the scene using all wavelet coefficients and a high resolution of the input
signals, either 256x256 or 512x512.

The error measures should meet the following goals.

• They should be easy to interpret.
• They should reflect the perceived difference between the reconstructions.
• They should localize the errors. It is important to know where in the scene the

errors are occurring.
• They should be applicable early in the rendering pipeline.

There are several points in the pipeline at which the difference between the baseline and
an approximation may be measured. In the interest of efficiency it is desirable to make
this comparison at an early stage in the pipeline. Ideally, an error measure in the coeffi-
cient space of the approximated BRDF, environment, and visibility maps would serve as a
measure of how different the respective renderings would appear. We use the average L2

performance as an error measure of nonlinear approximation in coefficient space. The L2

performance is the percentage of squared signal energy retained after compression. If X is
the original signal, andXa is the approximated signal, theL2 error is given by [Mathworks]

100‖Xa‖2
‖X‖2 .

In our case,X are the original wavelet coefficients obtained by transforming a monochrome
version of the input signal and Xa are the coefficients after nonlinear approximation. L2

performance values near 100% imply that reconstruction will be faithful. The L2 perfor-
mance measures the fidelity of the approximate maps and we have used this measure to test
the hypothesis that accurate maps correspond to accurate renderings.

We considered using a perceptual metric to compare renderings in image space. This ap-
proach is obviously ideal for meeting the second goal, but computing perceptual-based
error measures tends to be expensive [Ramasubramanian 1999]. This presents a difficulty
if the error must be frequently recalculated, something that is necessary, for example, to
rotate a 3D visualization of the error. An alternative is to use a few levels of a Laplacian or
steerable pyramid to obtain a crude perceptual error measure. The rationale is that in the
case of PRT, changes in sharpness or blurriness of shadows are paramount, and comparing
the response of the images to derivative filters at multiple scales is a way to measure these
changes. We implemented this simple approach, but early experiments showed that the
differences at the various scales are very scene dependent and difficult to interpret, espe-
cially at coarser scales. It is not clear that they could be combined to form a meaningful
perceptual error measure.

Due to the inadequacies of the perceptually-based metric, we chose to simply measure
distance between vertex colors. These distances are simple to interpret and they may be
visualized directly as colors in the scene, meeting the first and third goals. The mean, the
standard deviation, the variance and the maximal color error provide additional informa-
tion about the errors. The mean error is not a perceptual metric; renderings may have a
relatively high mean error without being noticeable. Nevertheless, this value is important
as algorithms must attempt to minimize it. The standard deviation measures, roughly, the
noisiness of the error. If the error is noisy, then there will be portions of the rendering that
are very inaccurate. It is desirable to have a very low standard deviation. It is also clearly
desirable to minimize the maximum vertex error. The standard deviation and the maximal
color error tend to provide a measure for the perceived error.

6 Results

In this section we discuss the results obtained with our triple product integral renderer, in
particular, the influence of the input signal size and nonlinear approximations on the quality
of the renderings. We also examine the correlation between the L2 error of the wavelet
coefficients after the nonlinear approximation and the vertex color error. For convenience,
the resolution of the sides of the cubemaps is denoted as input signal resolution. For the
nonlinear approximation ratio we use the symbol r. With a ratio of r = 1 all Haar basis
coefficients are used, with r = 0.01 only 1%.
The graphs discussed in the following are shown in Appendix 8.

6.1 Image quality

The error measures, i.e. mean, standard deviation, variance and maximal color error, are
computed as discussed in Section 5 and visualized in bar graphs. The computed color val-
ues are rescaled for the renderings so that the maximal color value is 0.7. The normalizaton
is necessary because some light sources, in particular analytic ones with a small solid angle,
do not have the energy to generate renderings which are bright enough to be meaningful.
We also show rendering with the normalized vertex color error as vertex color. These plots
provide a very intuitive way to understand the localization of the error. They are also useful
to evaluate the appropriateness of the vertex color error measures.

6.1.1 Cylinder and Bump

The ‘Cylinder and Bump Scene’ contains a tall cylinder and a Gaussian-like bump. Both
objects are arranged on a ground plane. The cylinder casts sharp shadows onto the ground
plane. Soft shadows can be found on the sides of the bump.
Table 3 and Table 4 show the rendered scene with the computed vertex colors and vertex
color errors, respectively. Table 5 to Table 8 and Table 9 to Table 12 contain plots of
the vertex color error measures for fixed resolution of the input signal and fixed nonlinear
approximation ratio, respectively.
For a fixed resolution of the input signals the error without nonlinear approximation, i.e.
r = 1, is almost negligible. Only some small artifacts are introduced by low resolution
input signals. For 64x64, the error increases with decreasing nonlinear approximation
ratio. For 128x128 the differences in the error measures for approximation ratios of 0.1,
0.05 and 0.01 are significantly less pronounced than for 64x64. For 256x256 and 512x512
such difference do not exist. The mean of the vertex color error is for 256x256 and 512x512
several orders of magnitude lower than for input signals with a lower resolution.
For r = 1 all error measures are decreasing with increasing input signal size. The only
exception is 128x128 which has a slightly increased error in the mean value. We believe
that this results from the particular characteristics of the lighting environment. For a fixed
approximation ration of r = 0.05 and an input resolution of 64x64, the error measures,
except the mean, are unexpected low compared to those of higher resolution input signals.
We think that this is a result of the locally non energy preserving down sampling of the
lighting environment. . This can cause that some lights are either that some lights are either
dimmed or accentuated. This also explains the increased error in the mean for r = 0.05
and 64x64.

