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Fig. 1. This paper considers conducting closing and opening operations without composing dilations and erosions explicitly. Conducting a mesh-based offset

for dilation changes the surface entirely. Eroding this with another (negative) offset to complete the closing operation retains much of the original geometry,

but with a new discretization everywhere. Instead, our surface-only closing flow perfectly preserves the mesh in regions that the closing does not change (see

blowups). The original quads can even be re-identified in those areas. 3D model by The Blender Foundation under CC-BY 3.0.

We propose a new type of curvature flow for curves in 2D and surfaces

in 3D. The flow is inspired by the mathematical morphology opening and

closing operations. These operations are classically defined by composition of

dilation and erosion operations. In practice, existing methods implemented

this way will result in re-discretizing the entire shape, even if some parts

of the surface do not change. Instead, our surface-only curvature-based

flow moves the surface selectively in areas that should be repositioned.

In our triangle mesh discretization, vertices in regions unaffected by the

opening or closingwill remain exactly in place and do not affect ourmethod’s

complexity, which is output-sensitive.
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1 INTRODUCTION

Mathematical morphology describes how a shape grows or shrinks

according to a given operation and structuring element (or kernel).
For example, the dilation operation is defined by placing the structur-

ing element at each point in the input shape and conducting a union

(also known as a Minkowski sum). As a result, the shape grows

outward. Erosion is defined similarly on the shape’s complement,

and the shape shrinks inward.

These basic operations give way to more complex ones such as

the opening and closing operations. For example, the opening of a

solid shape returns the union of all points inside the shape that can

be covered by placing the given structuring element somewhere

strictly inside the shape (see Fig. 2). These powerful operations enjoy

use in applications such as tool reachability in computational fabri-

cation, cage design for computer animation, or shape abstraction in

geometric modeling.

input

structuring 
element

dilation erosion opening closing

Fig. 2. Mathematical morphology grows or shrinks an input shape accord-

ing to an operation (e.g., “opening”) and a structuring element.
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input our closingconversion to 
(coarse) grid

aliased closing

Fig. 3. Volumetric morphology operations introduce coordinate system bias

and aliasing (exaggerated here). Our flows operate directly on the input

discretization boundary.

Opening and closing operations are traditionally defined and

implemented by composing erosions and dilations. For example,

the opening is equivalent to erosion followed by dilation. While

erosions and dilations are naturally defined for volumetric shape

representations (e.g., voxel lattices or distance fields), if the input

shape arrives as a surface representation (e.g., triangle mesh) con-

version to a volumetric representation can result in a loss of time,

accuracy, and flexibility.

In contrast, we define opening and closing operations with ball-

shaped structuring elements directly as differential flows of the
input shape’s surface. We avoid composition of erosion and dilation

operations, which would each change the entire surface of a shape.

Instead, we observe that — in general — opening and closing opera-

tions will leave some parts of the shape in place. We identify these

regions based on curvature during an evolving surface flow.

This insight connects the theories of mean-curvature flow of

surfaces and mathematical morphology of volumetric solids. Our

surface-based definitions of opening and closing enable our pro-

posed discretization for piecewise-linear curves in 2D and triangle-

meshes in 3D. We introduce a semi-implicit time integration method

based on a modified Dirichlet energy with an adaptive remeshing

step. In contrast to existing smooth flows, to achieve closing and

opening behaviors we introduce a curvature-based obstacle, which
prevents the flow from continuing beyond the curvature of the given

structuring element. Unlike approaches that compose erosion and

dilation, our method is guaranteed to only move vertices or change

connectivity near regions of the surface that should actually change

during the desired opening or closing operation. Unlike voxel- or

grid-based operations, our method is coordinate-system indepen-

dent and consequently does not suffer from grid aliasing artifacts

(see Fig. 3). Considering asymptotic complexity compared to a tra-

ditional voxel-grid approach, our algorithm reduces the problem

in dimension. Further, moving only the vertices that should move

makes our method’s complexity output-sensitive both in theory and

in our implementation. Our mesh implementation relies on standard

subroutines from the geometry processing toolbox.

The partial differential equation defining our flow is defined by

local surface information, while the standard morphological opera-

tions are defined by local spatial information. This disparity leads

to interesting differences that can emerge in areas where surface-

geodesic distance differs from Euclidean distance. We analyze this

situation in detail and explore some applications in which our defi-

nition is preferrable to the traditional one. Our flow definition also

converged closing flow
(modified parts highlighted)

input surface mesh

structuring
element

Fig. 4. Our method, when ran on a fine mesh of a copper statue, can be

used to simulate the accumulation of blue rust on concave regions (moved

by our method and highlighted in blue). 3D model released by Jan Nikolai

Nelles and Nora Al-Badri under CC BY-NC-SA 4.0.

enables unique generalizations and even new operations previously

unconsidered in mathematical morphology.

To demonstrate the effectiveness of our method we show its

success on a variety of examples.We compare to standard volumetric

morphology methods and existing curvature flows. Our closing

flow guarantees that the output surface contains the input shape,

suggesting its use for designing conservative hulls or cages. Due to

our variational formulation, we can add additional problem specific

objective functions and constraints, as well as spatially varying

structuring element sizes. Finally, we show possible applications to

various domains including geometric design for fabrication, molding,

smoothing and surface weathering (see Fig. 4).

2 BACKGROUND & RELATED WORK

Our work bridges two research topics with vast literatures: math-

ematical morphology and surface flows. We focus this section on

establishing sufficient background for each and providing context

with previous works related to ours in methodology or applications.

