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Fig. 1. Conversational audio, and a tagged transcript are aligned and diarized into separate streams. Speaker gaze during segments of speech are predicted as
focused-on or averted-from a conversation partner (a). A 3D scene context defines a dynamic saliency map (b), which refines the predicted gaze transitions,
into a set of 3D gaze trajectories (c). Speech audio generates rhythmic head motion (d), and it is used with other gestures to produce head+eye motion
satisfying the gaze trajectories (e).

We present 𝑆3, a novel approach to generating expressive, animator-centric
3D head and eye animation of characters in conversation. Given speech
audio, a Directorial script and a cinematographic 3D scene as input, we
automatically output the animated 3D rotation of each character’s head and
eyes.𝑆3 distills animation and psycho-linguistic insights into a novelmodular
framework for conversational gaze capturing: audio-driven rhythmic head
motion; narrative script-driven emblematic head and eye gestures; and gaze
trajectories computed from audio-driven gaze focus/aversion and 3D visual
scene salience. Our evaluation is four-fold: we quantitatively validate our
algorithm against ground truth data and baseline alternatives; we conduct a
perceptual study showing our results to compare favourably to prior art; we
present examples of animator control and critique of 𝑆3 output; and present
a large number of compelling and varied animations of conversational gaze.
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1 INTRODUCTION
Our head, through rhythmic gestural motion, and eyes, our "win-
dows to the soul", through subtle spatio-temporal changes in gaze,
play a quintessential role in expressive, non-verbal communication
[Goodwin 1980]. In a conversational setting, the head and eyes act
as moderators: indicating thought, attentiveness, comprehension,
engagement, and turn transitions to mediate the flow of conversa-
tion [Cassell et al. 1999]. While hand gestures and postural shifts
also support communication [Cassell et al. 2001], the role of head
and eye motion as non-verbal cues cannot be understated. Conversa-
tional head and eye animation is a complex interplay of personality,
culture, psycho-linguistics, and scene context [Rossano 2012]. We
present 𝑆3, an animator-centric solution to generating such head
and eye motion from input speech audio, a Director tagged script,
and a cinematographic 3D scene (Figure 1).

Audio-driven facial animation research, and commercial solutions
[Edwards et al. 2016; Karras et al. 2017; Richard et al. 2021; Zhou
et al. 2018] have predominantly focused on the verbal production
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of speech by the lower face. While audio correlations [Karras et al.
2017], or paralingual heuristics [Edwards et al. 2020a] can animate
the upper face, head+eye rotations are left to be animated with the
rest of the articulated body. As a result, most synthetic talking faces
look straight ahead, despite psycho-linguistic research stressing
that ≈ 30% of a conversation can be spent looking away from an
interlocutor [Dawson 2022]. 𝑆3 addresses this problem.
Conversation driven gaze has been used effectively since the

birth of film to guide an immersive narrative, drawing audiences
into the camera frame [Osipa 2010], and research on its psycholog-
ical underpinnings date back half a century [Kendon 1967]. Prior
art on speech-driven conversational gaze has typically been based
on procedural psycho-linguistic heuristics, or data-driven models
trained without a cinematographic scene context [Ruhland et al.
2015]. While recent research has addressed non-conversational gaze
synthesis based on scene context [Goudé et al. 2023], conversa-
tional gaze without scene context [Jin et al. 2019], or viewer gaze
[Boccignone et al. 2020], we are arguably the first to present a com-
prehensive, animator-friendly model of head and eye rotation in a
conversational scene (see Table 1).
Our key insight, distilled from animation practice [Osipa 2010],

is that while speech audio is primarily responsible for the pattern
and timing of gaze aversion from a conversational partner, the
precise 3D location of this gaze focus/aversion is largely determined
by the cinematographic scene context. Our solution 𝑆3 exploits
this observation, to judiciously break down conversational head
and eye motion into a number of animator-friendly components:
speech audio-driven rhythmic head motion (eg. head nods) and
transitions of focus/aversion of gaze from a conversational partner;
script-driven emblematic head and eye gestures; and scene-driven
saliency to contextually refine gaze focus/aversion into a temporal
sequence of 3D look-at points (gaze trajectories), that our gaze
control algorithm satisfies with optimal head and eye rotations.

Contribution: Our principal contribution is thus the design of a
novel end-to-end solution for conversational gaze control 𝑆3, built
on the idea of audio-driven gaze focus/aversion and scene-driven
3D gaze refinement. Integrated into a typical animation pipeline in
Maya, 𝑆3 automatically computes head and eye rotations, relying on
a speech-centric solution like JALI [2016] to animate remainder of
the face. Further advances by 𝑆3 include: a diarised and annotated
dataset of conversation audio and inferred 3D scene context (with
audio-visual processing code); an audio-driven neural model for
rhythmic head motion; an audio-driven neural model that predicts
temporal transitions of gaze focus/aversion from a conversational
partner, which are refined by a 3D scene context to produce gaze
trajectories; a gaze control algorithm, that generates head and eye
animation to optimally satisfy given gaze trajectories.

