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Abstract

Generating realistic skin deformations arising from joint movement and muscle

contraction is a requirement for producing realistic human character animation. For

example, the human arm, hand, or foot change shape in significant ways during motion,

ways which are difficult to model accurately with traditional character animation

techniques. This thesis suggests a new way to build realistic animated models of the

human form. We exploit range image technology to capture the true human form and

create parameterized animated surface models based upon this data. The thesis improves

in several ways upon the algorithms required to process the range data, as well as

presenting a methodology for the required data capture, data integration and surface

parameterization. Results are presented for the parameterized flexion of a human arm

model.
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1. INTRODUCTION

Humans and other animals are among the most interesting objects simulated in

computer graphics, but they are also unfortunately among the most challenging to

realistically model and animate. The difficulties involve both the realistic movements of

such animate characters as well as complexities associated with their appearance, such as

the muscle movement under the skin and the appearance of wrinkles in skin and clothes.

Muscles stretch and contract across joints to cause motion, which creates significant

changes in the shape of the skin as a side effect. Thus, even if a character possesses

realistic motion, it can look artificial if the geometric deformations associated with

muscles are not modeled. In this thesis we investigate methods of modeling realistic

animated deformations based upon deformation data captured from human subjects.

1.1 Problem Description

There are many steps involved in producing computer animations. In this thesis, we

focus on the modeling of a human character, including the model construction and the

deformations required to animate its form. We do not discuss issues related to the

dynamic animation of its skeleton, character interaction with the environment, or

interaction between characters. For our purposes, movement will be defined as the

changes in shape induced in the skin by the character’s actions, such as bending an arm

or clenching a fist.
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In some instances, articulated computer models are composed of rigid geometric

bodies that are connected with revolute joints. This is well suited for articulated figures

such as insects and robots as shown in Figure 1, or simple stick figure representations,

such as the animated Luxo creature, shown in Figure 2.

Other types of articulated models possess a surface or skin which is distinct from

the underlying skeleton. The surface may be modeled using a polygonal mesh as shown

in Figure 3 and Figure 4, spline patches, subdivision surfaces, or other boundary

Figure 1: An articulated robot arm. Figure 2: Luxo!, a classical
animated stick figure.

Figure 3: Mesh model of an
alien leg.

Figure 4: Wireframe
rendering of the alien leg.
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representations. These representations are clearly more suitable for human models, where

the surface changes shape as a function of the posture1 of the model. Because of the

continuous nature of such surface models, there are no directly distinguishable links and

joints. If the surfaces are to be animated, an articulated skeleton is needed to define an

underlying set of links and joints which will indirectly govern the movement of the

surface. The surface then needs to be bound in some fashion to the underlying skeleton.

A simple way of doing this is to assign the surface control points to the closest bone. A

vertex is then redefined to exist in the local frame of reference of that bone. The

geometric model can either be made to rigidly follow the skeleton rigidly, or can be

allowed to stretch elastically. With additional effort, features such as a parameterized

muscle flexing can be introduced.

Although the model described above is very generic, allowing it to be used for any

type of character, such simplified deformation models do not have any anatomical basis.

Figure 5 shows an example of a simple model for animating the deformation of the thigh

and calf2. This type of model may be adequate for a simple character, but is inadequate

                                                          
1 We use posture to refer to the position of the underlying skeleton.
2 Parameters were deliberately set to large values in order to clearly show the effect of the deformations.

Figure 5: Sequence demonstrating the effect of muscle flexing in Newtek’s Lightwave 5.0.
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for creating realistic human models, such as those required for feature film production.

The principal advantage of the effect demonstrated in Figure 5 is that it is simple to

achieve. Given a surface, the animator aligns an articulated skeleton with the model and

set a few simple parameters. As the skeleton is animated, the surface follows and flexes

in a qualitatively appropriate fashion.

Generally, we can express the surface S of a character as being a function of several

parameters. These parameters might include the posture of the underlying skeleton and

muscle contraction intensity.  Muscles can affect more than one joint. For example, the

biceps muscle controls both the elbow angle and the wrist rotation (supination). Using the

above notation, the deformation of the skin due to the action of the biceps on the forearm

and the upper arm would be described as:

where Pforearm and Pelbow are scalars describing their respective joint angle.

This notation will be useful when describing our morphing technique in §6.2. The

above definition can of course be augmented to include additional parameters, as we shall

see later.

1.2 Goals

We wish to animate skin deformations based upon experimentally-obtained

deformation data. The system should be as intuitive to use as the skeletons currently used

in commercial packages, but should generate more realistic results.

The approach that we propose is geared towards animating human bodies, but not

human faces. This is because human the limbs and torso have fewer individually

controllable muscles. As well, facial animation has long been treated using techniques

dedicated to that specific problem.

),( elbowwrist PPS β=
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1.3 Our Animation System

Our solution, which we believe achieves our goals is to use range images3 of real

human bodies as keyframes and a 3-D morphing algorithm to interpolate between the

keyframes. Because our system uses real surface data, there is no need for the types of

parameters required with other techniques. Range scanners are accurate enough to

generate extremely high quality range images – they can resolve details as minute as

blood vessels on a forearm. This data can be used to generate realistic keyframes, and

thus realistic deformations.

Figure 6 shows the steps in creating a deformable articulated model using our

system. These steps are summarized here and explained in greater detail throughout the

remainder of the thesis.

Capturing the keyframe data requires three steps,

numbered one to three in Figure 6. The first step

involves scanning the desired forms using a range

scanner. The subject should be scanned in different

postures. A consistent surface model for each posture is

assembled in steps 2 and 3. This involves incrementally

aligning the range images together, eliminating

redundant surface areas, and merging the data sets

together. Step 4 involves the construction of a skeleton.

It is not yet fully automated, but there are methods

(reviewed in §2.5) that would accomplish this with

minimum user intervention. Once the skeleton is

properly constructed and aligned with each of the

postures, the polygonal models are linked to their

associated skeleton. The user can now animate a

skeleton and the modeled forms will deform

                                                          
3 A range image is a grid of distances (range points) that describes a surface. See §2.1.2 for a more detailed
description.

1. Scanning

5. Animation

4. Skeleton Defn

3. Integration

2. Registration

Figure 6: Steps to construct a
character animation with the

proposed system.
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accordingly.

Our primary contribution is a new way to build realistic animated models of the

human form. We exploit range image technology to capture the true human form and

create parameterized animated surface models based upon this data. We demonstrate

results of an implementation that animates deformations of the human arm. We also

improve in several ways upon the algorithms required to process the range data, as well

as presenting a methodology for the required data capture, data integration and surface

parameterization.

1.4 Thesis Organization

This thesis comprises 8 chapters. Chapter 2 describes data acquisition methods and

previous work in range image registration, range image integration, and character

animation. Chapter 3 describes the data acquisition process used to construct each static

model that will make up the keyframe sequence. Chapters 4 and 5 describe how this data

is aligned and assembled together. Chapter 6 describes our 3D-morphing approach to

produce the skin deformation. Chapter 7 concludes the thesis and proposes future work.
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2. RELATED WORK

Our work builds on results from four areas of research: range image acquisition,

registration, and integration, and animation of skinned articulated characters. Work in

each of these areas is reviewed in this chapter, providing a proper context for the

presentation of our work in the following chapters.

2.1 Range Image Acquisit ion

When producing computer animations, characters are usually constructed using  3D

modeling software. Even though expert modelers can achieve fantastic results, the

modeled characters are not realistic enough to be mistakable for real human actors in

motion pictures. This can be partly attributed to the difficulty of correctly modeling and

animating skin deformations arising from joint movement and muscle contraction. An

alternate approach to consider for character construction involves the use of accurate

deformation measurements from real humans. This requires a mechanism for rapidly

gathering accurate geometric data about the real world. We shall review several methods

for capturing 3-D shape data, all of which are based on light sensing. Other modalities,

such as acoustic waves or Shape TapeTM [19] are not discussed as they do not provide

sufficient spatial resolution for use in modeling applications.

2.1.1 Computational Stereo

Computational stereo involves two or more cameras, which can be thought of as

mimicking the stereovision ability of humans. Given two images of a scene and the

relative location of the two cameras used to acquire the images, distance to the points in

both images can be estimated. The distance values must be computed by detecting

corresponding features in both images. A feature commonly used is the correlation

between brightness patterns in both images [23]. However, correlation algorithms tend to

be sensitive to different illumination in both cameras and different scale of features [33].

It should be noted that the close-up views of the human body that we require provide few
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good features for the correlation  algorithm to use. For example, an object such as the

human arm has  no detectable edge features and generally has a uniform surface

appearance. Fiduciary marks could be added on the subject to help relieve this problem,

as demonstrated in [27].

The main advantage of computational stereo is the data acquisition rate. In

capturing the shape of the arm, for example, the subject could simply exercise their arm

and have its shape captured in real time. Because of this, computational stereo vision

systems could be a useful data acquisition tool, and we propose to investigate their use in

future work.

2.1.2 Laser Range Scanners

Laser range scanners work by projecting a laser light beam towards the object of

interest. The surface reflection of the

light is captured by a detector. The

detector observes a spot where the

light beam hits the object. There are

then two ways that this scheme can be

used to measure distance. Active

triangulation techniques exploit an

accurate measurement of the location

of the spot in order to compute a

distance, as shown in Figure 7.

Alternatively, time-of-flight techniques

measure the time delay of the light in

reaching the sensor.

All active triangulation

techniques have a range sensitivity that falls with increasing range. For ranges of ten

meters and above, time-of-flight techniques have superior accuracy. Their sensitivity is

essentially independent of range and is on the order of 10-20 mm. However, for our

Spot
projector

Spot position
detector

Figure 7: The operation of an active triangulation
scanner
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application the scanner is always within two meters of the model. In this range, active

triangulation scanners have a range accuracy of less than one millimeter.

In the configuration shown in Figure 7, we only have the distance from the range

scanner to one point on the object. By driving the spot projector with a scanning pattern,

much like the operation of a television screen, we can obtain the larger set of range points

which comprise a range image. Scanners return a two-dimensional array of values pi,j,

where the indices correspond to the elevation and azimuth angle of the individual

samples, and the values represent the distance from the scanner to the point in question.

These values are then converted into three-dimensional Cartesian coordinates. The

resulting set of points is ordered because of the scanning process. Furthermore, the data

from any individual scan is restricted to producing a height field because only one range

value can be determined for any given sampling direction.

Scanners also return the intensity of the reflected signal. This intensity is a function

of the local surface reflectance, the distance between the surface and the camera, and the

angle of the surface with respect to the camera projection axis [3]. If only one color of

laser is used, the intensity provides a grayscale image of the scene. If three colors of laser

are used, such as red, blue and green, a color image of the scene can be produced [3]. In

either case, the intensity data is associated directly with the range data points.