2.1 Mathematical Morphology

Mathematical morphology applies the concepts of “growth” and

“shrinkage” to analyze and filter a geometric shape, for example a

solid region A ⊂ R2 of a 2D image [Serra 1969]. The fundamental

building blocks are dilation (growth) and erosion (shrinkage) by
a solid structuring element σ ⊂ R2. They are defined in terms

Minkowski addition (⊕) and subtraction (⊖):

dilation(A,σ ) = (A ⊕ σ ) = {a + b | a ∈ A, b ∈ σ }, (1)

erosion(A,σ ) = (A ⊖ σ ) = (Ac ⊕ σ )c , (2)

ACM Trans. Graph., Vol. 39, No. 6, Article 198. Publication date: December 2020.
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input [Clarenz 2000] [Hildebrandt 2004] volumetric closing ours
k    = 10feat k    = 100feat k    = 10feat k    = 100feat

Fig. 5. Despite our method’s formulation resembling the PDEs used in anisotropic surface diffusion, these works are not designed to and do not succeed at

replicating the closing operation regardless of parameter choice. 3D model by Walnut Grove Secondary under CC BY 4.0.

where Ac indicates the set complement of A. The opening and clos-
ing operations are then defined and typically (if not always) imple-

mented in terms of dilation and erosion:

opening(A,σ ) = dilation(erosion(A,σ ),σ ) = ((A ⊖ σ ) ⊕ σ ) (3)

closing(A,σ ) = erosion(dilation(A,σ ),σ ) = ((A ⊕ σ ) ⊖ σ ) (4)

The applications of these operations include not just low-level tasks

such as denoising, but also high-level tasks such as segmentation.

Mathematical morphology theory is rich with generality. Its clas-

sic definition for binary occupancy images has been extended to

grayscale images (e.g., intensity or density images) [Sternberg 1986].

In this paper, we do not consider grayscale morphology. The defi-

nitions above and larger theory are not limited to discrete images,

two-dimensional shapes, or even Euclidean spaces. In this paper,

we restrict our consideration to 2D and 3D solid shapes defined by

piecewise-linear boundary curves and surfaces, respectively. While

morphology theory encompasses arbitrarily shaped structuring ele-

ments σ (e.g., squares, diamonds, pyramids), we only consider balls

(σr is the solid sphere with radius r ).
In solid geometry processing, mathematical morphology opera-

tions have seen great success. Nooruddin and Turk [2003] voxelize

an input triangle mesh, conduct a closing operation, convert back to

a mesh, and apply simplification for mesh repair. Indeed, the closing

operation is a common cleanup and analysis tool, more recently em-

ployed for preprocessing 3D printing shapes [Telea and Jalba 2011].

In fabrication and manufacturing, openings and closings have been

used to design safe tool paths (e.g., [Hornus and Lefebvre 2017]).

Erosion and dilation are straightfoward to implement if both the

input shape A and the structuring element σ are discretized as bi-

nary occupancy on a voxel grid. Utilizing sparse data structures

[Calderon and Boubekeur 2017; Museth 2013] or layered depth im-

ages [Chen et al. 2018; Wang and Manocha 2013], voxel morphology

operations can be made lightning fast. Jones and Satherley [2001]

improved the accuracy of composite morphology operations like

openings and closings by computing sub-voxel level sets of offset

distances. Voxel-based approaches suffer from the standard limita-

tion of introducing aliasing artifacts if the input shape is not already

voxelized (see Fig. 3). Calderon and Boubekeur [2014] avoid vox-

elization by conducting dilation and erosion (and by composition

openings and closings) on input point clouds. If the input is not al-

ready a point cloud, this method would introduce sampling bias and

approximation error. Our goal is to avoid lossy data conversions.

Erosion and dilation can be implemented directly on boundary

representations of solid shapes (e.g., triangle meshes) as Minkowski

sums or offset surfaces [Barki et al. 2009; Campen and Kobbelt 2010;

input [Eigensatz et al. 2008] our outputinput

3m19s

Fig. 6. Previous attempts at curvature clamping, like [Eigensatz et al. 2008],

are successful but do not present other theoretical guarantees of closing,

like output fully containing input (see red line, which exposes their output

growing inward).

Zhou et al. 2016]. Implementing opening and closing as composi-

tions of dilations and erosions this way leads to re-discretization of

the entire shape including parts that do not change their underlying

geometry (see Fig. 1). Our goal is output-sensitivity: avoid changing

the mesh in regions that do not move.

We are not the first work to consider the connection between

morphology and partial differential equations (PDEs). Sapiro et al.

[1993] formulate a PDE for describing the motion of a curve under-

going dilation (or erosion) and inevitably treats the curve implicitly
as a levelset. Utilizing the fact that the solution to the non-linear

Eikonal PDE is the signed distance function, Museth et al. [2002]

conduct erosions and dilations of shapes stored as implicit level-

set surfaces. Like the previously mentioned works, openings and

closings are then defined via composition. Guichard et al. [2005] con-

ducts the closing operation on level-sets in 2D via a time-switching

PDE (i.e., dilation for 0 < t ≤ 1/2 and erosion for
1/2 < t ≤ 1), effec-

tively integrating PDEs in sequence. Maragos and Vachier [2008]

extend this idea to grayscale morphology. In contrast to these works,

we operate on explicit surface meshes and define partial differen-

tial equations to directly compute closings and openings, without

requiring a background grid or composing erosions and dilations.

input closing

One benefit of volumetric

methods and composition-

based methods in general is

topological change: indeed,

many previously explored

applications revolve around topological denoising or simplification

(see inset). While our proposed flow can produce large changes (see
Fig. 8), it will not change the topology of the input. We argue this

is neither good nor bad, but an important difference between our

definition of opening and closing and the traditional, volumetric one.
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CNC milledinput our closing flow

(photo)

Fig. 7. A closing of a polygon is used as a toolpath to cut a maple leaf from

plywood using a 3-axis CNC mill.