Overview: A review of related work on audio-driven and head-
+eye animation (Section 2), is followed by terminology and a formal
problem statement (Section 3). Section 4 presents data preparation:
the selection of conversational videos, and the audio-visual process-
ing to diarise, annotate and compute head+eye orientation from the
videos. Section 5 details the algorithms for each component includ-
ing: audio-driven rhythmic head rotation; audio-driven transitions
in conversational gaze; 3D look-at point planning; and head+eye

rotations to satisfy the sequence of 3D look-at points. We compre-
hensively evaluate 𝑆3 in Section 6. Quantitatively, we validate 𝑆3

using ground truth data, and compare it against baseline alterna-
tives. Qualitatively, we present a large number of compelling and
varied animations of conversational gaze; we show examples of
directorial control over the resulting gaze; and animator critique
of our workflow and results. A perceptual study shows 𝑆3 to favor
comparably against prior approaches to conversational gaze. Section
7 concludes with limitations and a discussion of future work.

2 RELATED WORK
Conversational head and eye animation lies at the intersection of
speech audio-driven animation and head+eye animation, and is
strongly informed by research of psycho-linguistic behavior. Ruh-
land et al. [2015] present an excellent review of inter-disciplinary
research on gaze relevant to facial animation.

2.1 Psycho-linguistic head and eye motion
A rich body of literature going back more than 50 years has docu-
mented the role of the head and eye in non-verbal communication
during a conversation [Argyle and Dean 1965][Argyle and Cook
1976]. Gaze transitions [Kendon 1967], have at least three commu-
nicative functions. Turn-taking to mediate dialogue: averting gaze
when starting to speak, and looking back at the listener to conclude
a turn [Ho et al. 2015][Bavelas et al. 2002]. Monitoring understand-
ing: using gaze for lip-reading to better comprehend speech [Lusk
and Mitchel 2016], or looking at the upper face to understand emo-
tion [Buchan et al. 2007]. Managing arousal: looking away during
moments of heightened emotion, high cognitive load [Doherty-
Sneddon et al. 2012; Glenberg et al. 1998], social anxiety [Weeks
et al. 2013], or when speaking with someone in power [Acarturk
et al. 2021].

Gaze can also be consciously used as gestures (eg. elevator eyes,
eye rolls) or for deictic purposes [Morency et al. 2006]. Gaze is
further attracted by visual stimuli [Yoo et al. 2021], and people with
status [Foulsham et al. 2010]. Cultural norms also impact head and
gaze motion. For example, South Asians shake their head to agree,
Arabs and Asians engage in mutual gaze more than Americans, and
Chinese tend to look up while Japanese speakers look down when
thinking [Haensel et al. 2022; Jan et al. 2007; McCarthy et al. 2008].
A number of multi-modal systems have been informed by these
observations in combining face and body motion to create virtual
characters with personalities [Cig et al. 2010; Sonlu et al. 2021].

We model all gaze behavior that is not directly related to speech,
or visual stimuli in the scene using tags in a Directorial script.

2.2 Speech-driven animation
While research on computer facial animation dates back half a cen-
tury [Parke 1998], there has been a recent surge of interest in digital
humans in general, and speech-driven animation in particular. A
large body of work spanning 25 years [Bregler et al. 1997; Thies
et al. 2020], is video-based. In 3D, techniques can be classified as
procedural (eg. [Edwards et al. 2016, 2020a]), data-driven (eg. [Karras
et al. 2017; Richard et al. 2021]), or driven audio-visually by perfor-
mance capture (eg. Face-off [Choi et al. 2022; Weise et al. 2009]). We
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refer the reader to recent papers [Fan et al. 2022; Pan et al. 2022] for
a more comprehensive survey of audio-driven lip-sync animation.
Audio-driven head, hand and body gesture output have also been
explored [Ghorbani et al. 2023; Kucherenko et al. 2020; Marsella
et al. 2013; Stone et al. 2004].
In the context of audio-driven head+eye animation, the speech

audio provides a tempo for rhythmic head motion and important
psycho-linguistic cues for gaze focus and aversion.

2.3 Head motion
The head of a speaker or listener, is never perfectly still in con-
versation, constantly communicating through rhythmic and em-
blematic co-speech gestures, the absence of which make a character
seem robotic [Frampton-Clerk and Oyekoya 2022]. A number of
approaches to generating co-speech head and body gestures have
been explored [Ghorbani et al. 2023]. State machines [Cig et al. 2010]
and Hidden Markov Models [Zoric et al. 2011] to select between a
set of head gestures such as a head nod or shake, based on prosody,
using arousal, and dominance to head velocity and head direction,
are over a decade old. Recent work such as Gesticulator [Ao et al.
2022; Kucherenko et al. 2020] and many submissions to the GENEA
challenge [Yoon et al. 2022] train deep learning models to produce
skeletal upper body animation from audio. Various image-based
talking face methods [Biswas et al. 2021][Wang et al. 2021] also ex-
plicitly learn overall (rhythmic, emblematic and gazed based) head
motion rendered together with an animated face.