2.1.3 Fusion of Images and Sparse Range Measurements

Range scanners can be used in conjunction with video cameras to reduce the

scanning time [32]. Intensity images of a scene can be acquired much faster than range

images. The camera image is segmented into regions of similar intensity and the scanner

can then be directed to take measurements of a small number of points within each

region. Interpolation is used where required to obtain a dense range map without holes.

The main difficulty of this approach is the care required to properly register the data from

both sensors. Because of the interpolation, this approach is most suitable for scenes

composed mostly of flat surfaces. We would not have the desired accuracy in our

application, where the scene contains almost only curved surfaces.
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2.2 Triangular Mesh Construction

The data resulting from the acquisition process is an ordered set of 3-D points. Data

sets from multiple viewpoints have to be aligned together in a single coordinate frame to

be combined. This registration operation can be made more accurate if performed on a

surface instead of a set of discrete points, because two surfaces can be properly aligned

even though the representative points of the surfaces will likely not find exact matches.

Building a surface thus allows for a registration error which is smaller than the distance

between vertices. We therefore build a triangular mesh where the data points become the

vertices.  Our approach to building this mesh is similar to that of Turk and Levoy [59],

which we here describe.

To construct a triangulation we exploit the ordered structure of

points from the scanning process, namely that of a fixed 2D array. Every

group of four points in adjacent rows and columns, such as points {a, b,

d, e} and {b, c, e, f} in Figure 8 are considered for being subdivided into

two triangles. The shortest diagonal arbitrates the choice of triangulation.

For example, the edge {b, f} would be inserted instead of the edge {c, e}

in Figure 8. If a point is missing its neighbors do not bridge the gap,

leaving a “hole” in the surface. This can occur because the scanner can

fail to determine a distance in particular circumstances.

To avoid erroneously connecting

points, such as across depth

discontinuities as shown in Figure 9, we

compare the distance d between each pair

of vertices against a threshold. This

threshold is slightly larger than the

maximum known distance between

sample points for a planar surface.

a
b

c

d
e

f

Figure 8:
Constructing a

mesh from
range data

points.

Beam 
direction

d

Figure 9: Depth discontinuity in range data occurring
because of camera orientation.
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The depth threshold criterion may falsely introduce holes, meaning that it is

possible that it would fail to join points that should in fact be joined. For example, this

problem would arise if a real surface actually did follow the dotted line shown in Figure

9. However, we prefer to acquire large amounts of data to ensure accuracy rather than

making guesses from sparse data. As shown in Figure 10, scanning from another

direction reveals details that would have been missed if the points across the depth

discontinuity were erroneously connected. Our approach, as that of other work in range

imaging [59], prefers the merging of multiple partially redundant sets of data.

2.3 Range Image Registra tion

In order to combine data from multiple viewpoints we have to register the different

images into a single coordinate system. Because of self-occlusion, data from different

viewpoints must be obtained to build a complete model of an object. This is achieved by

either moving the range scanner or the object itself. In this thesis, the term registration is

used to mean the alignment of two 3D data sets into a single coordinate frame. The

registration process determines the relative pose of the range scanner when the two data

sets were acquired by aligning the data sets’ common regions. Registration is referred to

Beam 
direction
from camera
position 1

Beam 
direction 
from camera
position 2

Figure 10: Range data points acquired when scanned from two perpendicular viewpoints.
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as pose estimation, alignment, or motion estimation in various contexts.

One of the early applications of registration algorithms was for the construction of

topographic maps. The range data was obtained from stereo aerial photographs and the

data could subsequently be integrated by manually aligning landmarks. A similar

problem arises in combining sonar maps of the sea floor [37], where registration of data

sets is obtained by matching isocontours.

In computer vision, a similar problem exists in 3D-object recognition [22]. In this

context, registration is called pose estimation and usually consists of extracting features

such as corners and surface curvature from the data, and then solving for the 3D

transformation that aligns the extracted features with their corresponding model features.

The accuracy of feature-based registration directly depends on the accuracy of locating

the features, which is often problematic because of noisy data. Shape inspection of

industrial parts is also related to 3D-object location. Aligning 3D data with a model

allows deviations from the model to be discovered.

The iterative closest point (ICP) algorithm [9] is one of the best known registration

algorithms and is one we shall discuss in detail. It was motivated by applications

involving shape inspection of free-form surfaces. Free-form surfaces are difficult to

register using feature matching techniques because the only extractable feature is

curvature. ICP does not need to look for features. Instead, it operates directly on the

distances from the data points to the closest points on the target surface.

One of the most challenging applications of registration involves creating an

integrated surface model from several partially overlapping views. In some applications

the registration transform can be obtained directly from the measurement process, by

either moving the object between the views with a high-precision robotic system, or by

constraining the object motion, such as only allowing a planar rotation [61]. However, the

first alternative is very expensive or impossible for several applications, and the second

one is restrictive in the obtainable views.
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The registration problem can be formulated as an optimization problem that finds

the rotation and translation which minimizes a distance metric.  The metric usually sums

the squared values of one or more of the following:

• the distance and/or orientation difference of matched features;

• the curvature differences of the aligned surface locations;

• the shortest distance from a point in one data set to points on the other;

• an approximation of the shortest distance from a point in one data set to the points on

the other.

The registration of two views of a static scene is a general problem. In the worst

case, no model of the objects in the scene is available. Therefore the overlap between the

data sets, which is required for registration, must be estimated by the algorithm.

Furthermore, the desired transformation may include large rotations and translations from

some initial configuration. In three dimensions, this makes a systematic search of the

registration space too slow to be practical.

In the following discussion, we first present algorithms that align sets of

corresponding features, which is the key step in solving for data registration. We then

revisit other approaches to solving the registration problem. With the exception of using

pre-registered data sets (described in §2.3.1), all registration methods need to compute a

rigid transform that can best align two ordered sets of features where feature i from one

set corresponds to feature i in the other set.

Horn [29], Faugeras and Hébert [22] and Arun et al. [2] all provide closed form

solutions for the rigid transform that minimizes the sum of the squared distances between

two sets of points where correspondence is established. Faugeras and Hébert’s method is

similar in structure to Horn’s, so we shall describe the methods of Horn and Arun et al.,

beginning with the latter.

We denote the two data point sets to be aligned as A = {pi} and B = {pi’}, where i =

1, 2, ..., N. The required correspondence can be specified as:

iii DTRpp ++= '
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where R is a rotation matrix, T a translation vector, and Di an (unknown) noise vector.

The least-squares solution to the above equation requires solving for R and T to minimize

Assuming complete overlap of the data sets and equal sampling density, it was

shown that A and the transformed set B will have the same centroid [30]. Therefore, the

least-squares problem can be broken down into two independent problems. First, subtract

the two centroids to find the translation. Second, find the rotation that minimizes the

least-squares problem.

We will now further examine two methods to find the rotation R. Let the centroids

of point sets A and B be p and p’, respectively. We define two new sets of points {qi} and

{qi’}, where qi = pi – p and qi’ = pi’ – p’. We then compute the 3 x 3 matrix

and its singular value decomposition (SVD):

where Λ is a 3x3 diagonal matrix with non-negative elements, each of these elements

being the singular values. The matrix X, computed as

yields the orthonormal matrix for a least squares solution. However, orthonormal

matrices can also imply reflections, and thus it remains to be verified that X is a

representative rotation matrix. If the determinant of X is +1, then X is the rotation matrix

R that we seek. A determinant of –1 implies that X is a reflection instead of a rotation,

and needs to be handled separately: if all the noise vectors Ni are zero and the points in

set A are coplanar (but are not all collinear), one of the three diagonal elements of Λ will

be zero. In that case, let these elements be λ1 > λ2 > λ3 = 0. Expanding the equation

defining H, we obtain:

∑
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where ui and vi are of columns of U and V. Changing the sign of u3 or v3 does not change

H, and therefore, if X = VUT minimizes e, so will X’ = V’UT, where

 Since X is a reflection, its determinant being –1, then X’ is a rotation.

If the determinant of X is –1 and none of the singular values are zero, then neither

the points in A and B are coplanar, and there is no rotation that yields a smaller e then the

reflection represented by X. This can happen only when the noise is very large, and the

algorithm can not handle this situation. Arun et al. suggest that any least-squares method

is likely to be confounded by this situation and they suggest the approach of Fischler and

Bolles [25].

We now describe Horn’s method, which is the most widely employed, possibly

because it is explained in the clearest fashion. As in Arun et al.’s method, the two sets of

points are first centered by subtracting the respective center of masses from each of the

two point sets. The following matrix is then computed:

where

],,[' 321 vvvV −=
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and xq,i is the value of the x coordinate of the point i in set q.
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This matrix M contains all the information required to solve the least-squares

problem for rotation. The matrix N, as shown below, is then computed using the elements

of M,

Horn shows that the eigen vector that corresponds to the most positive eigen value

of the matrix N is the quaternion that minimizes e [29]. The four eigen values of N can be

found by solving the quartic equation

where I is the 4x4 identity matrix. If we let λm be the most positive of the four eigen

values, the corresponding eigen vector em can be found by solving the homogeneous

equation

Arun et al. show that in terms of execution speed, their method is slower than

Horn’s method for small sets (n < 10), but the methods require about the same time as the

point sets grow [2]. Both methods have O(n) complexity, where n is the number of data

points. Arun et al.’s method can handle reflection, but this is never needed for laser range

image registration and causes problems if the reflection would reduce the error more than

any rotation would. In our system, we use Horn’s method.

2.3.1 Registration From Acquisition Setup

An obvious way to avoid the registration problem altogether is to rely on precise

information of the range camera’s position and orientation. Blais and Levine [11] refer to

this approach as open loop registration. Vemuri and Aggarwal [61] relied on a calibrated

system to obtain the registration transforms using a turntable as a base for the object to be

modeled. A pattern painted on the turntable could be observed in the intensity images and
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used to determine the rotation angle of the platform. This rotation angle was all the

information required to register the range images together since no other movement was

allowed and the sensor was fixed.

Employing artificial data, Roth-Tabak and Jain [47] simulated a system in which a

moveable sensor was used in a virtual environment to build a representation of its

surroundings. Because the exact pose of the sensor was known, all range images could be

registered in a trivial fashion.

The major drawback of open-loop registration methods is that they suffer from

relatively high inaccuracy, and the acquisition system becomes very expensive or the

sensor’s range of movements becomes very limited. In order to solve these problems,

more sophisticated data-based registration methods need to be used. Registration from

acquisition setup can be used, however, to provide a coarse estimate of the proper

alignment, which is sometimes needed for more accurate approaches (see §2.3.3).

2.3.2 Registration Using Features

These methods attempt to detect features in two data sets and establish

correspondences between these sets of features. The number of features can be

constrained or over-constrained. If the feature-set is exactly constrained, there is the risk

of establishing a wrong correspondence between features and therefore computing a

wrong registration transform. If the set of features is over-constrained, a decision must be

made for dealing with the possibly conflicting registration transforms.