6.1.2 Cubes Scenes

The ‘Cubes Scene’ consists of an array of cubes which is positioned in front of a wall. It is
inspired by [Durand 2005]. We modeled different versions of the scene with two different
cube sizes and three different distances of the cubes from the wall. The results for all
variations are very similar. We therefore provide only those for large cubes which are far
apart from the wall.
For this scene we performed the computations only for input signal resolution of 64x64
and 128x128. Renderings with the computed color values and the vertex color error are
shown in Table 13 and Table 14, respectively. Because of the similarity with the results
from 6.1.1 we omit error measure graphs for this scene.

6.1.3 Nursery Scene

The ‘Nursery Scene’ is a more realistic test case. It consists of a child seat and two corre-
sponding tables. Renderings with the computed color values and the vertex color error are
shown in Table 15 and Table 16, respectively. It has to be noted that the jaggy edges of the
shadows on the ground plane result from a insufficient tessellation and not the rendering
algorithm. The vertex color error measures are again very similar to those in Section 6.1.1
and Section 6.1.2. We therefore omit these here.

6.1.4 Cubes with Analytic Light Sources

Captured, realistic lighting environments are suitable for estimating the performance of the
algorithm for real scenes. However, these scenes usually contain multiple light sources
of different intensities. This makes it difficult to judge the correctness of the results. We
therefore performed experiments with analytic light sources of varying solid angle. The
generated renderings provide more insight into the frequency characteristics of the triple
product integral rendering algorithm. We used a point light like light source to analyse the

resolution no nonlinear
approximation

nonlinear
approximation

64 5.8 min 7.92 min
128 19.87 min 28.5 min
256 3.2 h -
512 7.1 days -

Table 2: Render times for ‘Cubes Scene’ with 85860 vertices (Intel Xeon CPU with 3.6
GHz, 4 GB RAM)

performance for high-frequency lighting effects and bigger light sources for low frequency
effects. The different lights are shown in Table 19. We used the same scene as under 6.1.2
for these experiments.
Renderings with the computed color values and the vertex color errors are shown in Ta-
ble 17 and Table 18, respectively. The plots show that the triple product integral rendering
algorithm can capture low and high frequency effects well. For low frequency effects some
ringing and blocking artifacts occur. We believe that these are introduced by the Haar basis.
The vertex color error measures are very similar to those for the other scenes and therefore
omitted.

6.2 L2 Error in the Basis Coefficients

The L2 error norm of the Haar basis coefficients for the ‘Cylinder and Bump Scene’ is
shown in Table 20 and Table 21. The largest error occurs for the lighting environment, the
HDR image of St. Peters Basilica. This results from the more regular structure of the BRDF
and the visibility which make these signals more amenable for wavelet compression. When
using an analytic light source such as those employed for the experiments in section 6.1.4,
the L2 error for the lighting is significantly lower. Analogously, for scenes with a complex
visibility the L2 error for the basis function representation is higher and increases with
decreasing r; in the general behavior similar the L2 error of the coefficients of the HDR
image. A scene with such a more complex visibility is the ‘Cubes Scene’. Table 20 shows
results for a fixed resolution of the input signal. In this case the error increases quite rapidly
with decreasing nonlinear approximation ratio. Analogously, for a fixed approximation
ratio such as shown in Table 20, the error decreases quickly with increasing resolution of
the input signal. Although the results are not fully consistent, the error roughly reduces
by a factor of 4 when using the next higher resolution of the input signal. For a fixed
resolution of the input signal, the error roughly increases by a factor of 5 when using 1%
of the coefficients instead of 5%. This shows that the L2 error in the coefficients is linear
in the approximation ratio as well as in the resolution of the input signals.

6.3 Error estimation

One interesting question is if the error in the wavelet coefficients can be used to estimate
the vertex color error. As shown in section 5, the L2 error is increasing for decreasing input
signal size or decreasing nonlinear approximation ratio. However, the results discussed in
section 6.1 show that in both cases the image quality does not necessarily decrease. For
example Table 5 to Table 7 show that the error remains constant for approximation ratios
of 0.1, 0.05 and 0.01. This is in conflict with the second graph in Table 20. The renderings
in Table 3 and Table 4 also show that the vertex color error does not increase in proportion
to the L2 error in the wavelet coefficients.