We are inspired by these approaches to learning headmotion from
audio, but must additionally dis-entangle rhythmic head motion
from head motion caused by controllable gaze transitions.

2.4 Gaze trajectories
Human gaze has been extensively studied in Robotics, Computer Vi-
sion, HCI and Graphics [Ruhland et al. 2015]. Most works delve
into the dynamics of specific types of eye movements, such as
micro-saccade and pupil-dilation [Duchowski et al. 2015], gaze shifts
[Young and Stark 1963], and smooth pursuit [Meyer et al. 1985].
Patterns of gaze as attentive behavior using visual salience have
also been studied [Cerf et al. 2007; Itti 2006; Marat et al. 2009], re-
cently using face detection to amplify the salience on (speaking)
human faces [Boccignone et al. 2020; Shi et al. 2020; Sugano et al.
2013]. Networks to predict gaze trajectories from input video and
motion capture [Kerkouri and Chetouani 2021; Klein et al. 2019], and
HMMs to synthesize gaze shifts between regions of a segmented
face [Duchowski et al. 2019] have been studied. These methods
however, credibly model the gaze of an observer and not the gaze
behavior of a speaker.

There is less work on inferring the gaze behavior of characters in
conversation. Procedural models directly encode psycho-linguistic
heuristics [Ruhland et al. 2015], such as tagging audio for silences,
and making the eyes look up at those times to simulate thinking
[Zoric et al. 2011]. We use tagged scripts similarly, but only for
emblematic gestures, cultural preferences, and behavior that cannot
be automatically inferred from speech audio, and a 3D scene context.
Prosody and previous frames of video have been used to train a linear
binary classifier to forecast gaze focus/aversion [Ward et al. 2016].

Speech audio agnostic to a 3D scene, has been used to determine
eye and head motion using rules [Marsella et al. 2013], or learnt
from data [Jin et al. 2019; Le et al. 2012], Real-time learning of eye
motion alone, given a user’s audio and head motion as input, has
also been attempted, for VR applications [Canales et al. 2023].
Conversely, non-conversational gaze models based on 3D scene

salience, inhibition (to prevent persistent gaze fixation) [Goudé et al.
2023; Pan et al. 2020], and the body motion of a character interacting
with the scene [Pejsa et al. 2016] have also been explored.

In contrast, we present a comprehensive model for conversational
head+eye motion. Motivated by animator workflows, we combine
audio-driven ego-centric gaze focus/aversion, refined by exo-centric
3D scene context, to compute a sequence of 3D gaze transitions.

Gaze Control. Given a gaze trajectory (i.e. a temporal sequence
of 3D look-at points), inverse computing head (2 DOF) and eye (2
DOF) rotations to satisfy the look-at points is an under-constrained
problem, and typically involves both a head and eye rotation [Leigh
and Zee 2006]. Proximal gaze targets (≈< 20𝑜 ) can be achieved by
rapid eye-only gaze shifts called saccades, with well-studied velocity
profiles. The relative timing and amount of head and eye motion
can vary based on the gaze shift needed for the target, the time to
target, whether the target point is pre-planned or reactive, and the
intended dwell time on the target [Leigh and Zee 2006]. A common
approach to this problem in graphics is to use an eye-only gaze
shift threshold beyond which both eye and head rotate [Normoyle
et al. 2013]. Other approaches include mass-spring models of smooth
pursuit dynamics [Itti et al. 2004], and combinations of saccades
and smooth pursuit [Yeo et al. 2012]. A parametric model providing
control over many aspects of a desired gaze target is useful in a
variety of behavioral contexts [Andrist et al. 2012]. Data-driven [Jin
et al. 2019] and emotionally expressive [Ferstl 2023] gaze control
have also been explored.
Our model draws inspiration from these approaches and com-

putes head and eye rotations, as an optimization that includes a
novel term that accounts for the dwell time of a look-at point.

Table 1. Research on automated prediction of gaze behavior

Research Audio Scene Rhythmic
work input input head output
[Jin et al. 2019] ✓ × ×
[Le et al. 2012] ✓ × ✓

[Canales et al. 2023] ✓ × ×
[Pan et al. 2020] × ✓ ✓

[Goudé et al. 2023] × ✓ ✓

𝑆3 ✓ ✓ ✓

3 PROBLEM STATEMENT
Wenow formally state our problem of conversational gaze animation
in terms of inputs: speech, script and scene; and outputs: head
and eye animation.

Speech. audio signal comprises audio streams 𝐴1 (𝑡) and 𝐴2 (𝑡)
for two speakers in dyadic conversation, where time 𝑡 ∈ {1..𝑇 } is
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𝑇 frames of animation. While we describe a two-person conver-
sation through-out, our approach applies seamlessly to 𝑛 speaker
conversations, where the interaction is dyadic (Section 5.5). A single
audio stream input (see Video), is readily diarized into two or more
streams using NeMo [2021]. We automatically obtain an aligned
speech transcript from audio using [Radford et al. 2022a].