Bolles and Horaud [13] use a model-based object recognition system where

distinctive features are selected from a known model. The selection criteria for a feature

include the uniqueness of the feature among all models, its expected contribution to

determining the pose of the object, and the cost and likelihood of detecting it. Bhanu [10]

uses an approach where generic features are selected from a simple model.

Faugeras and Hébert [22] are interested in recognizing and locating known objects

from range images. The approach locates geometrical features, matches them to a model,
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and finds the transformation that aligns the features. A surface representation is chosen

for its robustness to occlusion and viewpoint position and because of its simple rules of

transformation when rotated or translated. The use of region growing (which involves the

fitting and growing of surface patches) and plane and quadrics fitting to extract the

surfaces from the range data is discussed. Once the surfaces are extracted, strategies for

matching surfaces from the data to surfaces from the models are explored. After rejecting

relaxation matching and the Hough Transform and Clustering, a tree search strategy is

proposed. The primary limitation of this approach is that registration may fail with large

areas of low curvature in the data.

Schwartz and Sharir [50] use a model-based approach; from a model they find

“characteristic curves” – edges that are relatively immune to noise, such as the boundary

curve separating two differently colored portions of an object surface.  After finding

some of these characteristic curves on the range image or its associated intensity image

and performing a smoothing operation on it, the two are matched together.

Bergevin et al [6][7] implemented an indirect feature-search as a preliminary step

for a heuristic search in the registration search space.  An initial registration transform is

first computed as follows. The Delaunay triangulation of the range data in both views is

computed and the resulting mesh is simplified. Corresponding regions of the two views

should now be covered by triangles of similar areas, since the size of a triangle depends

mainly on the local surface curvature and orientation.  Pairs of neighboring triangles from

one view are matched to similar pairs from the second view using criteria such as the

distance between centroids of the two triangles in each pair and the angle between their

normals.

Aligning the matched triangle pairs gives an initial registration of the views, but

because a separate transformation is computed for each of the matched pair, there are

likely to be many false matches which produce wrong registrations. The registrations are

ranked according to the overlap of the registered views when projected to the same plane.

The best registration is used as the initial estimate in the following step. The next step is

the search in registration space, and is discussed on page 26.
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Kamgar-Parsi, Jones and Rosenfeld [37] deal with maps of the sea floor, which are

typically without distinctive features. Contour lines are extracted from the images and

used as a matching feature. Because of acquisition errors, however, there is often single

self-consistent global alignment. To alleviate this problem, non-rigid transformations are

applied to bend and twist the images. The technique is not general, however, as the

images are assumed to be expressible as a height field. The problem associated with

grouping together several range images, however, also applies to data acquired from

range scanners (see §3.1).

Johnson and Hébert present a new set of features [36] used in the context of object

recognition [35]. Shown in Figure 11 is

the fundamental shape element they

propose: the oriented point p. Also shown

in the figure is how an oriented point

defines a local coordinate system with

coordinates α, the perpendicular distance

to the line λ, and β, the signed

perpendicular distance to the plane π.

This is conceptually similar to a

cylindrical coordinate system, minus the

polar angle about the line λ. Given a set

of points x, a spin image is constructed for a point in that set by mapping the other points

to the coordinate system mentioned above. The advantage of these spin-images is that

they are much more discriminating features than principal curvatures and other traditional

features. The registration transform computed with this method nevertheless needs to be

refined with one of the free-form registration techniques. Because the time required to

construct a spin-image can be substantial, we choose to have the user manually provide a

coarse registration transform instead of using this method.

β

α

λ

π

n

x

p

Figure 11: Oriented point basis; a spin-image for
the point p is constructed from the coordinates

(α, β) for each pt x in the set.
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2.3.3 Registration of Free-Form Surfaces

The feature-based methods are susceptible to false matches because of the difficulty

of establishing correspondences between features. Even when a correspondence is

correctly established, the difficulty in accurately locating the features limits the precision

of the registration transform that can be computed.

In this section we examine iterative methods that do not search for features in the

data.  One of the disadvantages of these methods is that they can only be used to refine an

estimate of the registration transform; they require the two range views to be

approximately registered before being applied. This can be accomplished through

information from the acquisition system or through user interaction. One strategy would

be to use a feature-based method to provide a coarse registration, and refine the

alignment with a free-form registration technique. We choose not to employ this strategy

because of the time that robust feature-based methods require to execute. For our system,

we prefer to have the user spend on the order of thirty seconds to manually provide a

suitable initial alignment of the range data sets.

Rather than attempting to match discrete features,

least-squares methods minimize a distance metric

evaluated over all the data points [9]. The following is a

commonly-found least-squares distance metric:

where qj is the closest point found in the data to be

matched as shown in Figure 12, and T is the transform

that would align P and Q (see Figure 13).
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Figure 12: The closest point qj in
the set Q to point pi in set P.
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Here we are looking for a rigid 3D

transformation T that minimizes the distances

of the points pi in the set P to the point qj. This

point qi is the point in another set or surface Q

that is closest to pi. This optimization problem

could be solved using a conjugate gradient

method. However, such methods require

computing gradients and the numerical

evaluation of gradients through finite differences is time-consuming if there are many

points [9].

Champleboux et al. [15] solved the gradient problem by pre-computing a 3D-

distance map called an octree spline that allows rapid approximations of the gradients.

This octree spline map is computed as follows: Begin by building a restricted octree for

one of the two sets of data points [48]. A restricted octree is one in which the size of two

nodes that share a common boundary in space never differs by more than a factor of two.

This octree is augmented by calculating the distance to the closest data point from each of

the eight corners of the cube representing each leaf in the octree [39]. The shortest

distance to any data point from any point p within the space enclosed by the octree can be

quickly estimated by finding the leaf in which p resides and tri-linearly interpolating the

actual distance from the eight distance values stored in this leaf. Accuracy is maintained

if the linear interpolation provides a good approximation of the distance.

The octree spline data structure is pre-computed for one of the range images. A

least-squares minimization is then performed, applying the computed transformation to

the image for which the octree spline representation was not computed.  The main

problem associated with this method is that the “model” must completely overlap the

other range image. Points that have no correspondence must be eliminated from the range

image. This is not suitable for our application, since our range images have

complementary information with minimum overlap. As with other iterative methods, it is

also susceptible to convergence to an erroneous local minimum if the initial alignment is

poor.

translation

rotation

Figure 13: Transform that would align
the two data sets.
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A simpler approach involves iterating between pairing points and solving for the

best-fit registration transformation:

The pseudocode for the algorithm is:

Here, an initial estimate of the registration transform (T0) is given; it is applied to

the point set Q, and while holding the transformation fixed, the closest points in P for

each qi is found. A new best-fit transformation is the computed and applied, after which

the process repeats, alternating between determining the closest points and computing

best-fit transformations.

Besl and McKay’s Iterated Closest Point (ICP) algorithm implements the above

approach [9]. Horn’s quaternion-based approach [29] is used to find the transform that

minimizes the distances between the pairs of closest points. The algorithm achieves fast

convergence in the first few iterations, but the convergence slows as the algorithm

approaches the local minimum. Thirty to fifty ICP iterations are necessary for the

algorithm to converge. The chosen convergence criterion is typically a registration error

of approximately 0.1% of the model shape size.
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Given the initial transform T0, let Q0 = Q
Repeat:

Apply the transform Ti to Qi-1 to get Qi
Determine the closest point in P for each qi
Determine the transform Ti+1 that minimizes the distances

between pairs of closest point
Until desired accuracy is achieved
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The number of iterations can be approximately cut in half by using a variation of a

basic line search method of multivariate unconstrained minimization, as described in

Numerical Recipes [45]. As the ICP algorithm proceeds, a series of registration vectors qi

is generated. These vectors can be expressed with seven numbers – three for the

translation and four for the rotation, which is expressed as a unit quaternion. These

vectors represent the cumulative registration transform at step i. If we define

to be the transform that is applied at step i-1 to arrive at step i, then the angle in ℜ 7

between the last two transforms can be defined as

If the angles θi and θi-1 are smaller than a given thresholded value, then there is

good alignment for the last three registration vectors and the next vector, qi+1, can be

extrapolated rather than computed.

Besl and McKay prove that the ICP algorithm will always converge to a local

minimum [9]. The initial estimate T0 must be close to the global minimum, otherwise ICP

can reach another local minimum. This can be addressed by exploring multiple

orientations of the data sets, each followed by the application of ICP. The rotations are

chosen by uniformly sampling the unit sphere in ℜ 4 to obtain quaternions. For a complex

object, this may involve on the order of 300 initial orientations. A restriction of the ICP

algorithm as presented in [9] is that one data set must be a proper subset of the other data

set. Thus the technique cannot be directly applied to the registration of two data sets

which only partially overlap.

Potmesil [44] uses an approximation to avoid searching for the closest point,

especially if Q can be expressed as an analytic surface rather than a point set. In his

approach, each point pi is paired with the intersection of its normal vector and the surface

Q. This method can also create better pairs in the sense that the algorithm converges

faster.
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All such algorithms share a common flaw: few of the closest point pairs that are

assumed to correspond do actually correspond to each other. Such mutually incompatible

point pairs fight against each other, which leads to slower convergence. To avoid this,

Chen and Medioni [16] present a new formulation based on the work of Lowe [41]. Many

unnecessary constraints are removed: the points pi are paired with the tangent plane Sj of

Q, evaluated at the locations where the normal vector ni associated with pi intersects Q

(see Figure 14).

The algorithm remains a variant of ICP. For each

iteration, an intermediate transform minimizes the

distance between pairs of matching features is applied,

and the process repeats until convergence. The

optimization metric used at each iteration of the

algorithm is the function that measures the distance of

control points to the plane they are matched with. This

means that no penalty is incurred when a control point “slides” along a path parallel to

the plane it is matched with. The least-square minimization problem is linearized by

assuming that the images are already almost registered and replacing the sine and cosine

terms in the transformation matrix by linear terms.

Pulli [46] points out that the Chen-Medioni algorithm should converge much faster

than the accelerated ICP because of the “free-sliding” property. However, no one has yet

directly compared the two algorithms. Although it is true that the Chen-Medioni

algorithm may converge in fewer iterations, the time per iteration can be potentially

larger than that of ICP. Furthermore, ICP can easily be made more robust by augmenting

it with heuristics, as will be presented in §4.1, while the Chen-Medioni algorithm is more

difficult to improve in this fashion [46]. Finally, the Chen-Medioni algorithm probably

requires a more accurate estimation of the registration transform as input because of the

approximations used to linearize the least-squares problem.

Szeliski [54] describes a method for estimating motion from sparse range data. The

goal was to estimate the motion of the observer between two range image frames of the
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Figure 14: Matching points with
tangent planes.



25

same terrain.  A smoothing spline surface approximation of the range data points is first

created.  A conventional steepest descent algorithm is then used to rotate and translate the

second data set so that it minimizes the sum of the z differences between the points and

the surface.  The steepest descent approach used is slower than ICP.  The method is

demonstrated on synthetic terrain data. It is not clear that the algorithm would generalize

well for our applications.