We analyze this difference in detail and explore the consequences

of avoiding the extrinsic or topological effects of the traditional

definitions further in Section 4.

A key observation is that the output surfaces of the closing and

opening operations have bounded curvature. Eigensatz et al. [2008]

also produce surfaces with bounded curvature, although not in the

context of mathematical morphology. Fig. 6 shows that these do not

correspond to closings.

2.2 Surface Flows

Surface flows are a fundamental subroutine in geometric modeling

[Brakke 1992]. Perhaps the most well-understood flow is mean-

curvature flow. If we let Ω be a two-dimensional manifold, then we

may define St
: Ω → R3 to be a smooth family of immersions that

follow a velocity:

∂St

∂t
= −H n̂ (5)

where H is the mean curvature and n̂ is the outward unit surface

normal. Because the Laplacian of the surface immersion is equal to

the mean-curvature normal (∆tS
t = H n̂), this is also referred to as

Laplacian smoothing. Following the Euler-Lagrange formulation,

the same equation appears as the gradient flow of total surface area

or equivalently Dirichlet energy of the immersion function:

∂St

∂t
= −

∂

∂St

∫
Ω
∥∇St ∥2dA. (6)

This flow and its cousins have been used in triangle-mesh processing

for surface fairing [Bobenko and Schröder 2005; Taubin 1995]. This

energy formulation affords additional design considerations such as

volume preservation [Desbrun et al. 1999]. We will similarly enjoy

this flexibility to add additional constraints and objectives.

Desbrun et al. also introduced the idea of using implicit time inte-

gration to improve stability. Implemented using the finite-element

method on a triangle mesh, numerical issues can still occur (even be-

fore singularities in the smooth flow) due to poorly shaped evolving

triangles. Prior works (e.g., [Crane et al. 2013b; Kazhdan et al. 2012])

alter the energy in Equation (6) to ensure conformal mappings and

thus maintain good surface triangulation (without remeshing).

Anisotropic surface diffusion includes a diffusion tensor which

multiplies ∇St
in Equation (6). The different forms for this tensor

(e.g., [Clarenz et al. 2000; Hildebrandt and Polthier 2004]) depend

on the magnitudes of the principal curvatures at each point of the

shape (see Fig. 5) and on a curvature threshold parameter k
feat

. The

flagship application is feature-preserving denoising: regions with

t=0.1input t=10

Fig. 8. Small concavities get filled in first, then stop moving, but eventually

may get pulled out.

|k | > k
feat

are read as features and not smoothed; all others are.

Unlike our flow, this formulation does not replicate closing (see

Fig. 5), the morphological operation which smooths high absolute

curvature regions and depends fundamentally on their sign.
Further manipulating the mean-curvature flow, it is possible to

derive more specialized flows that produce cubic stylizations [Liu

and Jacobson 2019] or developable surfaces [Stein et al. 2018a].

Past works have explored the connection of curvature flows and

medial-axis extraction [Tagliasacchi et al. 2016]; in particular, Au

et al. [2008] fix vertices during a discrete flow in a manner similar

to our algorithm at a high level, but in their case to approximate a

curve skeleton inside the shape. Recent works that alter the norm
in Equation (6) demonstrate sparsity-inducing or edge-preserving

smoothing [He and Schaefer 2013; Stein et al. 2018b; Zhang et al.

2018]. Our derivation also begins with the Dirichlet energy, but

we alter it such that the flow approaches the localized closing of

the shape rather than smoothing or shrinking the entire shape. We

utilize an adaptive remesher to ensure stability and accuracy in the

regions that require movement.

3 METHOD

In this section we will write only about the closing operation. Equiv-

alent statements and derivations corresponding to the opening can

be constructed by exchanging the roles of convex and concave re-

gions in what follows.

stays put

input

closingThe observation core to the devel-

opment of our method is that — in

general – when conducting the clos-

ing operation on a shape, many parts

of the surface will stay put (see inset).

For simplicity, we begin by consid-

ering a non-convex region in 2DA ⊂

R2 with a sufficiently smooth (e.g.,

G2
) simple boundary curve S = ∂A.

If the initial boundary S has minimum signed curvature kmin < 0,

then we can consider a differential closing by a disk σr of radius

r = −1/(kmin+ε)with ε > 0 where the surface after closing remains

sufficiently smooth (e.g, G1
). We observe a few key properties:

(1) The input shape is contained in its closing:A ⊂ closing(A,σr ).
(2) Changes in shape will be isolated near points on the input

boundary with curvature ≤ kmin + ε .
(3) The minimum curvature on the closing boundary is now

−1/r .

These key properties suggest to us a boundary flow for a given

structuring ball with radius r that will satisfy the following:

(1) It will only ever move the shape’s boundary outward (i.e., in

the normal direction)

ACM Trans. Graph., Vol. 39, No. 6, Article 198. Publication date: December 2020.
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zero mean curvature inputs

trivial closing non-trivial closing

= ≠

Fig. 9. Whether a point moves during closing cannot be determined by

mean curvature.

(2) It will only affect regions of this boundary non-trivially if

their curvature is smaller than −1/r
(3) The flow will only stop when the boundary’s curvature is

everywhere bounded from below by −1/r .

All criteria now refer to the input shape’s boundary without explicit

reference to the enclosed solid region. Unlike all previous closing

definitions, we do not rely on composing erosion with dilation.