6.3.1 Discussion

The results obtained in our experiments show that both low and high frequency effects can
be captured well by PRT using the Haar basis. In contrast to previous work we also per-
formed experiments with high resolution input signals up to 512x512. Our results show
that a much more aggressive nonlinear approximation is possible in this case. Based on
the results obtained for 64x64 it is likely that also for higher input resolutions a similar
increase in the error will be observed—but for far lower nonlinear approximation ratios.
The effects in the renderings show a variety of different effects in term of their frequency
characteristics. This indicates that our mixture of different scenes and captured and ana-
lytic lighting environments is a good test bed which is suitable to spot characteristics of
particular algorithms. We also believe that our error measures are suitable for future use
because the information they provide lines up well with the renderings using the computed
color values and the vertex color error. The results observed for the different scenes are
very similar. This shows that the observed behavior is, to a large extent, scene independent
and can be generalized.
Our results do not include a discussion of the runtime performance. First because we were
mainly interested in the frequency characteristics of PRT using wavelets and designed the
framework aiming at flexibility rather than optimized computation time. Second, we used
Matlab to implement the renderings. This development environment has quite specific per-
formance characteristics and any timings obtained are difficult to generalize to iterative
programming languages such as C++ which is commonly used for real-time rendering 4.
The order of magnitude of the computation time can be found in Table 2.

7 Conclusions and Future Work

In this report we provided an introduction into Precomputed Radiance Transfer. We showed
that the problem can be formulated as an n factor products integral and that it is efficient to
compute this integral in a suitable basis. The derivations are detailed for the computation of
the triple product integral using the Haar basis. A full rendering pipeline for this algorithm
is discussed has been implemented. Results obtained with our system are presented and
discussed. In particular the frequency characteristics of the algorithm and the influence of
the resolution of the input signals, parametrized as cubemaps, and the nonlinear approxi-
mation on the quality of renderings are analysed. The applicability of an error measure in
wavelet coefficient space to estimate the vertex color error has been examined.
We show show that the implemented algorithm can capture low and high frequency effects
accurately even with rather low resolution input signals and a low number of wavelet coef-
ficients. For input signal resolutions of 128x128 and above, the vertex color error is mostly
unaffected by the nonlinear approximation. This shows that a more aggressive nonlinear
approximation than used in our experiments is reasonable.
One avenue of future work is therefore to experiment with smaller approximation ratios.
Thereby, it would be interesting to use a fixed number of Haar basis coefficients rather
than a fixed percentage value. This approach has also the advantage that the runtime per-
formance remains constant. For a fixed percentage value, the computation time increases
roughly by a factor of 4 when using a signal with 4 times as many values, e.g when using
64x64 instead of 128x128. The similarity of the results for the different scenes and lighting
environments suggest that the results obtained are generalizable and our test bed is suitable
for future use. However, adding some additional scenes to validate the results would be
worthwhile. Recently, Wang et al. [Wang 2006] proposed an algorithm for efficiently ro-
tating a signal in a wavelet basis. It would be interesting to incorporate this to avoid the

4For example, the computation of a dot product of a subset of indicies of two vectors is more
expensive than the product of all elements of the vectors—even when the number of multiplications
is only 1%.

recomputation of the BRDF for every vertex.

Some more general areas of future work can be identified as well. The nonlinear approxi-
mation of any of the factors in the triple product integral can be used to provide the sparsity
pattern index approx * which is used in the computations. At the moment we use the
patterns as proposed by Ng et al. [Ng 2004], e.g. the index list of the BRDF for case 2 of
Theorem 7. However, different alternatives exist and it is not obvious which one provides
the best runtime performance and quality. In particular, we believe that the best choice
depends on the input signals. One indicator for this are the very different L2 errors for
the wavelet coefficients for captured and analytic lighting environments. In the future, we
want to find a way to identify the most suitable sparsity pattern efficiently based on a input
signals or its representation in the basis function.
At the moment the surface color is determined at each vertex of an input model and then
linearly interpolated to obtain an image. This requires a high tessellation of the scene ge-
ometry even in flat areas. If the tessellation is not high enough artifacts such as the jaggy
edges in Table 15 appear. A more sophisticated interpolation technique in basis function
space, in spirit similar to [Green 2006], could provide an alternative.
Another interesting avenue for future work is the use of wavelet basis other than Haar.
One direction is to employ existing standard wavelets such as Daubechies and Symlets.
These wavelets are smoother than Haar wavelets and are likely to provide better com-
pression performance, especially for complex signals. We performed some preliminary
experiments by compressing visibility maps with different wavelet basis functions. With
the same number of wavelet coefficients after compression, significant differences in the
reconstructed images were visible. It is currently not clear how these differences will affect
renderings and we want to investigate this in future work. An alternative to using existing
wavelets is to construct custom wavelets. Previous work in image compression shows that
adaptive wavelets can be used to improve the performance using either genetic algorithms
[Takehisa 2000] [Grasemann 2005] or Machine Learning techniques [Ahmed 2005].
One problem when using wavelet bases other than Haar is that the tripling coefficients are
not as sparse as for the Haar basis. An important factor for the sparsity of the integral co-
efficients is the support of the basis functions; it can be shown that the integral coefficients
are 0 for the product of any two basis functions which do not overlap. The Haar basis
has a support of 2 which is minimal for all wavelets. However, for new basis functions it
might be possible to identify additional factors which can accelerate the computation. Us-
ing symmetries, e.g. in Symelts or biothorgonal waveletes, could be one approach to reduce
the computational complexity; wavelets with a spherical domain might also provide some
advantages. Another problem with wavelet bases other than Haar is that it is much more
involved to derive the sparsity pattern in the integral coefficients. However, this derivation
can be performed with a brute force approach by testing all possible combinations of basis
functions. We performed some experiments and were able to show that this is in fact pos-
sible; in particular, we computed the nonzero tripling coefficients for the Haar basis.
When testing different wavelets for their applicability for PRT it would be valuable to in-
vestigate an alternative approach to estimate the vertex color and image space error based
on the wavelet coefficients. This could significantly reduce the computation times to eval-
uate a new basis.
An examination of different basis functions was one of the original goals of this project.
However, designing a flexible and reliable rendering pipeline took more time than expected.
Therefore we focused on Haar wavelets.