Traditional minimization methods often limit the formulation of the objective

function. For example, many optimization methods do not work unless the objective

function is differentiable. As well, methods that locally refine an initial estimate are

susceptible of getting caught in a local minimum, and there can be several local minima

close to the global minimum. Some stochastic methods, such as simulated annealing, do

not have these limitations. They simply require that the objective function can be

evaluated, and employ a random element to avoid local minima. The drawback is that the

evaluation of the objective function may be required tens of thousands of times.

Blais and Levine [11] use a stochastic optimization method called very fast

simulated reannealing (VFSR) [31]. A hash table is used to map the coordinates (x, y, z)

of a point back to the indices i and j in the array of sampled points. Although this makes

finding closest point pairs an O(1) process, it assumes that the data is organized as a 2-D

array. If this structure is modified, for example by integrating range images together after

they have been registered, this technique could not be used.

After building the look-up tables described above, control points are chosen from

one range image by uniform subsampling. Using an initial registration transform estimate

obtained from the acquisition setup, the control points are transformed into the reference

frame of the other range image. The cost for each point pi is then a thresholded absolute

distance to its associated point qj. Thresholded here means that if the distance is greater

than a specified threshold, the cost is set to be zero. The final objective function is the

sum of the cost for each point, normalized over the number of pairs used.  If the

percentage of points that are used in pairs is less than a user-specified threshold (known
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as the overlap factor), the transformation is discarded. The example given in [11] uses an

initial estimate of the registration transform that requires little refinement.

The optimization problem can also be formulated as a search problem. By applying

small rotations and translations to one range image in a trial-and-error fashion, one can

attempt to find the optimal registration transform. Alternatively, one could try to

discretize the registration space, try all the solutions, and choose the best one.

Bergevin et al [6][7] implemented a heuristic search in the registration search

space. First an estimate of the registration transform is computed as described in §2.3.2.

This estimate is placed at the root of a tree. A node is expanded by perturbing each of the

six parameters (three for translation and three for rotation) in either direction, the amount

of perturbation depending on the depth of the node in the tree. The most critical aspect of

the graph search process is the generation of the successor nodes. Unfortunately, no

strategy exists that would take into account the properties (positional and rotational

errors) of all the nodes from the root to the parent to generate a successor. A search

limited to a small number of directions, however, such as the six parameter axes might

never proceed to the optimal point, given that the rotational and translational parameters

are not completely independent of each other. They report that Chen and Medioni’s

method [16] produces better results than the search algorithm. However, the search

method can handle much more complex objects than free-form registration methods. The

objects considered in previous papers are compact and tend to converge towards a convex

shape as the scale becomes coarser, such as the car model used by Potmesil [44], the owl

statuette used by Ferrie and Levine [24], and the bust shape used by Chen and Medioni

[16]. Bergevin considers more complex multi-part objects such as a pencil sharpener. The

higher difficulty results from the more dramatic and less predictable self-occlusions

occurring in most views.

Taubin [55] presents an exploration of implicit algebraic non-planar 3-D curve and

surface estimation, with applications to position estimation without feature extraction. A

method of approximating data with implicit algebraic forms and an approximate distance

metric is described. Shapes can be identified based on generalized eigen-values and the
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registration transform can be recovered directly. The computed representation often

weakly resembles the object, but it provides a sufficient spatial description of the object

at different levels of approximation for the purposes of position estimation. The method

presented is shown to be useful for planar curves and space curves, but it is unclear that

the effectiveness generalizes well to more complicated surfaces such as terrain data. The

technique is demonstrated on some relatively simple shapes such as the sketch of a

wrench and a gear-like disc. Taubin states that the numerical methods of the approximate

distance fit tend to break down on polynomials of degree ten or above because of the

wide variation of the terms in polynomials of such high degree.

2.3.4 Conclusion

Our application involves the registration of views of the human arm, and as such

does not likely provide enough features for feature-based registration methods. We

therefore choose to implement one of the free-form approaches. We adopt ICP because it

is well documented and is the most widely used. It runs quickly, especially when

combined with the acceleration step, as described by Besl and McKay [9]. Finally, it is

guaranteed to converge to a local minimum. If it converges to an erroneous minimum,

this is generally noticeable and thus ICP is manually restarted from another initial

configuration. We let the user provide an initial registration transform. Given the proper

interface, this can be done in a matter of seconds.

2.4 Range Image Integration

Range image integration refers to the process of creating a single representation

from the sample points of two or more range images. This step is performed after the

range images have been aligned together with a registration procedure. In general, the

following steps are performed by an integration procedure:

• Elimination of overlapping surfaces. Because registration procedures require

overlapping surfaces, there is a significant amount of redundant information.
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• Warping of range images to eliminate any ‘step’ at the junction of two range images.

This step occurs because of imperfect registration or because of errors in the data

acquisition process (see §3.1).

• Merging the data sets together. No holes should remain where two range images

meet.

We present two approaches from the literature for range image integration.

2.4.1 Unstructured Integration

Unstructured integration methods seek to integrate range images from an arbitrary

collection of points in ℜ 3 assuming no connectivity information. All the range points

from multiple scans are gathered together and presented to this routine. This is typically

an unnecessarily difficult problem for range image integration, as the acquisition process

returns a set of ordered points. Even after multiple range images are integrated together,

connectivity information typically remains available.

  Boissonnat [12] proposes the Delaunay triangulation of a set of points in 3-space

as the basis of such a reconstruction. Alpha shapes are introduced for points in the plane

in [20], and Edelsbrunner and Mücke [21] extend it to arbitrary dimension and to

weighted sets of points. Alpha shapes are a generalization of the convex hull of a point

set. The approach requires a parameter, α, which is the size of the largest simplex that is

allowed in the final shape. There is currently no automatic way to select this parameter,

thus requiring user intervention.

Hoppe et al. [28] use graph traversal techniques to help construct a signed distance

function from a collection of unorganized points. An isosurface extraction produces a

polygon mesh from this distance function.

Amenta, Bern and Kamvysselis [1] describe a Voronoi-based algorithm that is

proven to produce a topologically correct surface. The guarantee is based on the local

sampling density, and intuitively captures the notion that featureless areas can be

reconstructed with fewer samples.
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Although these algorithms are widely applicable to a broad class of 3D point sets,

they discard reliable information from range scanners. As a result, they may be well

behaved in smooth regions of surfaces, but they are not always robust in regions of high

curvature and in the presence of systematic range distortions and outliers.

2.4.2 Structured Integration

Structured integration methods make use of the structure of the data acquisition

process in order to integrate the range images. Information that is readily available from

range scanners includes adjacency information between points, error bounds on a point’s

position, and the viewing direction of the range scanner.

Soucy and Laurendeau [52] use a surface-based approach to combine multiple

range images. Points that are part of overlapping surfaces are identified and used to create

triangulations that are stitched together by a constrained Delaunay triangulation.

Turk and Levoy [59] propose a “zippering” scheme to merge range images; this is

an incremental algorithm that erodes redundant geometry, followed by merging along the

remaining boundaries. This approach will be described more in depth later in this thesis,

as we base our integration scheme on similar ideas.

Curless and Levoy [17] present a robust, incremental volumetric integration

method. The volume encompassing all the pre-aligned range images is first voxelized.

Each range image is then converted to a signed distance function and a weight function,

sampled at each voxel. For each range image i, the signed distance di,j from each voxel j

to the closest surface point along the line of sight of the sensor for that particular image is

determined. A weight wi,j is also computed according to the difference between the local

surface orientation and the viewing direction. For each voxel j, the distance and weight

functions from each range image i is combined according to the following rules:
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If an isosurface extraction was to be performed at the zero-crossing of the combined

signed distance function at this time, the resulting mesh would have holes at unseen

portions of the surface. In order to fill those holes a space-carving step is performed

while constructing the distance function. After updating the voxels near the surface, as

described above, the line of sight is followed back from the observed surface and the

voxels traversed are marked as “empty”. All the voxels are initially marked “unseen”.

After this procedure voxels that contain no surface can be categorized depending on

whether they were actually empty or simply not observed by the scanner. When

extracting the isosurface, a surface is also extracted between regions seen to be empty

and regions that are still unseen. The method is robust and can handle a large number of

images and has been tested with models requiring the integration of up to 70 images.

However, it is relatively slow, requiring on the order of four to six hours on a MIPS

R4400 processor for a final model containing 1.8 million polygons, and must be made

less accurate than other surface-based approach (cf. [59]) to speed it up. Like most other

integration techniques, it has difficulty dealing with sharp corners and thin surfaces.

2.4.3 Conclusion

Because we use structured range data, we choose to apply one of the structured

methods. We want highly detailed models and therefore prefer Turk and Levoy’s

zippering algorithm to volumetric methods. The latter tend to be limited in the level of

detail they can support because of the necessity to voxelize the workspace.

2.5 Animation of Polygonal Models

To the best of our knowledge, no work has been published on modeling the

deformation of the human shape using range data. Nevertheless, some related work is

briefly discussed here.

Turner and Thalmann [60] describe a layered construction technique called the

elastic surface layer model, where an elastically deformable surface is wrapped around a
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kinematic articulated figure. The skin is free to slide along the underlying surface layers

(such as fat and muscles) following a physically modeled spring network. Other effects,

such as skin deformation at the joints and follow-through of the skin can be obtained by

tuning the parameters of the physically-based model. Skin deformations due to muscle

contractions are not modeled.

Teichmann and Teller [57] present an algorithm for establishing an articulated

skeleton from a closed polygonal model. Given a 3D polygonal mesh representing an

articulated figure, they create an articulated skeleton from the 3D Voronoi diagram of the

mesh vertices. User interaction is required to specify which points on the skeleton should

be articulated. There is currently no joint-based deformation implemented as part of the

system. A spring network animates the skin. Figure 15 shows two keyframes produced by

their system, and the associated I-K skeleton.

Figure 15: Animation generated by Teichmann and Teller.
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Yasumuro, Chen, and Chihara [63] model the human hand using range image data

and an underlying skeleton. The skeleton is constrained to help produce a natural hand

posture. The range data was generated by scanning the plaster model of a human hand.

Each skin point is associated with an underlying bone. When a bone moves relative to its

neighbors the associated skin points move rigidly with it, as shown in Figure 16.

Figure 16: Hand animation generated by Yasumuro, Chen and Chihara.
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Wilhelms and Van Gelder propose a specific type of anatomically based modeling

of animals [62]. Bones, muscles and other underlying tissues are the key components of

the model. Muscles are modeled as deformable cylinders lying between fixed origins and

with insertions on specific bones. Muscles change shape in a parameterized fashion as the

joint moves. Skin is generated by voxelizing the underlying components and extracting

the isosurface. All components are parameterized and can be reused on similar bodies

with non-uniformly scaled parts. The results are good, but knowledge of anatomy is

mandatory in order to model the muscles. A trial-and-error process is needed to

customize difficult muscles. Figure 17 shows the underlying muscle models that was

used in one of their earliest implementations. Figure 18 shows how the skin mesh adapts

to the various postures of the proto-human.