Our contribution is to model this closing flow as a modified Dirich-

let energy gradient flow, discretizing it in time with a linearly semi-

implicit Euler integration and discretizing it in space using triangle

meshes. We will demonstrate that this flow retains good properties

of the traditional closing operation even when r is much larger

than the input surface’s minimum curvature radius −1/kmin. We

continue our discussion first with curves in 2D, for which curvature

is simpler, and then consider the more interesting case of surfaces

embedded in 3D space.

3.1 Curves

For curves in 2D, our flow for closing by a disk with radius r has
the form

∂St

∂t
=

{
−kn̂ if k < − 1

r
0 otherwise,

(7)

where k is the signed curvature and n̂ ∈ R2 is the consistently

oriented outward unit normal.

This flow has a discontinuous right-hand side, putting it in the

family of differential inclusions (see e.g., [Kunze 2000]). This equa-
tion shares qualities of other problems in computer graphics, such

as collision handling and Coulomb friction in physically based sim-

ulation [Stewart 2011]. Indeed, we can conceptually think of this

flow as following the traditional curvature flow (2D analog of Equa-

tion (5)) in regions with very negative curvature until colliding with

the curvature-bound obstacle. It may seem natural to propose a

speed proportional to the difference between k and our bound (i.e.,

−(k + 1/r )n̂ instead of −kn̂). This would lead to a Zeno’s paradox

where the closing would only be reached at t → ∞. We avoid this

by making the speed proportional to curvature itself.

Fig. 10 shows the complex boundary of Vietnam undergoing a

closing flow. The initial curve has interesting positive and negative

curvature, but as the flow progresses the curve moves outward

in regions with curvature less than the structuring element until

all movement stops. The final output curve matches the reference

closing computed using standard dilation and erosion on a dense

grid. We point out that the active set of regions with zero velocity

changes over time. Intuitively one region of the curve may grow

closing flowinput

time

groundtruth

1m45s

Fig. 10. Our curvature-bounded curvature flow works to replicate the ef-

fects of morphological closing in the plane. The converged output of our

method (right, in green) is undistinguishable from a very finely voxelized

computation of it, which we treat as the groundtruth (blue).

outward, then freeze, and then later peel away as another moving

region encroaches (see Fig. 8 and accompanying video).

We will defer discussion of temporal and

spatial discretization until Section 3.3. In

two dimensions, the boundary of the clos-

ing contains regions from the input bound-

ary that never moved and arcs of radius

matching the structuring element. This cor-

responds to the intuitive definition of the

closing as the complement of the union of

all translations of the structuring element

which don’t overlap with the input shape

(see inset). The arcs emerge by construction

during the flow as curvature monotonically

increases until reaching the bound. On surfaces of solids in three-

dimensions, curvature exists in any tangent direction and care will

be needed to generalize this intuition and consequently our pro-

posed flow.

3.2 Surfaces

...

The typical analog of the length-

shortening curvature flow for curves

in 2D is the area-shrinking mean cur-

vature flow for surfaces in 3D (Equa-

tion (5)). Mean-curvature flow might

appear to be a good candidate for

closing and opening operations. This

approach turns out to be easy to

foil, since mean curvature does not

strictly correspond to convexity/concavity. Consider a (convex) cap-

sule whose closing is trivial. Mean-curvature is positive so the entire

shape shrinks inward (see inset). Conversely, consider a catenoid

(revolved catenary) which has zero mean curvature and thus will

not move during mean curvature flow. Depending on the size of

the structuring element, a catenoid may have a non-trivial closing

(see Fig. 9). Similar counterexamples can be constructed for other

standard flows like Gaussian-curvature flow, Willmore flow, etc.

(see Fig. 11 and accompanying video). So, when should the surface

move? Or just as important, when should the surface stay put?

ACM Trans. Graph., Vol. 39, No. 6, Article 198. Publication date: December 2020.
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input Willmore
flow

mean
curv. flow

minimum
curv. flow

our closing
flow 

2m02s

Fig. 11. Other flows such as Willmore (e.g., [Crane et al. 2013b]) or classic

mean curvature do not behave like a closing. Minimum curvature flow, upon

which our closing flow is based, moves everything and may shrink the shape

in some regions. Our use of a curvature-based obstacle ensures outward
flow toward the closing. See accompanying video for an animated version.

The intuition for curves in 2D was that the flow stops when

reaching an arc of the given structuring element’s radius. This arc

hugs the disk that fits into the shape’s complement space (R2\A). In

3D, we should consider (spherical) ball structuring elements in the

complement space and make sure the flow stops once we can just

fit a ball against the surface. Neither mean curvature nor Gaussian

curvature alone have enough information to tell us this. A ball can

fit against the surface if the signed normal curvature radius in any

direction is greater than the ball radius. We need to look at the

minimum principal curvature.

Our proposed flow moves the surface in regions where a ball

would not fit in the normal direction at a rate proportional to mini-

mum curvature:

∂St

∂t
=

{
−k2n̂ if k2 < −1/r ,

0 otherwise,
(8)

where k2 is the minimum (signed) principal curvature (i.e., k2 ≤

k1, see, e.g., [O’Neill 1966]). Analagous to the lower-dimensional

case (see Section 3.1), this flow has a discontinuous right-hand

side that ensures that the flow stops once an admissible curvature is

reached. The speed of the flow is proportional tominimum curvature

ensuring that only the regions where a ball would not fit move

and continue moving without slowing down. This ensures that

saddles (as in the case of the catenoid) will move at points where

the structuring element will not fit against the surface. Parts of the
surface that exceed the given bound stay put (see Fig. 13).