References
[Ahmed 2005] R. Ahmed, Wavelet-based Image Compression using Support Vector Ma-

chine Learning and Encoding Techniques, Computer Graphics and Imaging 2005,
August 2005

[Daubechies 1994] I. Daubechies, Ten Lectures on Wavelets, CBMS, SIAM, 61, 1994,
271-280, 1994

[Donoho 1999] D. Donoho, M. R. Duncan, X. Huo, O. Levi, J. Buckheit, M. Clerc,
J. Kalifa, S. Mallat, and Yu Thomas, Wavelab (a Matlab wavelet library), 1999,
http://www-stat.stanford.edu/wavelab

[Debevec 1997] P. Debevec, J. Malik, Recovering High Dynamic Range Radiance Maps
from Photographs, SIGGRAPH 1997, August 1997

[Dechevsky 2003] L. T. Dechevsky, N. Grip, E. Quak, A comparative study of current
Matlab and C++ wavelet software, Three similar technical reports available from
http://www.sm.luth.se/ grip/Research/Publications/Wavelets/SoftwareComparison/

[Durand 2005] F. Durand, N. Holzschuch, C. Soler, E. Chan F. Sillion, A Frequency Anal-
ysis of Light Transport, SIGGRAPH 2005, August 2005

[Cody 1993] M. A. Cody, The fast wavelet transform: beyond Fourier transforms, Dr.
Dobb’s Journal 1993; April pp:44-54.

[Faust 2005] M. Faust, c2g: Color Image to Grayscale Conversion,
http://www.e56.de/c2g.php

[Gautron 2004] P. Gautron, J. Kivnek, S. Pattanaik, K.Bouatouch, A Novel Hemispherical
Basis for Accurate and Efficient Rendering, Eurographics Symposium on Rendering
2004, June 2004

[Gooch 2005] Amy A. Gooch, Sven C. Olsen, Jack Tumblin, Bruce Gooch, Color2Gray:
salience-preserving color removal, SIGGRAPH 2005, July 2005

[Gouze 2004] A. Gouze, M. Antonini, M. Barlaud, and B. Macq, Design of Signal-
Adapted Multidimensional Lifting Scheme for Lossy Coding, IEEE Transactions on
Image Processing, 13(12), December 2004

[Grasemann 2005] U. Grasemann, R. Miikkulainen, Real World Applications: Effective
Image Compression using Evolved Wavelets, Proceedings of the 2005 conference on
Genetic and evolutionary computation GECCO ’05, June 2005

[Green 2006] P. Green, J. Kautz, W. Matusik, F. Durand, View-Dependent Precomputed
Light Transport Using Nonlinear Gaussian Function Approximations, ACM 2006
Symposium in Interactive 3D Graphics and Games, March 2006

[Green 2003] R. Green, Spherical Harmonic Lighting: The Gritty Details, Game Devel-
oper Conference 2003, 2003

[James 2003] D. L. James, K. Fatahalian, Precomputing Interactive Dynamic Deformable
Scenes, SIGGRAPH 2003, July 2003

[Jensen 2000] A. Jensen, A. la Cour-Harbo, Ripples in Mathematics, The Discrete Wavelet
Transform, Springer-Verlag, 2000

[Jepson 2000] A. Jepson, utvisToolbox, University of Toronto, 2000
[Kajiya 1986] J. T. Kajiya, The Rendering Equation, SIGGRAPH 1986, August 1986
[Kautz 1999] J. Kautz, M. D. McCool, Interactive Rendering with Arbitrary BRDFs using