Script. provides animators with an optional Directorial interface
to script head+eye behavior, trigger emotion/emblematic gestures
etc. Tags of the form <start><end/> are embedded within the audio-
aligned speech transcript [Radford et al. 2022a]. The tags are extend-
able, with present support to spatially modulate the scene salience
such as <avert-up><avert-up/> to author a preferred direction of
gaze aversion, and overrides that can force certain gaze behavior.

Scene. provides optional spatio-temporal information about visu-
ally salient parts of the conversational setting. We model the scene
using 3D positions 𝑝1, 𝑝2, neutral facing directions ®𝑑1, ®𝑑2 for two
speakers, and the 3D position {𝑣𝑖 (𝑡)} and saliency weight {𝑠𝑖 (𝑡)}
of 𝑘 animated visual hotspots 𝑖 ∈ {1..𝑘}. Such hot-spots are easily
authored in a 3D scene, can be inferred automatically, or derived
from intensity maps of visual saliency [Goudé et al. 2023].

Head. is modeled local to the neck/body transform 𝐵 as a 3DOF
rotation vector \ℎ with pitch, yaw and roll as rotations about 𝑥,𝑦, 𝑧
respectively, that define a local head transform 𝐻 . We ignore the
contribution of head roll (𝑧 axis rotation) in controlling gaze.

y

x

qeye

θy
θx

Eyes. are modeled using a 3D world
space look-at point 𝑞. For an eye at point
𝑒 local to the head, 𝑞𝑒𝑦𝑒 = (𝐵𝐻 )−1𝑞 − 𝑒 .
The 2DOF pitch and yaw 𝑥,𝑦 rotation
vector \𝑒 for the eye are the spherical po-
lar co-ordinate angles of 𝑞𝑒𝑦𝑒 as shown
in the inset. Representing an eye as a
world space look-at point has advantages: most animator rigs use
a global look-at point as an eye rotation controller, aligned with
an oculocentric motor strategy [Henriques et al. 2002]; and the
Vestibulo-Ocular Reflex movement is inherently captured [van der
Steen 2009].

4 DATA PREPARATION
Many parts of our solution 𝑆3, such as the audio-based aversion
prediction model (section 5.2) and rhythmic head model (section
5.5), consist of deep learning components. We considered a number
of audio-visual datasets, but they either did not capture diarised
and annotated dyadic conversations in a sparse natural setting, or
were too small to support deep learning. Notable among these was
the 17 minute long Cardiff conversation dataset [Vandeventer et al.
2015] (our dataset in contrast is 379 minutes long). We thus curated
a new audition dataset. Here, we discuss our data sourcing, and the
audio-visual processing used to annotate its head and eye motion,
gaze fixations, and the decoupling of rhythmic co-speech gestural
head motion from head motion due to gaze shifts.

4.1 Dataset Source
We sourced our data from in-the-wild acting audition performances
found on Youtube (similar to other publicly sourced datasets [Ephrat
et al. 2018; Nakazawa et al. 2020]). The videos all have one on-screen
actor, and one off-screen actor, engaging in a conversation.We chose
these videos for two reasons: one, unlike TV interviews and talk
shows, which often cut from speaker to speaker, the actor being
auditioned is always in the frame in an audition clip, providing
data and insight for both speaking and listening behaviors; and two,
actors are less inhibited by a camera and their performances tend
to be varied, natural, and expressive, compared to those captured in
a lab setting.

Our audition dataset is comprised of 111 audition videos (a list is
provided in supplementary material) with a total length of 379 min-
utes. Overall in the videos, the on-screen actor spends approximately
63% time speaking, and 37% time listening (where the off-screen
actor is speaking).

4.2 Head+Eye Gaze Annotation
We annotate each video frame using binary labels. Each video frame
is labelled as either "gaze-on", "focused" (0) when the on-screen
actor is looking at the off-screen actor, or "gaze-off", "averted" (1)
when their gaze is directed elsewhere. The labelling is used to train
our audio-driven gaze aversion probability network (section 5.2).
We use an off-the-shelf gaze-estimation model [Zhang et al. 2020],
to obtain gaze direction from the video (Figure 2). We then use a
dispersion-based filtering technique [Birawo and Kasprowski 2022]
to ignore micro-saccades, reduce jitter, and segment the gaze signal
into a sequence of some 𝑁 gaze fixations, with direction ®𝑝𝑖 over
time interval < 𝑡𝑠 , 𝑡𝑒 >𝑖 , where 𝑖 ∈ {1..𝑁 }. Based on the insight
that speakers in an audition tend to spend the majority of the time
looking at the conversation partner, we use a Gaussian mixture
model to cluster ®𝑝𝑖 , and use the center of the biggest cluster as
the direction ®𝑝𝑜 𝑓 𝑓 towards the center of the off-screen actor. We
represent the angular size of the off-screen actor as a cone angle 𝜙
(𝜙 ∈ [0, 𝜋/2]) around ®𝑝𝑜 𝑓 𝑓 . A gaze direction ®𝑝 is thus averted from
the off-screen actor iff it deviates >= 𝜙 from ®𝑝𝑜 𝑓 𝑓 . For unit gaze
vectors:

𝑎𝑣𝑒𝑟𝑡𝑒𝑑 ( ®𝑝, ®𝑝𝑜 𝑓 𝑓 , 𝜙) = ⌈𝑐𝑜𝑠 (𝜙) − ( ®𝑝.®𝑝𝑜 𝑓 𝑓 )⌉ (1)

Given that dispersion-filtering removes micro-saccades, we would
like the majority of the remaining gaze shifts to and from the off-
screen actor to count as gaze focus/aversion transitions. We thus
do a line search on 𝜙 ∈ [𝜖, 𝜋/2] to maximize the total number of fo-
cus/aversion gaze transitions, where 𝜖 provides a minimum speaker
size angle (we pick 𝜖 as the smallest cone angle to contain half the
gaze directions in the off-screen actor cluster). In other words:

max
𝜙

(
𝑁−1∑︁
𝑖=1

|𝑎𝑣𝑒𝑟𝑡𝑒𝑑 ( ®𝑝𝑖 , ®𝑝𝑜 𝑓 𝑓 , 𝜙) − 𝑎𝑣𝑒𝑟𝑡𝑒𝑑 ( ®𝑝𝑖+1, ®𝑝𝑜 𝑓 𝑓 , 𝜙) |) (2)

Finally, we use 𝑎𝑣𝑒𝑟𝑡𝑒𝑑 to label video frames, and our results
strongly match viewer expectations (see Video 1:58-2:09).
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Fig. 2. Audition data with head (red) and gaze (green) estimation (left), and
isolated rhythmic head rotation (right).

4.3 Extracting Rhythmic Head Motion
In order to train a model for predicting rhythmic head motion using
audio and text transcript features, we need to isolate rhythmic head
movements in our audition dataset from gaze-driven head motion.
To identify eye-driven head movements, we implemented a Dy-
namic Time Warping (DTW) based algorithm [Giorgino 2009]. Note
that DTW is necessary because while the head always moves com-
plementary to the eyes, it is often delayed (100-200ms) and always
moves slower [Ruhland et al. 2015]. Our DTW measures the opti-
mal time-warped similarity between the temporal rotations of gaze
\𝑒𝑦𝑒 (𝑡) and head \ℎ𝑒𝑎𝑑 (𝑡) (\𝑧ℎ𝑒𝑎𝑑 (𝑡) is ignored in the comparison).

We first determine gaze and head rotations for our dataset. We
use the ETH-XGaze model [2020] to compute eye rotations \𝑥,𝑦𝑒𝑦𝑒 , and
Mediapipe [Lugaresi et al. 2019] for head rotation \

𝑥,𝑦,𝑧

ℎ𝑒𝑎𝑑
, from the

videos. Both head and eye rotations are de-noised using a Gaussian
filter. These are then given as input to the DTW algorithm which
first determines 𝐿2 distance 𝑑 (𝑒𝑖 , ℎ 𝑗 ), between each pair of frames 𝑒𝑖
in \𝑒𝑦𝑒 (𝑡𝑠 ) and ℎ 𝑗 in \ℎ𝑒𝑎𝑑 (𝑡𝑠 ), where 𝑡𝑠 indicates the sliding win-
dow samples from the eye and head rotation sequences [Kucherenko
et al. 2020](Figure 11). A cost matrix,𝐶 , of size 𝑛 ×𝑚, is constructed
where 𝑛 is the length of \𝑒𝑦𝑒 (𝑡𝑠 ) and𝑚 is the length of \ℎ𝑒𝑎𝑑 (𝑡𝑠 ).
The cost matrix cells (initialized to ∞), are iteratively filled to com-
pute the minimal cost based on neighboring cells:
𝐶 (𝑖, 𝑗) = 𝑑 (𝑒𝑖 , ℎ 𝑗 ) +𝑚𝑖𝑛(𝐶 (𝑖 − 1, 𝑗),𝐶 (𝑖, 𝑗 − 1),𝐶 (𝑖 − 1, 𝑗 − 1)).
We accumulate the dissimilarity along different possible paths, in
an accumulated cost matrix 𝐷 as:
𝐷 (𝑖, 𝑗) = 𝐶 (𝑖, 𝑗) +𝑚𝑖𝑛(𝐷 (𝑖 − 1, 𝑗), 𝐷 (𝑖, 𝑗 − 1), 𝐷 (𝑖 − 1, 𝑗 − 1)).
Starting from 𝐷 (𝑛,𝑚), we backtrack through 𝐷 , to find the optimal
warping path (left, diagonal, or up at each step) ending at 𝐷 (1, 1),
with the smallest accumulated alignment cost 𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . The rhyth-
mic head movement is then calculated as follows: For head rotation
samples with a low alignment cost (𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≤ 𝜏 , where 𝜏 is the
mean of all optimal alignment costs for the entire video), head and
gaze are correlated; we subtract the aligned gaze rotation from the
head rotation sample to get the head rotation sample ℎ𝑙 (𝑡𝑠 ). For
head rotation samples with a high alignment cost (𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 > 𝜏),
head and gaze are independent, and we orient the mean pose of the
sample to the front-facing rest head pose, and create a new head
rotation sample ℎℎ (𝑡𝑠 ). Finally, we concatenate the rhythmic head
rotation samples ℎ𝑙 (𝑡𝑠 ) and ℎℎ (𝑡𝑠 ) as originally aligned in time and
use interpolation to remove any remaining discontinuities due to
shot changes, noise in head/eye tracking, extreme face rotations and