Fig. 11 demonstrates a comparison ofmean curvature flow (∂St /∂t
= −H n̂), minimum-curvature flow (∂St /∂t = −k2n̂, without the
case statement) and our proposed flow in Equation (8). Mean cur-

vature flow shrinks inward, while minimum curvature flow also

shrinks in some areas while expanding outward in concave ar-

eas. Our flow is strictly outward (by construction the regions that

move have −k2 > 0). The minimum-curvature flow and our clos-

ing flow should not be confused for the discrete flow of Stein et al.

[2018a] which produces piecewise-developable surfaces (inspired

by
∂St

∂t = ∂
∂St

∫
κ2
2
, where |κ2 | ≤ |κ1 | are unsigned principal

curvatures). In Fig. 12, we use the same case statement condition

“. . . if k2 < −1/r , 0 otherwise”, but compare setting the rate of nor-

mal motion proportional to mean curvature andminimum curvature.

Despite the obstacle, mean curvature flow monotonically decreases

surface area (recall, it is the gradient of surface area). Our proposed

flow smooths the surface but toward the closing which in this case

increases surface area.

our closing (bounded minimum-curvature) flow

...
10

1.00

0
20

1.00

0.98

0.99

0.99

1.01

1.02

bounded mean-curvature flow surface area

iteration

Fig. 12. Even with a minimum-curvature based bound, mean curvature flow

(top row) will not manage to accurately replicate the effects of closing (see

the bunny’s ears, highlighted), since it will never allow for an increase in

surface area (see top right). Our principal curvature flow, however, does

allow for an increase in surface area if that means reducing the concaveness

of the shape, accurately replicating closing.

3.3 Discretization

The differential equations in Equations (7) and (8) are non-linear and

involve discontinuities. We discretize and integrate this equation

by leveraging advances made over time by different communities

within and beyond computer graphics and geometry processing.

Time. We discretize time by separating the minimum-curvature

flow
∂St

∂t = −k2n̂ and the discontinuous obstacle in the right-hand

side of Equation (8) into linearly implicit and explicit terms, respec-

tively. Just as mean curvature flow can be written as the gradient of

Dirichlet energy (see Equation (6)), minimum-curvature flow can

be derived as the minimum of a modified Dirichlet energy.

Minimum curvature is the second derivative of the immersion

function (see [O’Neill 1966]) in the (unit) direction of minimum

curvature (
ˆd2):

∂St

∂t
= −k2(t)n̂ (9)

= ∇(∇St · ˆd2(t)) . (10)

Neglecting the higher order terms resulting from
ˆd2’s dependence

on time, we can make
ˆd2(t) ≈ ˆd2 and apply Green’s Identity:

∂St

∂t
≈
∂

∂St

∫
Ω
St · ∇(∇St · ˆd2)dA (11)

= −
∂

∂St

∫
Ω

(
∇St · ˆd2

)
2

dA, (12)

where · represents matrix multiplication and Ω is the parametriza-

tion domain. Similar to the Dirichlet energy, the integral measures

the gradient of the embedding function, but only considers the com-

ponent in the minimum curvature direction. This variational form

allows us to directly apply the linearly implicit integration employed

by Desbrun et al. [1999] and others. Consider a finite difference with

a timestep value of τ , our equation becomes

St+1 − St

τ
= −

∂

∂St+1

∫
Ω
(∇tSt+1 · ˆdt

2
)2dA (13)

0 = −
∂

∂St+1

∫
Ω
τ (∇tSt+1 · ˆdt

2
)2 +

1

2

(St+1 − St )2dA,
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localized remeshing during closing flow

input iteration convergence

distance to fine volumetric closing

iteration

h

0.14

0

0.07

converged

2m24s

Fig. 13. At each iteration of our flow, we remesh only the parts of the shape that are moving with the flow, leaving all completely convex regions untouched.

Our method converges to a fine, volumetric closing within half of our chosen edge-length h.

h shrinking ÷2

τ 
sh

ri
nk

in
g 

÷1
00

Effect of our parameters on solution

Fig. 14. Our method’s main parameters are the edge length h and the

timestep τ . Our method is stable to large changes in timestep, and a smaller

edge length simply means approximating the analytic surface better, albeit

at the cost of more iterations and longer-running ones.

where we call this a linearly implicit integration because ∇t and

dt are defined by the explicitly known immersion at the beginning

of the time step St
(mirroring [Desbrun et al. 1999]). This equa-

tion corresponds to the Euler-Lagrange optimality conditions of

minimizing the integral:

min

St+1

∫
Ω
τ (∇tSt+1 · ˆdt

2
)2 +

1

2

(St+1 − St )2dA. (14)

The objective is quadratic in St+1
and may be solved directly. As is,

this flow follows minimum curvature as shown in Fig. 11.

To incorporate the obstacle, we freeze the flow for a time step

if the current curvature exceeds the specified bound. In practice,

while we are computing the minimum curvature directions
ˆdt
2
we

collect minimum curvature values kt
2
. Adding this constraint to our

implicit integration above, our time integration can be written as a

value-constrained quadratic optimization:

min

St+1

∫
Ω
τ (∇tSt+1 · ˆdt

2
)2 +

1

2

(St+1 − St )2dA (15)

subject to: St+1 = St ��
k t
2
≥−1/r (16)

Space. We assume that the input to each time step of our method

is a manifold triangle mesh with n vertices andm faces bounding

a solid region of R3 (a triangulated polyhedron in the terminology

of [Zhou et al. 2016]). We experimented with various methods for

computing curvature (see, e.g., [Crane et al. 2013a]). Finally, we

compute the minimum curvature ki at the ith vertex via the mean

curvature (Hi ), Gaussian curvature (Ki ), and the associated mass

Mi , using the discretizations in [Sullivan 2008] (Sec. 4.4):

ki =
Hi −

√
H2

i −MiKi

Mi
(17)

Hi =
1

2

∑
i, j
ℓi jφi j , Ki = 2π −

∑
i, j,k

θ jik , Mi =
1

3

∑
i, j,k

Ai jk (18)

where

∑
i, j and

∑
i, j,k sum over edges and triangles incident on

vertex i respectively, ℓi j is the edge length, φi j is the dihedral angle,
θ jik is the internal angle at vertex i , and Ai jk is the triangle area.