Separable Approximations, Eurographics Workshop on Rendering 1999, June 1999
[Kautz 2004] J. Kautz, J. Lehtinen, T. Aila, Hemispherical Rasterization for Self-

Shadowing of Dynamic Objects, Eurographics Symposium on Rendering 2004, June
2004

[Kautz 2005] J. Kautz, J. Lehtinen, P.-P. Sloan Precomputed Radiance Transfer: Theory
and Practice, Course Notes SIGGRAPH 2005, August 2005

[Lehtinen 2003] J. Lehtinen, J. Kautz, Matrix Radiance Transfer, ACM 2003 Symposium
on Interactive 3D Graphics, April 2003

[Liu 2004] X. Liu, P.-P. Sloan, H.-Y. Shum, John Snyder, All-Frequency Precomputed Ra-
diance Transfer for Glossy Objects, Eurographics Symposium on Rendering 2004,
June 2004

[Mei 2004] C. Mei, J. Shi, F. Wu, Rendering with Spherical Radiance Transport Maps,
Eurographics 2004, 2004

[MacRobert 1948] T. MacRobert, Spherical Harmonics; an Elementary Treatise on Har-
monic Functions, with Applications, Dover Publications, 1948

[Mathworks] Mathworks Inc., www.mathworks.com
[Misti 2003] Michel Misiti, Georges Oppenheim, Jean-Miche Poggi, and

Yves Misiti. The Mathworks wavelet toolbox (for Matlab), 2003,
http://www.mathworks.com/products/wavelet/index.shtml.

[Ng 2003] R. Ng, R. Ramamoorthi, P. Hanrahan, All-Frequency Shadows using Non-
Linear Wavelet Lighting Approximation, SIGGRAPH 2003, July 2003

[Ng 2004] R. Ng, R. Ramamoorthi, P. Hanrahan, Triple Product Wavelet Integrals for All-
Frequency Relighting, SIGGRAPH 2004, August 2004

[Ojanen 1998] H. Ojanen, WAVEKIT: a Wavelet Toolbox for Matlab,
http://www.math.rutgers.edu/ ojanen/wavekit/index.html

[PFStools] PFSTools for High Dynamic Range Images and Video, http://www.mpi-
sb.mpg.de/resources/pfstools/

[Pharr 2004] M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Im-
plementation, Morgan Kaufmann, 2004

[Ramasubramanian 1999] M. Ramasubramanian, S. N. Pattanaik, D. P. Greenberg, A Per-
ceptually Based Physical Error Metric for Realistic Image Synthesis, SIGGRAPH
1999, July 1999

[Schröder 1995] P. Schröder, W. Sweldens, Spherical Wavelets, SIGGRAPH 1995,
September 1995

[Simoncelli 2004] E. Simocelli, matlabPyrTools: Matlab source code for multi-scale im-
age processing, http://www.cns.nyu.edu/ lcv/software.html

[Sloan 2002] P.-P. Sloan, J. Kautz, J. Snyder, Precomputed Radiance Transfer for Real-
Time Rendering in Dynamic, Low- Frequency Lighting Environments, SIGGRAPH
2002, July 2002

[Sloan 2003a] P.-P. Sloan, X. Liu, H.-Y. Shum, J. Snyder, Bi-Scale Radiance Transfer,
SIGGRAPH 2003, July 2003

[Sloan 2003b] P.-P. Sloan, J. Hall, J. Hart, J. Snyder, Clustered Principal Components for
Precomputed Radiance Transfer, SIGGRAPH 2003, July 2003

[Sloan 2005] P.-P. Sloan, B. Luna, and J. Snyder, Local, Deformable Precomputed Radi-
ance Transfer, SIGGRAPH 2005, July 2005

[Stollnitz 1996] E. Stollnitz, T. D. DeRose, D. H. Salesin Wavelets for Computer Graph-
ics: Theory and Applications, Morgan Kaufmann Publishers, 1996

[Sun 2006] W. Sun, A. Mukherjee, Generalized Wavelet Product Integral for Rendering
Dynamic Glossy Objects, SIGGRAPH 2006, To appear July 2006

[Sweldens 1998] W. Sweldens, The Lifting Scheme: a Construction of Second Generation
of Wavelets, SIAM J. Math. Anal., 29 (2), pp. 511-546, 1998

[Takehisa 2000] Y. Takehisa, H. Sakanashi, T. Higuchi, Adaptive Wavelet Transform for
Lossless Compression using Genetic Algorithm, 2000 Genetic and Evolutionary Com-
putation Conference, July 2000

[Tan 2005] P. Tan, S. Lin, L. Quan, B. Guo, and H.-Y. Shum, Multiresolution Reflectance
Filtering, Eurographics Symposium on Rendering 2005, Juni 2005

[Wang 2006] , R. Wang, R. Ng, D. Luebke, G. Humphreys, Efficient Wavelet Rotation
for Environment Map Rendering, Eurographics Symposium on Rendering 2006, To
appear June 2006