Figure 17: Underlying muscles as modeled
by Wilhelms and Van Gelder [62].

Figure 18: Collage showing how skin
adapts to changes in underlying muscle

shape [62].
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Scheepers et al. [49] follow an artistic anatomy approach to model the human

musculature. Muscle and skeleton models are implemented using a procedural language.

Muscles automatically deform according to the posture of the skeleton. An extra

parameter is used to specify muscle tension. Figure 19 shows the underlying models

comprising the torso animation that was implemented. Figure 20 shows one of their early

implementation of a skin and fatty tissue model on top of the muscle and bone models.

Figure 19: Muscle and bone models
implemented by Scheepers et al.

[49].

Figure 20: Scheepers et al.'s model after
application of a skin and fatty tissue model [49].
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3. DATA ACQUISITION

3.1 Scanner description

In this chapter we describe the particular scanner that is used in our work. The

general principle of range scanning were described in §2.1.2. Our range scanner was

developed by the National Research Council of Canada (NRCC). In 1993, SPAR

Aerospace acquired a license to apply the technology to telerobotics.

The scanner uses active triangulation to determine range. However, rather than

mechanically pointing the device in order to scan the scene, the projected beam is

redirected using oscillating mirrors. In this NRCC patented technique, known as

synchronized scanning, both the projection axis and the detection axis are scanned over

the scene in synchrony. In other approaches, only the projection axis is scanned, while

the detector axis remains fixed. With such an arrangement, the spot image position

depends on both the range and instantaneous scan angle. Synchronous scanning

practically eliminates the scan angle dependence.
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As a result of synchronized scanning, it now becomes possible to slant the detector

array with respect to the plane of the imaging lens in

such a way that the spot image is focused over a large

span of triangulated ranges4. This results in a

significant improvement in the depth of field. Our

scanner has a depth of field ranging from .6 m to 15 m.

An additional advantage is that the detector does not

integrate ambient light over the complete field of view

as a fixed detector device would. Hence, the SPAR

scanner is relatively insensitive to ambient light.

Finally, finite detector length is not wasted on

accommodating scan angle. This allows for a smaller

triangulation baseline5 for a given range of accuracy.

The smaller baseline minimizes the shadowing effect that plagues standard fixed-detector

systems6 as shown in Figure 21. This also allows for the SPAR scanner to be a relatively

small device, as shown in Figure 22.

                                                          
4 This is also known as Scheimpflug Condition [14].
5 The baseline is defined as the distance between the detector and the projector.
6 Note that time-of-flight laser scanners may not have this shadowing problem, as the paths of the

transmitted and returned signals can be almost the same [33].

A) large baseline B) small baseline

Figure 21: Shadowing effect for different baselines.

Figure 22: The SPAR laser range
scanner
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For our application the scanner was always within two meters of the model. In this

range, the SPAR range camera has a range accuracy on the order of .5 mm. The time to

acquire a single scan at a resolution of 64 x 64 is approximately 2 seconds.

3.2 Acquisition Setup

The data that range scanners produce can be remarkably accurate under ideal

conditions. However, the ideal conditions are

sometimes difficult to achieve, particularly

when scanning human subjects. We now

discuss the acquisition setup that was used,

and describe the pitfalls that were

encountered. Our interest is in capturing the

human form; our experiments capture the varying shape of the arm, as shown in Figure

23. This involves the subject standing still while scans are taken.

In order to build a complete model of the subject’s arm, we need a method of

acquiring multiple views. Ideally those multiple views would be captured simultaneously.

However, given this is an impossibility with the resources available to us, we chose to

obtain multiple views by moving the scanner. Because we want our subject to hold their

pose, we prefer moving the scanner to moving the model. Mounting the scanner on a

track or robot arm would likely speed the acquisition process.

The range scanner is aimed by using a video camera mounted beside the scanner on

the tripod. This is the black protrusion above the hand in Figure 22. The camera provides

real-time feedback of the scanner field of view and thereby greatly reduces the setup

time. The video camera can also be used to fuse video data with range images [34],

although we have not made use of this feature in our implementation.

Multiple scans of the subject are required for two reasons. First, because of self-

occlusion, it is not always possible to capture the entire geometry of even one side of

single limb. Registration procedures also require significant overlap between the data

Figure 23: Change in shape of the arm as a
function of elbow flexion.
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sets. Second, a realistic model requires dense sampling. This means that the scanner

should be relatively close to the subject.  The subject was required to stay immobile for

several minutes as a result of this requirement. We use braces to help stabilize the model,

but these braces also contribute to unwanted occlusion. In order to obtain more accurate

measurements in the future, we suggest providing a more comfortable, non-intrusive way

for supporting the subject’s arm, or to correct for model sway with a data post-processing

step. Multiple scanners could also be used to acquire multiple scans at once. Finally,

other shape capture equipment that can gather data at a faster rate could prove useful.

Multiple synchronize stereo camera systems could acquire data at rates of thirty frames

per second. This means the subject would simply have to exercise his joints through their

range of motion without having to maintain a fixed pose for a long duration.

3.3 Characteristics of the Acquired Data

Our laser scanner returns a two-dimensional array of values, as discussed in §2.1.2.

Computing Cartesian coordinates for the points involves the use of a calibrated model,

which corrects for errors and distortions introduced by the collection optics and the

scanning mechanism [5]. There also exist several systemic sources of error that cannot be

easily corrected for. These errors may differ for each point, although they can be

quantified to a limited extent by assigning a weight representative of uncertainty to each

data point.

A first source of uncertainty arises when the projected light beam strikes an object

at a grazing angle. In such cases, the spot detector sees a less intense and warped version

of the projected spot. This makes it difficult to find the center of the pattern, and therefore

adds uncertainty to the position of the range points. The degree of uncertainty increases

with the difference between the viewing direction of the scanner and the surface normal.

A secondary source of inaccuracy occurs at edges, where only a portion of the beam hits

the object. This results in a false estimation of the range since the peak detection

algorithm for the spot detector assumes that the entire spot landed on the object. This

error can be taken into account by assigning a high degree of uncertainty to points found
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to be adjacent to object edges. Both sources of errors are eventually taken into

consideration by the surface reconstruction algorithm, as described in §2.2.

Figure 24 shows the range data from a single scan of a telephone set. The intensity

data is not shown. A photograph of

the telephone set is shown in Figure

25. The range data in Figure 24 was

sampled at a resolution of 256 x

256. The two regions with no data,

as indicated by arrows, are parts of

the phone that do not reflect the

projected beam back to the spot

detector. The data is rendered from

a viewpoint similar to the position

of the scanner when the data was

Figure 24: Range data of a telephone set.

Figure 25: Photograph of the telephone set.
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acquired. Note that the telephone model has no bottom half; scans from multiple

directions are required to build a complete model.

Figure 26 shows a rendering of

the telephone after performing the

meshing operation described in §2.2.

The intensity data has been mapped

onto the data points. Figure 27 shows

the “edge effect” due to having only

part of the projected beam hit the

object. The warping of the image due

to the beam hitting an object at a

grazing angle only becomes apparent

when aligning two range images taken

from different viewpoints.

Figure 26: The telephone set after triangulation.

Figure 27: Edge effect of telephone range image: edges
curl toward the scanner when only part of the beam

strikes the object. The viewpoint is that shown by the
arrow in Figure 26.
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We shall make use of a hierarchy of meshes to speed up the registration process.

The time complexity of our registration method is proportional to the number of points in

the meshes. Thus, we first align low-detail meshes together before proceeding to the next

level of detail to further refine the alignment, and repeat this process until the highest

resolution meshes are aligned. Building a hierarchy of meshes with decreasing level of

detail is a simple process. We resample every other point to compute a mesh of lower

resolution in the hierarchy. Figure 28 shows the telephone with four levels of detail. Note

that even at the coarsest level we have enough detail to align two range images of the

telephone together. The isolated triangles shown in the lower-resolution meshes do not

cause registration problems, because their vertices are on the mesh boundary and

therefore are assigned a low weight, as discussed on page 38.

Figure 28: Hierarchy of meshes created by subsampling the original set of vertices.
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4. RANGE IMAGE REGISTRATION

After acquiring multiple range images of an object using the setup described in the

previous chapter, we need to bring corresponding portions of these range images into

alignment with one another. In our case we have no information regarding the exact

location and orientation of the scanner, and thus a data-driven registration step is

required. It is also worthwhile noting that even a robotic mount for the scanner would still

necessitate a registration step in order to ensure a very accurate registration.

In this chapter we describe the modified ICP algorithm that we employ for range

image registration. We then elaborate on the need for an initial registration estimate and

explain how we efficiently perform the closest-point searches which are part of the ICP

algorithm. We conclude with the experimental results achieved after applying the ICP

algorithm to the shape data acquired from the arm of our subject.

4.1 Iterated Closest-Point Algorithm

We use the algorithm presented by Turk and Levoy [59], which is a modified

iterated closest-point (ICP) algorithm. ICP was first proposed by Besl and McKay [9] as

described in §2.3.3. This original ICP algorithm cannot be used to register range images

that are only partially overlapping because it requires establishing correspondences for all

points on both surfaces. In our case, however, we are using multiple range images which

provide complementary coverage of the scanned object. The modified ICP algorithm is

shown below; a description of each step follows.

For increasing levels of detail
While not converged

Find the closest point on mesh A for each vertex of mesh B
Discard poor correspondences
Eliminate pairs in which either points is on a mesh boundary
Compute a best-fit rigid transformation
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To illustrate how the algorithm works, we shall consider the example shown in

Figure 10 and reproduced in Figure 29. The two meshes are shown after aligning their

respective center of masses. We shall call A the registered data set (R) since we shall

consider it to be a fixed data set. We call B the unregistered data set (UR) since it will be

aligned to A. Either of these data sets could be the result of integrating previous scans.

The algorithm begins by choosing an appropriate resolution for each data set. This

consists of using a simplified UR data set as will be elaborated in §4.3. The initial relative

positions and orientations of the two data sets are assumed to be arbitrary. Therefore,

before using ICP to align these data sets, we need to apply an initial (coarse) registration

transform to one of the data sets. This is a user-controlled step. Figure 30 shows a

hypothetical configuration after this initial manual registration step.

The data sets are now ready for the application of ICP.

UR

R

R

Figure 29: The two data sets from
Figure 10 used in the example

registration problem.

UR

R

Figure 30: The two data sets after
applying a rotation of sixty degrees to

data set B.
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4.1.1 Find the nearest position on mesh A to each vertex of mesh B

The first step in ICP is to create pairs of corresponding points. Each such

correspondence consists of one original data

point from the UR data set and its

corresponding closest point on the surface of

the R data set. Note that the closest point can be

anywhere on the surface of R and does not

necessarily have to be a vertex. This is

illustrated in Figure 31. An efficient method for

finding the closest surface point to a given data

point will be elaborated in §4.3.