We compute the (unit) minimum curvature direction
ˆdf ∈ R3 at the

f th triangle via quadratic fitting using the six vertex positions of

the corners of the triangle and its flap neighbors according to the

method of Cazals and Pouget [2005].

With these in hand, we discretize the components of the mini-

mization in Equation (15) using the typical piecewise-linear finite

element discretization of the gradient operator G ∈ R3m×n
and

mass matrix M ∈ Rn×n (see, e.g., [Meyer et al. 2003]). Given ini-

tial mesh vertex positions in the rows of a matrix Vt ∈ Rn×3, the
positions at the next time step solve the discrete optimization:

min

Vt+1
1

2

tr

(
τVt+1⊤G⊤D⊤ADGVt+1 + (Vt+1 − Vt )⊤M(Vt+1 − Vt )

)
subject to: Vt+1i = Vti ∀i such that ki ≥ −1/r (19)

where D ∈ Rm×3m
computes the per-face dot product with the

computed curvature directions and A ∈ Rm×m
is a diagonal matrix

of triangle areas.

In the case of 2D curves, like in Figs. 10 and 8, we assume they

are given as a polyline of vertices P and curvature is discretized as

the norm of LP, where L is the finite difference Laplacian.
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input

exact preservation

iterate

converged output (closing)(1) semi-implicit time step moves
low minimum curvature regions

(2) local remeshing of
low minimum curvature regions1m01s

Fig. 15. Our method iteratively flows the surface according to a semi-implicit time integration and remeshes near moving regions.

input closing by progressively increasing structuring element radius

1 2 ∞

1k0 2k 3k

1

0.5

1.5

vertices in active region

time per iteration
     (seconds)

2m51s

Fig. 16. The closing flows to a conservative hull for any radius r . As the structuring element radius is increase the resulting closing approaches the convex hull.

The size of the moving region is larger as the structuring element grows. Since our method is output-sensitive, so grows the runtime per iteration. 3D model by

the Stanford 3D Scanning Repository.

Remeshing. As a precondition, we expect the input triangle mesh

at each time step optimization to have reasonable mesh quality both

in terms of the finite-elementmatrices and the curvature estimations.

On the other hand, our promise is to avoid changing the mesh away

from parts of the shape that actually move during closing. Inspired

by the success of recent surface-tracking and flow methods [Brochu

and Bridson 2009; Da et al. 2014; Stein et al. 2018a], we propose

an adaptive remeshing approach parameterized by a target edge-

length h, provided as input. In cases where the input is extremely

coarse, before beginning the flow, we recursively apply midpoint

subdivision (in plane) to all triangles with any edge longer than 2h.
We optionally keep track of associated parent triangles in the input

mesh, so we can re-identify sets of triangles that do not move. After

each time-step, we run 10 iterations of isotropic remeshing [Botsch

et al. 2010] modified to protect any edges incident on any vertex

with curvature values greater than the given bound. Fig. 13 shows

our adaptive remeshing as the flow progresses: convex regions far

from the action remain untouched.

Putting our discretizations and remesher together in a loop we

have our complete flow algorithm (see Fig. 15). Time integration

stops when all vertices are fixed (outside curvature bound) or a

numerical displacement tolerance is reached (for which we check

every ten flow iterations). A further step can be taken, however, to

significantly improve its wall-clock and asymptotic performance.

Output-sensitive implementation. Our key theoretical observation
has been that large regions of a given shape remain identical after

performing a closing operation. This observation can be further

exploited to make our method output-sensitive, in a way that its

performance depends on the size of the moving regions and not

of the whole triangle mesh. To do this in practice, on our first

iteration, we divide our mesh into a (generally disconnected) active
submesh (the two-ring neighborhood of every vertex with ki ≤

−1/r ) and an inactive one (all other vertices). In this way, every

computation described in this section may be performed only on

the active mesh. At the end of each iteration, the discrete curvatures

of every non-boundary vertex of the active mesh are re-calculated,

and vertices are added or removed from it so that it remains the

two-ring neighborhood of all moving vertices.

As an example of the effect of this output-sensitivity, consider

Fig. 4, where the input mesh contains 100k vertices. A naive im-

plementation of our method that visits the entire mesh on each

iteration takes 160 seconds. However, the size of the active regions
is on average under 10k vertices, and our output-sensitive imple-

mentation converges in 21 seconds. To make this point clearer, we

have chosen to render most of our results using green to highlight

the parts of the shape that have been in the active region for at least

one iteration, and grey for those that have always been inactive and

therefore remain identical to the input.

4 EXPERIMENTS & RESULTS

We have implemented our main prototype in Matlab (with gptool-

box [Jacobson et al. 2016]), using C++ (with libigl [Jacobson et al.