[Wikipedia a] Daubechies Wavelets, http://en.wikipedia.org/wiki/Daubechies wavelet
[Wikipedia b] Peak Signal To Noise Ration (PSNR),

http://en.wikipedia.org/wiki/Peak signal-to-noise ratio
[Zhou 2005] K. Zhou, Y. Hu, S. Lin, B. Guo, H.-Y. Shum, Precomputed Shadow Fields

for Dynamic Scenes, SIGGRAPH 2005, August 2005

8 Graphs

512

256

128

64

Ratio 0.01 0.05 0.1 1

Table 3: Renderings for ’Cylinder and Bump Scene’ for different input signal resolutions
(y axis) and different nonlinear approximation ratios (x axis).

512

256

128

64

Ratio 0.01 0.05 0.1 1

Table 4: Vertex color error for ’Cylinder and Bump’ scene for different input signal resolu-
tions (y axis) and different nonlinear approximation ratios (x axis). Dark blue corresponds
to very low error, red areas to very high error. Note that error is only normalized over rows
of the table.

64x64 128x128 256x256 512x512

1 0.1 0.05 0.01
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Mean Value

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7

8

9
x 10

−3 Mean Value

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7

8
x 10

−3 Mean Value

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7

8
x 10

−3 Mean Value

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 5: Mean of the vertex color error for fixed resolutions and varying nonlinear approx-
imation ratios. Note that the scale of the graphs for a resolution of 256x256 and 512x512
is orders of magnitude smaller than those for 64x64 and 128x128.

64x64 128x128 256x256 512x512

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7

8

9
x 10

−3 Standard Deviation

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7
x 10

−3 Standard Deviation

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7
x 10

−3 Standard Deviation

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7
x 10

−3 Standard Deviation

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e
Table 6: Standard Deviation of the vertex color error for fixed resolutions and varying
nonlinear approximation ratios.

64x64 128x128 256x256 512x512

1 0.1 0.05 0.01
0

1

2

3

4

5

6

7

8
x 10

−5 Variance

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Variance

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Variance

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Variance

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 7: Variance of the vertex color error for fixed resolutions and varying nonlinear
approximation ratios.

64x64 128x128 256x256 512x512

1 0.1 0.05 0.01
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Maximal Vertex Color Error

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.01

0.02

0.03

0.04

0.05

0.06
Maximal Vertex Color Error

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.01

0.02

0.03

0.04

0.05

0.06
Maximal Vertex Color Error

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

1 0.1 0.05 0.01
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Maximal Vertex Color Error

Coefficients Used (ratio)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 8: Maximum vertex color error for fixed resolutions and varying nonlinear approxi-
mation ratios.

0.01 0.05 0.1 1

64 128 256 512
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Mean Value

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

3

4

5

6

7

8

9
x 10

−3 Mean Value

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

−3 Mean Value

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

x 10
−4 Mean Value

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 9: Mean of the vertex color error for fixed nonlinear approximation ratios and varying
input signal resolutions. Note that the scale of the graphs for approximation ratios of 0.05,
0.1 and 1 is orders of magnitude smaller than those for 0.01.

0.01 0.05 0.1 1

64 128 256 512
0

1

2

3

4

5

6

7

8

9
x 10

−3 Standard Deviation

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

3

4

5

6

7
x 10

−3 Standard Deviation

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

3

4

5

6

7
x 10

−3 Standard Deviation

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3 Standard Deviation

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e
Table 10: Standard deviation of the vertex color error for fixed nonlinear approximation
ratios and varying input signal resolutions.

0.01 0.05 0.1 1

64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

−5 Variance

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Variance

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Variance

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

1

2

3

4

5

6

7
x 10

−7 Variance

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 11: Variance of the vertex color error for fixed nonlinear approximation ratios and
varying input signal resolutions.

0.01 0.05 0.1 1

64 128 256 512
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Maximal Vertex Color Error

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.01

0.02

0.03

0.04

0.05

0.06
Maximal Vertex Color Error

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.01

0.02

0.03

0.04

0.05

0.06
Maximal Vertex Color Error

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

64 128 256 512
0

0.005

0.01

0.015

0.02

0.025

0.03
Maximal Vertex Color Error

Resolution Input Signal (side)

A
b
s
o
lu

te
 C

o
lo

r
V

a
lu

e

Table 12: Maximum vertex color error for fixed nonlinear approximation ratios and varying
input signal resolutions.

128

64

Ratio 0.01 0.05 0.1 1

Table 13: Renderings for ’Cubes Scene’ with large cubes which are positioned far apart
from the wall. Different input signal resolutions (y axis) and different nonlinear approxi-
mation ratios (x axis) are shown.

128

64

Ratio 0.01 0.05 0.1 1

Table 14: Vertex color error for ’Cubes Scene’ for different input signal resolutions (y axis)
and different nonlinear approximation ratios (x axis). Dark blue corresponds to very low
error, red areas to very high error. Note that error is only normalized over rows of the table.