occlusions, to produce a rhythmic head motion signal Δ\ℎ𝑒𝑎𝑑 (𝑡)
(see Video 2:14-2:31).

5 𝑆3 ALGORITHM
We now present algorithmic details for animating dyadic conver-
sational gaze in 𝑆3 (Sections 5.1-5.7), and its extension to N-party
conversations (Sections 5.8).

5.1 Algorithm Overview
𝑆3 takes in three streams of inputs: including speech audio, 3D scene
context, and optional scripts. As outputs, head and gaze trajecto-
ries are produced. Architecturally 𝑆3 consists of three independent
modules (Figure 3): A deep-learning-informed look-at-point (gaze
trajectory) planner, an inverse kinematics (IK) gaze controller and a
learned rhythmic head motion generator inspired by [Kucherenko
et al. 2020]. As the first step, the look-at-point generator creates time
sequences of gaze transition targets {𝑡𝑖 , ®𝑞𝑖 }𝑁𝑖 , for each character in
the conversation. These gaze targets are then processed by our gaze
control IK model, to create realistic per-frame trajectories of head
rotation \̄

𝑥,𝑦

ℎ𝑒𝑎𝑑
(𝑡) and gaze 𝑞(𝑡). Finally, we use the rhythmic head

controller to produce rhythmic head motion Δ\
𝑥,𝑦,𝑧

ℎ𝑒𝑎𝑑
(𝑡), which is

added to gaze-based head motion \̄ℎ𝑒𝑎𝑑 (𝑡) to generate the final out-
put \ℎ𝑒𝑎𝑑 (𝑡). As mentioned in Section 3, the scene context provides

Fig. 3. Method Overview

3D positions 𝑝1, 𝑝2, and neutral facing directions ®𝑑1, ®𝑑2 for two speak-
ers, as well as the 3D position {𝑣𝑖 (𝑡)} and saliency weight {𝑠𝑖 (𝑡)}
of 𝑘 animated visual hotspots (potential look-at points) 𝑖 ∈ {1..𝑘}.
The scene context, along with speech audio, and optional script tags
(Section 5.6), comprise the input to our algorithm (Figure 3). Our
modular look-at-point planner further allows 𝑆3 to easily handle
three-party (or n-party) conversations (Section 5.8). This level of ex-
tensibility and control is hard to achieve without a modular design.

5.2 Look-at-point planner: aversion probability network
We predict a speech based probability 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡) for a conversational
agent to avert their gaze from a conversational partner at every time-
step 𝑡 , using a recurrent neural network architecture (Figure 4).
Our network uses two forms of input: prosodic audio features

encoded using Mel Frequency Cepstral Coefficient (MFCC), log
filter bank energies, and Spectral Subband Centroids (SSC); and
the relative timing of speaking/listening turns obtained from audio-
aligned speech transcripts. These inputs are commonly used in
speech-based classification tasks [Rahmeni et al. 2020]. Swapping
the input speech streams 𝑋0 and 𝑋1 in our symmetric model, allows
us to predict the gaze aversion probability of the conversational
partner 𝑃1

𝑎𝑣𝑒𝑟𝑡 (𝑡).
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Fig. 4. Gaze Aversion Prediction (updated figure)

The model is trained on our audition dataset. After a 9:1 train-test
split, we divide each audio performance into 10-second segments,
with 5 seconds of overlap between them. The model is then trained
with binary entropy loss to produce output thatmatches the aversion
state (0 or 1) labeled in section 4.2. Model parameters are updated
using the Adam optimizer with default parameters [Kingma and
Ba 2014], training stopped after 1400 epochs. Our model achieves
98.4% and 78.9% accuracy on training and validation sets re-
spectively, and generates gaze aversion probabilities that are overall
smooth. See Section 6.1 for a more comprehensive evaluation.