2018]) to implement the adaptive remesher and the (parallelized)

curvature fitting steps. As shown empirically in Fig. 16, our code

achieves the correct asymptotic behavior O(ñ1+f k) where ñ is the

number of active vertices, f > 0 accounts for the Laplacian-like

sparse system solve (we refactor each iteration due to remeshing;

low-rank update could be a possible performance optimization) and
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3m08s3m21s

Fig. 17. Our closing flow can be used on inputs from a diverse set of origins, from machine parts (left) to architectural models (center) and statues (right). See

accompanying video for animations. 3D models (top to bottom, left to right) by Van Alles Wat Ontwerp under CC BY-NC 4.0, AIM2SHAPE Mesh Repository,

Ian Bunker under CC BY 4.0, Shim JinYoung under CC BY 4.0, Patrick Bentley under CC BY 4.0 and the Stanford 3D Scanning Repository.

input
our converged

closing
volumetric 

closing
time

3m31s

Fig. 18. Our flow accurately approximates the effects of closing in complex

shapes with large structuring elements too, seamlessly merging the extrem-

ities of this model. See accompanying video for complete flow animation.

3D model by MakerBot under CC BY 4.0.

input ours MCF Loop subdivision

Fig. 19. Our closing flow can be used to smooth a complex rod structure,

without presenting the singularities that characterize Mean Curvature Flow

(center right) or the extreme mesh-dependency from Loop subidivision

based smoothing as suggested by [Hart 2008].

k is the number of iterations until convergence. We report timings

for a representative set of results from this paper in Table 1, as

conducted on our machine with Intel Xeon CPU E5-2637 v3 @ 3.50

Hz (16 cores), Nvidia GTX 970 and 64 GB of RAM.

Besides the input mesh and structuring element radius (r ), the
main parameters to our method are the discrete time step (τ ) and
the target edge length (h). In our examples, where the inputs are

normalized to tightly fit the unit cube, we use τ = 0.1 andh = πr/20,

Table 1. Runtimes reported for a representative sample of results.

Model Figure Vertices Iterations Runtime

Ring 24 13k 30 2.4 s

Rocker 17 11k 30 10 s

Hook 19 14k 90 11 s

Gear 17 15k 40 13 s

Nefertiti 4 100k 40 21 s

Zipper 26 17k 70 25 s

Ice tray 23 15k 60 32 s

Eiffel 17 26k 120 59 s

Seokgatap 17 40k 140 89 s

Argonath 17 25k 220 212 s

Lucy 17 50k 180 302 s

though optimal values are dependent on the input and the desired

output. We experimentally confirm that our method exhibits the

time-step stability associated with implicit schemes (see Fig. 14), and

that the number of iterations until convergence is affected by τ and

h. The latter, which tends to dominate in our examples, is because

the (combinatorially local) way in which we calculate curvature

makes it so the size of our flow’s moving region can only ever grow

by a one-ring neighborhood per iteration, effectively setting a lower

bound for k which depends inversely on h.
In Fig. 16, we show converged results for closing flows on the

Armadillo for increasing radii. In this limit of increasing radii, the

morphological closing tends toward the convex hull. We witness

this extreme behavior in our flow as well.

In Fig. 7, we show a simple application using our flow to move

a polygon to its rounded closing. This curve is in turn used as the

guiding path for a 3-axis CNC-mill to cut a piece of plywood.

In Fig. 4, the closing flow for a small radius approximates the

accumulation of dirt and grime during weather of a bronze statue.

Our flow naturally selects the region so that coloring it differently
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input closing output
(modification highlighted)

closing output
(offset and cut)

Fig. 20. Our closing flow is ran on a mesh of a lower human denture, high-

lighting with a “plaque” texture the regions that are moved outward by our

flow and simulating the buildup. The same result is slightly offset in the

normal direction and cut with a horizontal plane to create smooth yet tight

fitting “braces.” 3D mesh by Garrett Boughton under CC BY-NC 4.0.

opening flow

input time convergence

2m15s

Fig. 21. The opening flow complements our closing flow. Convex corners

get rounded out and the shape flows inward. See accompanying video for

complete flow animation. 3D model by David Wilson under CC BY-SA 3.0.

opening

closinginput

Fig. 22. Our opening and closing flows are the dual of one another. Snugly

interlocking input blocks maintain their tight fit after selectively flowing

just pegs and holes.

is trivial. The structuring element radius r is the primary parameter

of our flow. Using a larger radius r should not be confused with

running the flow for a longer period of time. Our flow is finite and

runs until convergence (see Fig. 18) on a wide variety of shapes from

various different origins (see Fig. 17). In Fig. 20, the same output of

our closing flow is used to both model the build-up of plaque on a

real molded human denture and to construct a set of invisible braces

that fit tightly to the teeth. In Fig. 19, a rod structure is smoothed

by our closing into a singularity-free output.

So far we have considered the closing flow, in Fig. 21 we flow an

input shape toward its opening. This inward flow ensures that the

result is contained inside the input.

Mirroring the traditional view of opening and closing operations,

the results of our opening and closing flows are duals. In Fig. 22, we

take advantage of our variational formulation to selectively apply

an opening and closing to complementary parts of two interlocking

blocks. A similar experiment is carried out in Fig. 23, where the

closing of a tray results in the opening of the produced ice blocks.

input our output

Fig. 23. In this molding-inspired example, we perform the closing of an ice

tray and the opening of the produced ice using our defined flows. 3D model

by Walter Hsiao under CC BY-SA 3.0.

input
our closing flow

(moving parts highlighted)
volumetric closing

Fig. 24. Our flow can be used to simulate the filth accumulating on a gold

ring. The traditional volumetric closing merges the bottom components,

producing an unrealistic effect.