128

64

Ratio 0.01 0.05 0.1 1

Table 15: Renderings for ’Cubes Scene’ with large cubes which are positioned far apart
from the wall. Different input signal resolutions (y axis) and different nonlinear approxi-
mation ratios (x axis) are shown.

128

64

Ratio 0.01 0.05 0.1 1

Table 16: Vertex color error for ’Nursery Scene’ for different input signal resolutions (y
axis) and different nonlinear approximation ratios (x axis). The shown error is normalized.
Dark blue corresponds to very low error, red areas to very high error. Note that error is only
normalized over rows of the table.

tiny

small

med

large

Ratio 0.01 0.05 0.1 1

Table 17: Renderings for ’Cubes Scene’ with different analytic light sources (y axis) for a
fixed input signal resolutions of 64x64 and different nonlinear approximation ratios.

tiny

small

med

large

Ratio 0.01 0.05 0.1 1

Table 18: Vertex color error for ’Cubes Scene’ with different analytic light sources (y axis)
for a fixed input signal resolutions of 64x64 and different nonlinear approximation ratios.
The shown error is normalized. Dark blue corresponds to very low error, red areas to very
high error. Note that error is only normalized over rowsof the table.

tiny (1) small (9) medium (49) large (169)

Table 19: Analytic light sources. The value in the brackets denotes the relative size of the
light source.

64x64 128x128 256x256 512x512

1 0.1 0.050.01
0

1

2

3

4

5

6

7

8

L2 performance error: visibility

Coefficients Used (%)
1 0.1 0.050.01

0

1

2

3

4

5

6

7

8

L2 performance error: BRDF

Coefficients Used (%)
1 0.1 0.050.01

0

1

2

3

4

5

6

7

8

L2 performance error: lighting

Coefficients Used (%)
1 0.1 0.050.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L2 performance error: visibility

Coefficients Used (%)
1 0.1 0.050.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L2 performance error: BRDF

Coefficients Used (%)
1 0.1 0.050.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L2 performance error: lighting

Coefficients Used (%)
1 0.1 0.050.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 performance error: visibility

Coefficients Used (%)
1 0.1 0.050.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 performance error: BRDF

Coefficients Used (%)
1 0.1 0.050.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 performance error: lighting

Coefficients Used (%)
1 0.1 0.050.01

0

0.05

0.1

0.15

0.2

L2 performance error: visibility

Coefficients Used (%)
1 0.1 0.050.01

0

0.05

0.1

0.15

0.2

L2 performance error: BRDF

Coefficients Used (%)
1 0.1 0.050.01

0

0.05

0.1

0.15

0.2

L2 performance error: lighting

Coefficients Used (%)

Table 20: L2 error of nonlinear approximations (in percent) for fixed resolutions and vary-
ing approximation ratios

0.01 0.05 0.1 1

64 128 256 512
0

1

2

3

4

5

6

7

8

L2 performance error: visibility

Resolution Input Signal (side)
64 128 256 512

0

1

2

3

4

5

6

7

8

L2 performance error: BRDF

Resolution Input Signal (side)
64 128 256 512

0

1

2

3

4

5

6

7

8

L2 performance error: lighting

Resolution Input Signal (side)
64 128 256 512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2 performance error: visibility

Resolution Input Signal (side)
64 128 256 512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2 performance error: BRDF

Resolution Input Signal (side)
64 128 256 512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2 performance error: lighting

Resolution Input Signal (side)
64 128 256 512

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L2 performance error: visibility

Resolution Input Signal (side)
64 128 256 512

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L2 performance error: BRDF

Resolution Input Signal (side)
64 128 256 512

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L2 performance error: lighting

Resolution Input Signal (side)
64 128 256 512

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2 performance error: visibility

Resolution Input Signal (side)
64 128 256 512

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2 performance error: BRDF

Resolution Input Signal (side)
64 128 256 512

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2 performance error: lighting

Resolution Input Signal (side)

Table 21: L2 error of nonlinear approximations (in percent) for fixed approximation ratios
and varying resolutions

9 Matlab functionality

This section contains an overview of the Matlab functions which have been implemented
for this report. The functions are grouped according to the directories in the source tree.

9.1 analysis

This directory analysis contains functions for computing vertex color error measures
between baseline and test renderings and for visualizing these errors. These functions
permit the errors and the vertex colors to be visualized directly in the 3D scene, and allow
these visualizations to be saved as vrml files.

The files start compare * are driver scripts which set up parameters for the functions
compare and compare fa which perform the comparisons and visualizations.

9.2 brdf

• function fs = lambertianHC(res)
Returns a sampling of the lambertian BRDF along 5 faces of the hemicube. The
BRDF is oriented assuming a surface normal pointing in the positive y direction.
The bottom face is omitted because the lambertian BRDF is zero whenever the
angle between the view direction and the normal is greater than π

2 degrees.
• function fs = lambertianHC fast(res, n)

Similar to lambertianHC.m but has been vectorized, and is therefore faster.
Also allows the normal to be passed as a parameter.