4.1.2 Discard poor correspondences

A poor correspondence is defined as a pair

for which the distance exceeds a fixed threshold.

This is one of the modifications that Turk and

Levoy [59] propose. In our example, we get rid of

three pairs of points, points 5, 6 and 7 as shown in

Figure 32. In this particular example, these poor

correspondences are in fact points that were

occluded in the scan comprising the R data set.

The distance threshold is chosen using a value

proportional to the spacing between the data

points.

UR

R

1

2 3
4

5
6 7

8

9

Figure 31: Example registration problem
after establishing point-to-surface

correspondence.

UR

R

1

2 3
4

5
6 7

8

9

distance
threshold

Figure 32: Example registration problem
after discarding poor correspondences.
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4.1.3 Eliminate pairs in which either points is on a mesh boundary

This is another modification suggested by Turk and Levoy [59]. In the case of our

simple example it is not necessarily an

improvement for points 1 and 3 because these

had correspondences which were approximately

correct. It also appears that it does not work well

for points 8 and 9. However, the match between

points 8 and 9 and their closest point can be seen

to be poor with respect to the final (correct)

registration.

Finding the boundary of a mesh is a simple

procedure that involves processing all edges and

counting the number of triangles to which each edge belongs. If an edge is used only

once, then it is a boundary edge.

4.1.4 Compute a best-fit rigid transformation

The best-fit criterion that we use is the

minimization of the least-squares distance

between pairs of points. We use Horn’s method,

as discussed in §2.3, to compute the rigid

transform that will best align the remaining

correspondences. In our example, this is not

difficult since there is only one point left. We

simply translate the UR data set so that vertex 2

coincides with its associated closest point on the

R data set.

UR

R

1

2 3
4

5
6 7

8

9

Figure 33: Example registration problem
after eliminating boundary

correspondences.

UR

R

1

2 3
4

5
6 7

8

9

Figure 34: Example registration problem
after applying a best-fit transformation.
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4.1.5 Iterate until convergence

The above four steps are repeated until a convergence criterion is met. In our

example, the process converges after one step because no new valid correspondences are

obtained.

4.1.6 Repeat ICP with a more detailed mesh

In this step, we further refine the registration transform by considering a more

detailed mesh representation. Since the

computed transform depends on the data,

increasing the level of detail will increase

the accuracy of the registration. In Figure

35 we show the situation after increasing

the level of detail of the UR data set.

When steps 1 to 3 are repeated, points 2,

3, and 4 will contribute to the registration

transform (all the other points will be

rejected by steps 2 and 3). These will be

aligned in the next computation of the best rigid transform, as shown in Figure 37. In the

next iteration, point 15 will also begin to participate. Eventually ICP will converge to the

1
2 3

UR

R

4
5
6 7

8
9

10
11

12
13

14
15

16
17

Figure 35: Example registration problem after
increasing the level of detail of the UR data set.

UR

R
Figure 36: Alignment achieved in

example registration problem after
ICP converged.

1
2

3

UR

R

4
5

6
7

8 9
10

11
12

13

14

15
16 17

Figure 37: Example registration
problem after the second ICP

iteration.
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alignment shown in Figure 36. As mentioned in §2.2, vertices from the overlapping

portions of the data sets do not always coincide together.

4.2 Coarse Alignment

Figure 38 illustrates an initial alignment where

the ICP algorithm as described thus far converges to

an erroneous solution. Besl and McKay [9] proved

the ICP algorithm converges monotonically to a local

minimum, but not necessarily the right one. It is

difficult to precisely characterize the partitioning of

the registration state space into local minimum wells

because this partitioning is a function of the particular

data sets. Besl and McKay propose using a set of

initial rotations which uniformly samples the

configuration space of initial orientations. In our

system, we prefer to involve the user in aligning the two data sets using an interactive

interface. This typically only requires several seconds.

4.3 Efficiently Computing  the Closest Surface Point

ICP is efficient in practice because it requires only one execution of the “closest

point” routine per point per iteration, and requires few iterations to converge.  Any

optimization method that does not use explicit vector gradient estimates, such as

simulated annealing, can require thousands of iterations [9]. Optimization methods that

do use explicit gradient computations, such as the conjugate gradient method, will require

at least seven closest point evaluations for each gradient evaluation computed using finite

differences. Such a method would be required to converge in less than ten iterations to be

competitive with ICP. They usually require well over one hundred iterations [9].

Figure 38: An example of ICP
converging to wrong local

minimum.
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Finding the nearest position on a mesh to each vertex of the other mesh is where the

ICP algorithm spends most of its time. This is also the part of the algorithm which has at

least O(n) complexity, where n is the number of points being considered in the

unregistered data set. It therefore needs to be made as efficient as possible. It should

preferably be a constant-time operation, independent of the number of points in the

registered data sets. Turk and Levoy divided this search in two steps. First, the closest

mesh vertex is found. Second, all edges and triangles connected to the vertex are searched

for a point that is possibly closer.

Turk and Levoy’s method of finding the closest vertex imposes a spatially uniform

3D grid where each cell contains a list of all data points found within. When searching

for the closest vertex to a point p, the cell containing p as well as its neighbors are

searched for the closest vertex. Because the length of segments comprising the mesh

triangles created during the mesh building step is restricted, it can be guaranteed that no

triangles that lie within a certain distance threshold will be missed if the size of the grid

cells is appropriately chosen.

We choose to implement a search algorithm using a more adaptive data structure.

Turk and Levoy’s approach may be valid when registering individual range images, but

after integrating some range images together and registering data to these new data sets,

their search criterion may no longer hold. We implement a k-d tree search algorithm [26].

The k-d tree is a strictly binary tree in which each node represents a group of data points

and a partitioning of those points. The root of the tree represents the entire data set. The

leaf nodes represent mutually exclusive small subsets of the points, which collectively

form a partition of the data set. Any one of the (x, y, z) coordinates can serve as a

discriminator, or key, to partition the data for a node’s successors. It is shown in [26] that

the best discriminator is the one with the largest spread of values. The median value in

the selected discriminator is chosen for partitioning the data. The search for the closest

data point to a given point p happens as follows. Starting at the root, the algorithm

proceeds down the tree to find the leaf node that has geometric boundaries closest to p.

This leaf node does not necessarily contain p, as p can be located anywhere in ℜ 3 while

the k-d tree spans a finite region of ℜ 3. Since a leaf node may contain more than one
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point, all points in the leaf node are examined to find the point c that is closest to p. Let d

be the distance separating p from c. The algorithm tests whether the sphere of radius d

fits within the cell of the current leaf node. If so, no point from any of the surrounding

tree nodes can be closer than c, and the algorithm returns c. Otherwise, the algorithm

reascends the k-d tree and searches the neighboring branches whose geometric

boundaries overlap the sphere with radius d. Eventually the sphere of radius d will either

fit inside the geometric boundaries of a leaf node, or it will fit inside the geometric

boundaries of a non-leaf node for which both successor nodes were already searched.

The time complexity of searching for the closest point in a k-d tree is proportional to

log N [26], where N is the number of points in the search tree. In the ICP process, we

need to search the tree containing the vertices of the registered (R) data set for each

vertex of the unregistered (UR) data set. If R contains N vertices and UR contains M

vertices, each ICP step requires M log N time to complete.

As discussed in §3.3, we use a hierarchy of meshes to speed up the ICP registration.

We simplify the UR since it contributes the most to the time spent searching. We choose

not to exploit the 2D grid-like structure of the range images for the same reasons that we

choose not to use a spatial subdivision scheme. Once two range images are integrated

together, this property is lost.

In order to compare the k-d tree to the uniform grid approach, we performed several

experiments using a range image available from Stanford7. To create our test data we

found the bounding box of the range data and uniformly sampled that box in all three

dimensions with 132 561 points (51 points in each of the three dimensions). We

performed a closest-point query from each of these points. The hash table search

employed by Turk and Levoy [59] took 45 seconds to complete while our k-d tree search

took 55 seconds. However, the hash table could not find 8985 points. This occurs when

the cells neighboring p do not contain any data.

                                                          
7 The image that was used for running our test can be acquired from
ftp:// www-graphics.stanford.edu/pub/zippack/data/phone/phone.1.tar.Z
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The k-d tree could possibly be updated to search for the nearest point on a triangle

instead of simply searching the space for a closest vertex, by relaxing the requirement

that each leaf node must contain mutually exclusive data. We did not pursue this

possibility, however.
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4.4 Registration Results

The previously described registration algorithm is used to register the multiple

scans taken of our subject’s arm. Figure 39 shows two range images of the same arm

scanned from two different viewpoints. In Figure 40 we see the meshes after registration.

The mesh that is on the right in Figure 39 is drawn as a solid mesh. In this particular case

there was no need for the user to supply an initial registration transform; ICP could

simply be applied from the initial configuration shown in Figure 39. Because the

viewpoint did not change dramatically from one scan to another we found that there was

often no need to supply an initial registration, depending on the data set. The mesh on the

right has 4961 vertices, and the mesh on the left has 5707 vertices. The registration time

was 45 seconds8. There were 2775 pairs of corresponding points established, because the

                                                          
8 The registration algorithm was executed on an SGI Indigo2 (R4400 processor), with 192 MB of RAM.

Figure 39: Two range images of an arm, scanned from different viewpoints.
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range images contain complementary data. The registration error, computed as the root-

mean square distance between the point pairs, was 0.4% of model size. The registration

error may be due to movement in the subject’s arm, as well as acquisition errors. This is

corrected for in the subsequent integration step, as will be seen in chapter 5.

To process a group comprising more than two range images, we align and integrate

two images together, then treat this integrated image as one range image. Another image

is aligned and integrated and so on until all the images in the group are integrated. Such

an example is shown when we discuss our animation results in chapter 6.

Figure 40: Two meshes of an arm aligned using ICP. One mesh is drawn as a surface.
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5. RANGE IMAGE INTEGRATION

The registration process itself does not produce a usable surface model. Rather, it

produces a patchwork of overlapping and intersecting surfaces. The integration process is

responsible for cleaning up this representation and producing a single integrated surface

model. We use a modified version of Turk and Levoy’s zippering algorithm [59] to

perform this integration. The integration process involves three steps: correcting for any

remaining registration error, eliminating redundant surfaces, and bridging the gap

between mesh boundaries.

5.1 Position averaging

A variety of sources contribute to local surface alignment errors which remain even

Figure 41: A detail view of the bicep showing a remaining gap between surfaces after ICP has
converged.
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after the registration algorithm has converged. These include data acquisition errors, as

described in §3.3, and subject sway during the acquisition. These errors can cause some

warping between data taken from different viewpoints. Because of this, even when the

registration algorithm has converged, there is likely to be a remaining gap between

overlapping portions of range images, as illustrated in see Figure 41. To avoid seeing a

“scar” where two range images meet, we need to apply local corrections to the surfaces to

obtain better alignment.