Fig. 5. Per-frame gaze state machine, green arrow is relevant in section 5.8

5.3 Look-at-point planner: state machine
For each conversational agent 𝑎, the look-at-point planner operates
an aversion state machine 𝑋𝑎 ∈ {0, 1}, switching between direct
focus ( gaze-on =0) and aversion ( gaze-off =1) states every time-step.
Direct focus generates look-at-points on the conversation partner,
and aversion employs a random walk algorithm to generate look-
at-points based on scene salience. The state machine transition is
informed by three inputs:
-The speech-based gaze aversion probability 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡) (Section 5.2).
-The visual salience of each scene object 𝑠𝑛 (𝑡).
-The human tendency to mutually engage gaze [Goodwin 1980],
using the gaze state of the conversational partner 𝑋𝑏 (𝑡).
As shown in Figure 5, a change of gaze state 𝑋𝑎 at time 𝑡 , is

primarily controlled by the speech-driven probability of gaze aver-
sion 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡), but can also be triggered by attending to a scene
object 𝑛 with a large increase in salience 𝑠𝑛 (𝑡), i.e. ¤𝑠𝑛 (𝑡) > 𝜏 (default
𝜏 = 0.5 for saliency 𝑠𝑛 ∈ [0, 1]). As the audition videos are visually

focused on one agent, mutual gaze is not explicitly captured by
the learnt gaze probability 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡). We can model mutual gaze by
coupling the the state machines of the conversational agents, so
that an averted agent (𝑋𝑎 = 1) can transition to 𝑋𝑎 = 0 to match
direct gaze from the conversation partner 𝑋𝑏 = 0. We handle the
coupled state machines of agents 𝑎 and 𝑏 in two passes. In the first
pass, we generate the gaze states of both agents 𝑎 and 𝑏 on their
speaking turns, considering only the signals 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡) and ¤𝑠𝑛 (𝑡). In
the second pass, we generate gaze states for the listening turns of
both agents, using 𝑝𝑎𝑣𝑒𝑟𝑡 (𝑡), ¤𝑠𝑛 (𝑡), and 𝑋𝑏 (or 𝑋𝑎) computed for the
speaker in the first pass (see Video 4:42-4:57 for example).
Once the gaze of both conversing agents has been classified as

direct or averted for each frame, we compute a time sequence of gaze
fixations. Deviation from the fixations are modeled as microsaccades
(Section 5.7). The fixated look-at-points are computed as follows:

Direct Focus: The agent looks at the other interlocutor (center of
the face by default).
Averted: We employ a random walk similar to [Boccignone et al.

2020] to generate a sequence of scene salient look-at-points. The
duration of each look-at is sampled from a known distribution of
human fixation [Goudé et al. 2023], and the choice look-at-point
sampled from a weighted distribution that favours object salience,
and gaze shifts of small amplitude. Specifically, when selecting a
new gaze target, we compute 𝜌𝑖 for scene objects 𝑖 ∈ {1..𝑘} as:

𝜌𝑖 = 𝑠𝑖 · 𝑒−^ ·max(1,1/𝑑𝑢𝑟 ) · ∥𝑣𝑖−𝑣𝑝𝑟𝑒𝑣 ∥

where ^ = 1.33 based on [Boccignone et al. 2020], 𝑠𝑖 and 𝑣𝑖 are the
salience and position of the 𝑖𝑡ℎ object at the current time, 𝑣𝑝𝑟𝑒𝑣 is
the previous look-at point, and 𝑑𝑢𝑟 is the length of the aversion
interval. We then use the soft-max function to compute a probability
distribution from 𝜌𝑖 , from which we select the new scene object
(look-at-point). Different from [Boccignone et al. 2020], we also use
the aversion duration 𝑑𝑢𝑟 , to ensure a small gaze shift for a very
short (< 1𝑠𝑒𝑐) gaze aversions. Finally, we sample the time of the next
gaze shift from a distribution of fixation duration (shifted gamma
law with 𝛼 = 1.2394, \ = 0.1880, and 𝑙𝑜𝑐 = 0.08) [Goudé et al. 2023].

5.4 Gaze Control IK
Our gaze control IK algorithm augments prior art solutions [Jin et al.
2019; Yeo et al. 2012], to present improved generation of head+eye
motion for our context, given a time sequence of gaze targets. We
first solve an optimization problem for the head contribution to each
gaze shift; then, use a motion generator to interpolate the desired
sequence of head and eye targets.