In many cases, the converged closing flow matches its mathemat-

ical morphology counterpart (see direct comparisons in Figures 1,

13, 5, 18). However, our curvature-based flow uses at each timestep

local geodesic information, while morphological operations by disks

in general use local Euclidean information. We study the effects

of this difference in Fig. 25. When two regions of a shape (in red)

are Euclidianly close but geodesically far, and the structuring ele-

ment radius is of the order of this Euclidean distance (third column),

occassionally the volumetric closing will modify the topology of

the shape and merge these regions together. As the radius shrinks,

“spikes” will appear in the volumetric closing but not in ours (sec-

ond column). As it shrinks further, the spikes will disappear and

our closing matches the volumetric one (first column). The same

happens once the radius increases beyond the magnitude of the

Euclidean distance (fourth column). These topological changes and

non-smooth artifacts are a positive feature of volumetric closing in

some applications (tool reachability or CNC milling, for instance).

On the other hand, we argue they can be considered undesirable

when used for other applications like weathering simulation (see

Fig. 24) or smoothing (see Fig. 26) .

Our flow formulation also allows for several generalizations that

would be hard or impossible to replicate with traditional volumetric

methods. For instance, our energy minimization can easily be trans-

formed to accommodate fixed point or linear equality constraints. In

Fig. 27, we select regions that would otherwise move during closing

and freeze their positions during the flow.
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input

our closing

volumetric

d  >>d  <Rgeod. euc.

Ours vs volumetric closing: 
topological changes and spikes

d  >>d  <Rgeod. euc.d  >>d  >Rgeod. euc.d  >>d  >Rgeod. euc. ~~

= = = =

Fig. 25. When regions are geodesically distant but Euclideanly close, our

closing flow and the volumetric definition can differ for a specific range

of radii (center columns). The equality between the two returns when the

radius becomes small enough (left) or big enough (right).



input
zipper part

smoothed with…
our closing flowvolumetric closing

Fig. 26. Our method (center right) smooths a piece of a zipper (left) with-

out producing the “spikes” associated with the volumetric closing (center

right) that would make the output unusable for this purpose. 3D model by

CaptainKirk under CC BY-SA 3.0.

Additionally, our curvature bound can be generalized from a

scalar to a function of each point in the surface. In Fig. 28, we

transition progressively between “completely fixed” and “moving”

with a spatially varying structuring element radius.

Furthermore, stopping the flow early is an interesting alternative

to using a smaller r and the behavior is not easily replicated with

existing morphological operations. In Fig. 30, we explore this artistic

control in the context of typeface stylization.

Finally, our energy minimization formulation even allows us to

define new operations on the input surfaces. We can simultaneously

combine our closing flow (smoothing concave regions) with our

opening one (smoothing concave ones) without inducing a preferred

ordering. We show an example of this interior and exterior filleting

operation, which we dub the “clopening”, in Fig. 29.

input with
fixed regions

our output

2m37s

Fig. 27. Our variational formulation facilitates adding problem-specific

constraints, such as constraining selected regions to stay put like these

screw holes. See accompanying video for complete flow animation.

closing by spatially varying radius

input our output

3m41s

Fig. 28. Our curvature bound 1/r can be given as a scalar function of space,

making our flow converge to the closing by a spatially-varying radius. See

accompanying video for complete flow animation. 3Dmodel by the Stanford

3D Scanning Repository.

5 LIMITATIONS & FUTURE WORK

Our method is a curvature-based geometric flow and, as such, it

can mirror the same self-intersection and singularity behavior of

previous methods (e.g., mean curvature flow and Wilmore flow), as

shown in Figs. 31 and 32. The flow nature of our method means

it can be easily combined with dynamic surface tracking methods

like ElTopo ([Brochu and Bridson 2009]) if one wishes to guarantee

a self-intersection free output (see Fig. 32), albeit sacrificing our

output-sensitive performance.

The explicit obstacle handling in our flow places a constraint on

the maximum time step (τ ). We would like to understand this bound

better.We are inspired by how in physically based simulation explicit

collision handling gave way to implicit resolution (e.g., [Kaufman

2009]). We do not maintain a bijective correspondence between the

input mesh and the parts that move and get remeshed. This should

be possible with a technique such as MAPS [Lee et al. 1998].

As discussed earlier, our method enjoys its differences with the

traditional volumetric opening and closing operations. Nonetheless,

it would be interesting to explore whether topological changes

could indeed be captured. We may consider a method based on first

identifying distance bounds on the shape’s medial axis (cf. [Yan et al.

2018]) and then using this to somehow attract the flow; topological

remeshing would be necessary [Brochu and Bridson 2009].
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our “clopening” flowopening closingopening of closingclosing of openinginput

≠ ≠

Fig. 29. Our flow enables new morphological operations such as the simultaneous opening and closing of a shape (we dub the “clopening”). Interestingly, the

clopening is neither equivalent to closing-then-opening nor to opening-then-closing. 3D model by Jon Ducrou under CC BY-SA 3.0.

O
O
O
O
O

...

tim
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Fig. 30. The intermediate steps (not to be confused with the results of open-

ing by increasing radii) of our opening flow can be used for stylization. We

progressively open each letter, removing serifs. Discrete, non-flow based

methods cannot produce intermediate results.

We only consider ball-shaped structuring elements. It would be

interesting to extend our method to other shapes, possibly starting

with oriented ellipsoids. Other, especially non-smooth, structur-

ing elements could be possible by manipulating the norm of the

Dirichlet-like energy. It would be interesting to consider asymmet-

ric structuring elements as in the work that original inspired ours

[Calderon and Boubekeur 2017].

We hope that our work on surface-only flows for morphological

operations ignites future research both on the theory bridging PDEs

and mathematical morphology as well as the practice of mesh-based

geometry processing.
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Fig. 31. Singularities and degeneracies common to curvature-based flows

can also be encountered with our method.
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Fig. 32. The local nature of our flow can produce global self-intersections,

which one can avoid by combining our method with global remeshers like

ElTopo ([Brochu and Bridson 2009]).
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