To avoid unnecessary blurring of surface detail, we move vertices along the local

approximation of their normal. The warping algorithm can be described as follows:

In practice we choose k to be 0.5. If k is too small it takes unnecessarily long for the

warping procedure to converge, and if it is too large, the procedure may fail to converge.

Note that each vertex is treated independently. It would also be interesting to

experiment with a deformable model approach [58]. In this approach, vertices affect

neighboring vertices. This would help avoid the situation where a local surface aberration

can be created by one vertex being too far to be considered for displacement by the other

surface, while all its neighbors do get displaced.

Soucy and Laurendeau [52] perform this warping step before merging the meshes

together. Turk and Levoy perform warping after merging the meshes together using the

original vertex positions. We implemented and tested both methods and obtained better

results when performing the warping before the merging. It makes finding the overlap

between two meshes and filling the gap between two meshes more reliable. In fact, the

Repeat until convergence:
for each mesh

for each vertex vi
find its closest point pi on the other surface
if pi is further than a certain distance, proceed

to the next vi;

project the vector ii pv  on the local normal
approximation of vi;

translate vi  by a fraction k of the projection
found above;
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warping could be effected both before and after merging, but in our experiments we

found that repeating it after the integration made no significant difference.

5.2 Removal of Redundant Surface Areas

Following the warping, the redundant surfaces need to be removed. Surface areas are

considered redundant if they overlap, as shown in

Figure 1. Although overlap is well defined in 2D,

it is ill-defined in 3D. We therefore use the

following scheme.

We can find out if parts of mesh B are

redundant with respect to mesh A by examining

each triangle in mesh B to see if it is redundant. A

triangle T in mesh B can be considered completely

redundant with respect to mesh A if the closest

surface point in mesh A to each of T’s vertices lies

strictly in the interior of mesh A. The dark shaded

triangles in Figure 42 are completely redundant. A

triangle T in mesh B can be considered partially redundant with respect to mesh A if T

has at least one vertex for which the closest point in mesh A lies strictly in the interior of

mesh A and at least one vertex for which the closest point in mesh A lies on the boundary

of mesh A. The lightly shaded areas in Figure 42 represent partially redundant areas of

mesh B’s triangles. A distance threshold d is also used to compare to the distance

separating a triangle vertex to its closest point in the other surface. This is to avoid

classifying a triangle as redundant if it is too far from the other surface. d is chosen as a

function of the maximum triangle edge length.

Mesh A Mesh B

Figure 42: Example of overlapping
surfaces in 2D.
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The above scheme would classify triangle A in

Figure 43 as being (partially) redundant with respect

to B, but triangle B is not redundant with respect to

A. This is not a concern in our approach since we

alternate between finding the redundant triangles on

one mesh and the other, as will be described shortly.

Once the redundancies have been identified,

they need to be acted upon. At least two strategies

are possible. Turk and Levoy approach the merging

problem by only getting rid of completely overlapping triangles, and then clipping

together all remaining partly overlapping triangles. Our approach eliminates all

overlapping triangles, whether they are partly or completely overlapping, and then

merges the gap between adjacent boundaries. In our experience, this makes the merging

process simpler to implement, as it requires fewer heuristics.

A

B

Figure 43: Partially redundant
triangles. Triangle A would be detected

properly, but not triangle B.



57

5.3 Merging meshes

To illustrate the merging process, we employ the 2D example shown in Figure 44.

Figure 44 (a) shows the two overlapping meshes of Figure 42 after the removal of the

completely overlapping triangles. Figure 44 (b, d) shows the results of the method of

Turk and Levoy. All the partially-redundant triangles of mesh A are truncated, and split to

Turk & Levoy’s
approach

Our approach

Mesh A Mesh B

(b)

(d)

(c)

(e)

(a)

Figure 44: Comparison of two different approaches to merging meshes.
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remove all T-junctions. The next step removes the small triangles generated by the above

procedure.

Our approach to integration can be described as follows. Figure 44 (e) shows the

resulting mesh. As discussed in §5.2, we begin by removing redundant triangles from

either mesh. In the example of Figure 44, we remove them from mesh B. This is followed

by a constrained triangulation [8], which connects the meshes by stepping along the mesh

boundaries. Our approach, compared to that of Turk and Levoy, tends to produce a

smaller number of triangles and fewer small triangles, and thus avoids any small-triangle-

elimination step. This reduces the number of heuristics employed in the merging step.
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5.4 Integration Results

Figure 45 shows the meshes from Figure 40 after they have been merged. For this

data set, the warping step took 7 seconds to execute, the redundancy elimination step took

8 seconds, and the merging step took 5 seconds9. The merged data set has 8238 vertices

and 15 920 triangles.

                                                          
9 Timings are from execution on an SGI Indigo2 (R4400 processor), with 192 MB of RAM.

Figure 45: A human arm model created from merging two meshes.
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Figure 46 shows a particular area of the model before merging. Figure 47 shows the

resulting integrated mesh. Merging the meshes produces a visual boundary where the two

meshes meet, due to the different densities and orientations of the scan data. The

boundary is much less visible when rendering the mesh as a solid, as seen in Figure 48.

Figure 46: A detailed view of the mesh
before merging.

Figure 47: A Detailed view of the mesh
after merging.

Figure 48: The stitching boundary that remains visible after merging.
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After merging, the result can be used as a single data set or surface model to which

other range images can be registered and integrated.

In this chapter we have presented a method for integrating aligned data sets

together. This is necessary to produce a single surface representation of a model. In the

context of our animation system, the registration and integration steps are repeated until

each keyframe model is completed. These models are then ready to be augmented with an

underlying skeleton, as will be presented in the next chapter.
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6. CONSTRUCTING PARAMETERIZED DEFORMATIONS

In this chapter we describe how to combine and utilize the information that we have

from each keyframe. We begin by describing the choice of parameters on which a

deformation model depends. This is particularly important because the number of

parameters ultimately dictates the minimum number of keyframes required. Once the

parameterization has been chosen, we discuss the interpolation method employed

between keyframes. The skeleton that is used as part of the interpolation process is

described in detail. We conclude by showing the results of our implementation, including

frames from the animation of an arm.

6.1 Parameter Selection

The shape of the arm is dependent primarily on the position of the shoulder, elbow,

and wrist, as well as the activation intensity (relaxed or tensed) of the muscle groups

associated with the arm. A brute force approach to modeling arm deformations would

capture the shape of the arm for every possible setting of this large set of parameters. A

simpler model can be constructed, however, if we can assume we can localize the effect

of any of these parameters. For example, flexion of the wrist will not greatly affect the

shape of the upper arm.



63

In order to better understand the relationship between the shape of the arm and

these parameters, we shall focus on the influence of the biceps. Figure 49 shows the

anatomy of the biceps muscle (biceps brachii). We can see that it crosses both the elbow

joint and the shoulder joint; it will therefore exert some control on both of these joints. Its

main functions are the flexion of the forearm, as shown in Figure 50, and supination of

the hand, as shown in Figure 51. It is also a weak flexor of the upper arm at the shoulder

joint [53].

Radius Tendon

Biceps brachii

Tendons

Humerus

Figure 49: Anatomy of the biceps brachii.
Figure reproduced from p. 67 of [42]

Upper
arm flexion

Forearm
flexion

Figure 50: Upper arm and forearm
flexion.

Figure reproduced from p. 21 of [53]

Figure 51: Supination of the
hand.

Figure reproduced from p. 23 of [53]
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Figure 52 shows the

flexion of the elbow joint at the

two extremes of the range of

motion. In both poses the biceps

muscle is relaxed. Using the

notation introduced in §1.2, we

can define the deformation of the skin induced by elbow flexion as:

where Pupperarm represents the degree of elbow flexion.

The intensity of the biceps muscle

contraction also influences the skin

deformation. This is related to how much

force the biceps muscle is exercising. As seen

in Figure 53, there is a significant difference

of shape as a function of biceps contraction

when the forearm is flexed. The skin

deformation function now depends on two

parameters:

As discussed previously, however, the biceps

muscle also supinates the hand and flexes the upper arm. Adding these parameters to our

skin deformation function gives us the more complex function:

These are most of the parameters that would be required to properly model the

deformation of the skin induced by the biceps.

Must all of these parameters be used in the model? This depends on the required

accuracy of the model and the range of motion that needs to be modeled. For example, if

Figure 52: Flexion of the elbow, with biceps relaxed.

elbow
flexion

biceps
activation
intensity

2D 
parameter
space

Figure 53: A comparison of elbow flexion with
relaxed and tensed biceps.

)( upperarmK PS β=

),( bicepsupperarmK FPS β=

),,,( bicepsforearmupperarmshoulderK FPPPS β=
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the character animation involves no shoulder flexion, then the dependence on this

parameter can be eliminated. Also, some dependencies are less important than others.

Shoulder flexion, for example, induces less skin deformation than forearm flexion.

Dependency on this parameter can therefore be eliminated without much impact on the

quality of the deformation model. On the other hand, if we wish to create a realistic

character that can strike any pose, all parameters would have to be used.

Two additional questions need answering before we can make use of the above

model. How many samples (keyframes) are needed for each of the parameters P and F?

And, what morphing function β should be used to interpolate between the keyframes?

The answers to these two questions are somewhat interdependent and depend in part on

finding an interpolant which is well suited to the data in question. The simplest choice

involves using linear interpolation with many keyframes. Our approach uses a skeleton to

induce a local coordinate frame for mesh points as well as a morphing (interpolation)

method with is applied in this local coordinate frame.

6.2 The Deformation Model

In this section we review the 3D morphing problem. We then describe our skin

model, and discuss our interpolant.

6.2.1 3D Morphing

The traditional 3D morphing problem can be stated as follows. Given two objects S

and T, henceforth called the source and target objects respectively, we must produce a

sequence of intermediate objects, the morphs, meeting the following two conditions:

1) Realism: the morphs should be realistic objects, providing that the source and target

are themselves realistic. Essential features of the source and target should be retained.

2) Smoothness: the morphs must depict a smooth transition from the source to the target.
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These conditions are met by warping the source object into the target object. This

warping process is feature-based; corresponding features in the source and target objects

are identified and an interpolation scheme creates the morphs. The major challenge in

designing a 3D-morphing system is automating the feature recognition and matching

process [40].

In our case, we can make use of the underlying skeleton to simplify the problem.

The skeleton helps avoid the typical

shortening of rigid links that can

occur when they are rotated, as

shown in Figure 54. It also

alleviates the feature matching

problem.

6.2.2 Overview of the Surface Model

Our approach to create the character animation involves four steps.

1) Build a skeleton for the arm. The skeleton will be used to guide the

interpolation between poses. Then, position the skeleton appropriately for

each pose to best fit the skeleton. This is currently a manual, interactive

process.

2) Designate a particular pose as being a “master pose” for the surface

triangulation of the model. All the other poses will be eventually converted

to this triangulation.

3) For each of the mesh vertices in the master pose, assign ownership to the

closest skeleton bone. Redefine the coordinates of each vertex in terms of

the local coordinate frame of the bone.