9.3 filters

• uc = conv1D(u, fil)
Performs 1D convolution. Both the signal and filter have to be one dimensional.

• fc2D = wcoeffs2D(fc h, fc v)
Computes the matrix of 2D filter coefficients resulting from the tensor product of
fc h and fc v. The tensor product is also called the outer product.

• [a, d] = wdecomp(sig, w type)
Perform a one level wavelet decomposition.

9.4 haar

• [lighting, l2p l] = cacheLighting(lighting file, res,
pcoeffs keep)
Projects all color channels for all faces of the hemicube into the Haar wavelet
basis, saves the result and also returns it. The name of the file into which these
results are saved is returned by getFilenameLighting(lighting file,
res, pcoeffs keep).

• C = ddecHaar(X, n)
Performs a full 1D Haar wavelet decomposition. The implementation is based on
[Stollnitz 1996].

• [C, a, dh, dv, dd, n] = ddecHaar2D(X, n)
Performs a multi-level 2D Haar wavelet decomposition. Note that coefficients are
stored in vectors with row order precedence.

• [a, dh, dv, dd, n] = ddecHaar2DFast(X, n)
Similar to ddecHaar2D but makes use of dwtHaar2DFast to perform a
single-level 2D Haar wavelet decomposition.

• [a, dh, dv, dd, n] = ddecHaar2DVF(X, n)
Identical to ddecHaar2DFast but makes use of dwtHaar2DVF to perform a
single-level 2D Haar wavelet decomposition.

• [approx, details, n] = ddecHaar2DVFD(img)
Performs the full Haar wavelet decomposition for a given image.

• [a, dh, dv, dd] = dwtHaar2D(X, visualize,
check result)
Performs one level of the 2D discrete Haar wavelet decomposition on the given
image. May also be used to visualize the result of the decomposition, and to
verify the result against the native Matlab routines.

• [a, dh, dv, dd] = dwtHaar2DFast(X)
Identical to dwtHaar2D, but makes use of dwtHaarFast to perform one step
of the 1D Haar wavelet decomposition.

• [a, dh, dv, dd] = dwtHaar2DVF(x)
Also identical to dwtHaar2D but makes use of Matlab’s built-in conv2 function
for extra efficiency. This is very fast.

• [approx, detail] = dwtHaar(X)
Performs one level of the Haar wavelet decomposition.

• [approx, detail] = dwtHaarFast(X)
Itentical to dwtHaar, but has been vectorized and is therefore faster.

• [lighting, l2p l] = precompLighting(lighting file,
res, pcoeffs)
Performs a full 2D Haar wavelet decomposition for each color channel of each
face of the lighting map and stores the coefficients in a .mat file.
The triple product integral is computed in the global coordinate frame and so the
lighting map is vertex independent. Therefore, precomputation only needs to be
performed once and thereafter the lighting coefficients may be accessed cheaply
from the .mat file when processing each vertex.

• [tcoeffs all case2, tcoeffs all case3] =
precompTCoeffs(root, res) Get precomputed tripling coefficients for
triple-integral product.

• precompVertRangeHaar(directory,
lighting_file, ...
basename_verts, ...
basename_output, ...
approx_rate, ...
verts_start_in,
verts_end_in, ...
remote_in, ...
res_in ...
)

Precomputes the lighting coefficients if this has not already been done. Also pre-
computes the decomposition coefficients for the BRDF and visibility maps at each
vertex in the scene with an index in the given range.

9.5 util

• m = loadHemicube(filename), loads a run length encoded hemicube vis-
ibility map and returns a (5, h, w) tensor containing the hemicube face data.

• m = loadFace(filename), this is the same as above, but loads a single
hemicube face.

• showHemicube(m), displays the hemicube data in the usual cross format.
• showFace(m), displays a hemicube face loaded with loadFace.
• saveHemicubeCrossImage(m), saves the hemicube cross data as a .tiff

file in the same cross format used in showHemicube.
• diffs = lpdiff(A, B), given two image files, this script generates a lapla-

cian pyramid for each and calculates the RMS error between the layers.
• [data, displayable] = readPFM(filename), Read an image file in

pfm format. Pfm is a simple format for HDR images. Examples are available from
http://www.debevec.org/Probes/, and a description of the format can be found un-
der http://netpbm.sourceforge.net/doc/pfm.html.

– filename is the name of the pfm file data floating point data of the file.
– displayable is a clamped version of data (to [0,1]) so that it can be dis-

played directly with image(displayable).

9.6 External Libraries

• matlabPyrToolbox Library to compute hierarchical decompositions of a sig-
nal.

• MCGLMatlab Computer Graphics Library, we employed the vrml file writer from
this library.