Figure 54: Sequence showing the shortening of the arm due
to the linear interpolation used in the vertex path

calculation (left); the sequence on the right shows the
correct interpolation.

Figure reproduced from [51]
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4) Convert the non-master poses to the same representation as the master

pose, as follows. Using the skeleton, bring the master pose surface in

alignment with the target pose. Then, determine the closest surface point

on the target pose for each vertex from the master mesh. This point is then

used as the corresponding position of the given master vertex for the given

target pose, and is once again stored in the local coordinate frame of one

associated bone.

When the skeleton’s posture is changed, the surface motion follows the skeleton as

well as locally morphs between the two closest keyframes to simulate muscle

deformation, as shown in Figure 55.

6.2.3 The Skeleton

Boundary representations, such as created by the integration step, have no distinct

links and joints. If such surfaces are to be animated, an articulated skeleton is needed to

define an underlying set of links and joints. This skeleton is not meant to be anatomically

correct, but rather provide a frame of reference with which parts of the boundary

Figure 55: Using a skeleton and morphing to animate a human arm.
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representation can be associated. Providing a skeleton for a surface model consists of two

steps. First, designing the skeleton. Second, positioning the skeleton with the skin model.

The second step, alignment of the skeleton, is currently performed manually using a

graphical interface. Figure 56 shows the skeleton used for our implementation. It has

manipulation handles for the shoulder, elbow and wrist. The shoulder handle has six

degrees of freedom which translate and rotate the skeleton arm as a whole. The elbow

controller has two (translational) degrees of freedom. It moves in the plane defined by the

shoulder, the elbow and the wrist. Translation of the elbow results in bones A and B

changing length. The wrist handle can also be translated in the same plane as the elbow

handle. Moving it causes bones A and B to rotate while their length remains constant.

While this particular interface is just one of many possible designs, we have found

that it works well in practice and allows the rapid creation of an appropriate skeleton that

underlies the surface model. One skeleton instance is created for each of the surface

models in different postures. All skeleton instances are linked together so that the bone A

length and the bone B length remain the same between the different skeletons. Their

respective elbow angles remain constant when the bone lengths are adjusted. This is to

allow alignment of the skeleton in different postures.

Steps one and two could be combined if we used an algorithm as proposed in [57]

to generate the skeletons automatically.

Figure 56: IK skeleton of an arm.



69

Figure 57 shows the surface models of an arm in two different poses, with their

underlying skeletons. We used two keyframes in our example, but could have used more

to provide a more realistic model.

6.2.4 Choosing a Master Pose

We choose to have all the meshes converted to one triangulation. This means that

the morphs created will never be exactly the same to any pose besides the master pose.

However, because we assume dense range data was used to construct each keyframe, the

morphs will be a good approximation to each keyframes.

6.2.5 Assigning mesh vertices to a bone

The binding of the surface to the skeleton, as mentioned in step 3, creates a set of

rigid links from the mesh vertices similar to the robot of Figure 1. Discontinuities in the

Figure 57: Two poses for a human arm, shown together with their underlying skeleton.
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surface will appear when bones are rotated.

A more sophisticated binding scheme can be used to avoid this discontinuity

problem. Vertices can be associated with their two closest bones. The position of a vertex

in the global reference frame would be a weighted average of the position resulting from

the frames local to each bone. The weighting function could be a function of the distance

from each bone, with a shorter distance resulting in a stronger influence of a bone on a

vertex position.

Alternatively, a spring network can be used to connect the surface vertices to the

underlying bones [38] and between the surface vertices themselves [57]. This approach

has the vertices following the bones as above and then using the spring network to fine-

tune the vertex positions. This creates a flexible skin-like surface, and has been widely

used in applications such as plastic surgery simulation [38].

Our approach is more concerned with the surface deformation that occurs due to

muscle contraction than avoiding discontinuities; we therefore implement the ‘rigid link’

approach as mentioned in step 3. Furthermore, the availability of keyframe data means

that the role of vertex ownership is less important than in previous work in this area. Our

technique could nevertheless be augmented with any of the techniques mentioned above

in order to fine-tune the vertex positions after the (larger scale) deformations have been

applied.

6.2.6 Establishing Correspondence Between Surface Vertices

We do not attempt to establish direct correspondences between the vertices of the

integrated meshes which have been obtained for each posture. We have found that simply

using the closest surface points to establish correspondence between two keyframes

produces very good morphs. We assume that little information is lost in this change of

representation because of the dense range data used to create our keyframes, and because

the skin deformations induced by muscle contractions are relatively small and vary

smoothly.
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6.2.7 Interpolation

To animate the skin deformations as a function of the selected parameters, each

vertex is translated to create a smooth transition of the skin between keyframes. Because

the closest surface point is used to establish correspondence between the source and

target surface, each vertex follows a linear path in space from the source position to the

target position.

A key consideration in choosing a suitable interpolant is the number of keyframes

which participate in producing an interpolated shape. In the case of a first-order

interpolant, we need at least 2n keyframes to interpolate in the n-dimensional space of

possible shapes determined by n parameters. A muscle group like the biceps requires up

to four parameters. Another important consideration is the result that the interpolant

produces.

A linear interpolation between 2 keyframes for one parameter was implemented as

a proof of concept for our system. Higher order interpolants are possible, but are not

implemented in our work. The results produced by this interpolant are visually satisfying.
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6.3 Animation Results

Figure 59 shows the animation generated from the

keyframes presented in Figure 57. Generating the

interpolating model took 6 seconds10. The resulting arm

model is interactive and can be made to adopt any

posture between the two keyframes. The correct

correspondence between surface points is established

everywhere but near the elbow joint. This is because the

vertices near the elbow joint in the keyframe

representing the bent arm were invisible to the range

scanner. A more sophisticated skin model is required to

                                                          
10 Timings are from execution on an SGI Indigo2 (R4400 processor), with 192 MB of RAM.

view A view B

Figure 58: The two viewpoints of
the arm animation shown in

Figure 59 and Figure 60.

Figure 59: Animation of a human arm (view A).
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compensate for this deficiency in the data. As well, a better surface model could

eliminate the discontinuity that appears in the surface as the elbow flexion occurs. Figure

60 shows the same arm animation as seen from the other side.

Figure 60: Animation of a human arm (view B).
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7. CONCLUSION

The goal of this thesis was to investigate a method for creating accurate animations

of the human form using range data. The method should be as intuitive to use as

techniques currently available in commercial packages, yet produce deformations of

higher quality. The system that we proposed and implemented satisfies these goals by

using experimentally obtained deformation data to create realistic models with realistic

deformations for a human arm.

The main contribution of this thesis has been a methodology for building a realistic

animated model of the human arm using range data. The secondary contributions of this

thesis are the use of k-d trees for an efficient closest-point search during the ICP step of

range image registrations, and the novel approach to zippering meshes together. A proof-

of-concept of the complete system was also implemented.

7.1 Future work

An obvious direction to pursue for this work involves modeling an arm with more

parameters. It will be very interesting to model the potentially complex interaction of

multiple joints and multiple muscle groups. For example, the biceps muscle controls the

supination of the wrist. How many different positions (wrist rotation and elbow flexion)

are required to be able to accurately interpolate the correct shape of the arm is an open

question. There are also more complex joints with even more parameters, such as the

shoulder joint. The skin will also need to be implemented as a continuous surface,

perhaps employing technique such as proposed in [60]. Another obvious direction would

be to model a complete human being.

Another interesting question is at what point anatomically-based models might

become a better representation than simply working directly with the surface shape alone.

The trick in this type of scheme would be that of solving an estimation problem, namely

that of computing estimates of the many anatomical parameters based upon the captured

shapes.
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The system could be extended to automatically model humans with different

proportions. Different body types would need to be scanned to build a library of models

that could be used to create any type of body. This presents several new challenges: How

many different bodies would be needed in that library to model predominant body types?

How would the parameters that let one select a particular body type be presented to the

user without requiring the user to have a degree in anatomy? Perhaps an interface with

increasingly detailed parameters could be used. At the simplest level, the user only

decides the very basic traits, such as the sex of the character. In the next level, the user

decides the character’s height, percentage body fat, overall muscular development.  At

the most detailed level, specific parameters of individual muscle groups are under direct

user control.

Although our animation system is currently keyframe-based, it could easily be

interfaced through a physics-based animation system. In the implementation presented

the degree of skin deformation is only dependent on the joint angle, but it could also be

made to depend on the force exerted by the muscles. This information would be available

from the physics-based animation system. Our system could also provide information for

the physical simulation, such as placing a limit on the amount of force an individual with

certain muscular development can generate. More research is needed as to how much

data is required to ensure that deformations arising from muscle contraction intensity are

accurately modeled.

The above suggestions imply that more data must be acquired. The amount of data

required can potentially become very large. As a result, the data acquisition process needs

to be improved. Even though performing one scan takes on the order of 2 seconds,

adjusting the scanner for different poses is time consuming and it is difficult for the

model to remain immobile for extended periods of time. It is preferable to avoid using

plaster models in the interest of keeping the creation of models a quick and simple

process, and because of the potential loss of detail that would result.

Faster acquisition systems, such as the Cyberware WB4 stripe scanner can take 22

seconds for a whole body scan, and even this is too long for a human to stay immobile.
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The Cyberware scanner is in use in less rigorous applications such as apparel design [43],

and model swaying is still a problem. Possible solutions are to help the model remain

immobile by building some supports, to let him sway slightly and correct the data with

post processing, or to rapidly detect whether the model moved [18] and to repeat the

scanning until the subject is immobile. If supports are constructed, they should be

covered with material that absorbs the projected laser light. They would still cast a

shadow and should therefore be made as small as possible, but at least they would not

have to be manually eliminated from the data. Shape TapeTM [19] could be used to help

correct for sway as a data post-processing step.

Using a faster data acquisition system, such as stereo cameras, could eliminate

problems associated with subject movement. The subject would only have to exercise his

joints and the system could capture a large number of keyframes. Using multiple stereo

vision systems to capture data simultaneously from different viewpoints, along with

Shape TapeTM [19] to automatically generate the underlying skeleton could greatly speed

the entire process.

More detail could perhaps be preserved in the morphs if vertices were added or

subtracted from the source surface to create the same surface as the target surface. When

morphing from the source keyframe to the target keyframe, we translate the source

surface’s vertices. This means that the source will never look exactly like the target since

it won’t have the same vertices in the same location. Intensity data (or even color data, if

available) could be used to establish better correspondence in the morphing step.

The rendering of dynamic surfaces creates potential problems because of the large

number of model points which require updating. This results in poor cache performance,

and there may therefore be interesting methods of avoiding this potential rendering

penalty.
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7.2 Summarizing Remarks

Current skin deformation models are typically over-simplified, sacrificing results

for ease of use, or require too much anatomical knowledge, sacrificing ease of use for

results. We proposed an approach that potentially offers the best of both worlds. The

system in its current implementation still requires significant work to make it practical for

use, but an implementation has demonstrated the viability of this approach.
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