Head Contribution Optimization: Given look-at-point planner gaze
targets, we determine the required head rotation as an optimization
of three terms to: match a learnt co-relation between head and gaze
angles [Jin et al. 2019]; minimize head rotation from its predominant
focus on the other interlocutor; and minimize eye rotation needed
to meet the gaze target. In other words:

\̄ℎ𝑒𝑎𝑑 = *𝑎𝑟𝑔𝑚𝑖𝑛\ (𝑤𝑝 ∗ ∥\ − \𝑝 ∥2

+𝑤𝑛 ∗ (1 − 𝑑𝑤𝑒𝑙𝑙) ∗ ∥\ − \𝑛 ∥2

+𝑤𝑒 ∗ 𝑑𝑤𝑒𝑙𝑙 ∗ ∥\ − \𝑒𝑦𝑒 ∥2)
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where {𝑤𝑝 ,𝑤𝑛,𝑤𝑒 } are constants weighting the three terms; \𝑝 =

𝑔(\𝑒𝑦𝑒 ) is a learned mapping of the most probable head angle, for
a given gaze direction, proposed in [Jin et al. 2019]; \𝑒𝑦𝑒 is the
direction that the gaze target makes with the neutral eye direction;
\𝑛 is the direction facing the conversational partner, typically close
to the neutral head direction; and 𝑑𝑤𝑒𝑙𝑙 =𝑚𝑖𝑛(𝑑𝑢𝑟, 1) is a weight
increasing with gaze target fixation time 𝑑𝑢𝑟 (clamped at 1).

Small 𝑑𝑤𝑒𝑙𝑙 penalizes head movement from neutral, encouraging
eyemotion tomatch the gaze target, and the opposite for large𝑑𝑤𝑒𝑙𝑙 ,
We determine the weights for each term using a grid search on
different combinations of {𝑤𝑝 ,𝑤𝑛,𝑤𝑒 } to find a set of weights that
minimizes the Mean Square Error (MSE) with the annotated head
and eye angles generated from our audition dataset (Section 4.2). Our
proposed optimization results in a lower MSE 10.92 compared to
24.26 using \ℎ𝑒𝑎𝑑 = \𝑒𝑦𝑒 [Yeo et al. 2012], 16.04 using \ℎ𝑒𝑎𝑑 = \𝑛 ,
or 11.30 using \ℎ𝑒𝑎𝑑 = \𝑝 [Jin et al. 2019].
Motion Generator: We use a modified version of the head-eye

motion generator in [Yeo et al. 2012] to interpolate the sequence of
target head and eye angles. For both eye and headmotion, movement
¤\ (𝑡) is produced by summing up a sequence of sub-movements:

¤\ (𝑡) =
𝑁∑︁
𝑖

b𝑖𝑣
(
𝑡0
𝑖 , 𝑡

1
𝑖 , 𝑡

)
where each sub-movement has a direction b𝑖 and a velocity profile:

𝑣

(
𝑡0, 𝑡 𝑓 , 𝑡

)
=

30(
𝑡 𝑓 − 𝑡0)5 (

𝑡 − 𝑡 𝑓
)2 (

𝑡 − 𝑡0
)2

The velocity profile for head and eye sub-movements differ by mo-
tion duration (100ms for the eye, and 600ms for the head). [Yeo et al.
2012] breaks down a large gaze shift into a sequence of smaller sac-
cades that look more realistic. Every 200ms, an eye sub-movement
b𝑖 is generated towards a position predicted by their character’s
imperfect probabilistic perception model. We achieve a similar effect
by artificially adding noise to the specified look-at-point \𝑒𝑦𝑒 :

¤\𝑡𝑎𝑟𝑔𝑒𝑡,` = 𝛼 (\𝑒𝑦𝑒 − \𝑝𝑟𝑒𝑣)
¤\𝑡𝑎𝑟𝑔𝑒𝑡 ∼ N

(
` = ¤\𝑡𝑎𝑟𝑔𝑒𝑡,` , 𝜎 = 1

4 (1 − 𝛼) | |\𝑡𝑎𝑟𝑔𝑒𝑡,` | |
)

\𝑡𝑎𝑟𝑔𝑒𝑡 = \𝑝𝑟𝑒𝑣 + ¤\𝑡𝑎𝑟𝑔𝑒𝑡
By ensuring 𝛼 > 0.5, we guarantee that each gaze shift gets closer
to the target look-at-point. Once the current look-at-point is suffi-
ciently close to the target, we simply use \𝑡𝑎𝑟𝑔𝑒𝑡 = \𝑒𝑦𝑒 to prevent
oscillation about the look-at-point. We use a similar strategy for
head sub-movements, except we set 𝜎 = 0 to ensure smooth head
motion.

5.5 Rhythmic Head Controller
We train an audio-driven neural network to generate rhythmic head
motion (section 4.3). We use an architecture inspired by Gesticulator
[2020] to produce rhythmic head rotation values at every time-step,
shown in Figure 6. Audio and textual features serve as inputs. For
audio, we use Mel-spectrogram along with the prosody information
(intensity and pitch) of the audio. For text, we use Bert features
[Devlin et al. 2019] and the sentence structure features outlined in
Figure 4.

Fig. 6. Rhythmic Head Gesture Model

We train on the audition dataset for 100 epochs using weighted
MSE loss for both velocity and position (we weigh samples further
away from the mean at a higher weight). We verified that our model
predicts dynamic motion instead of a static mean by observing that
the position and velocity distribution generated by ourmodel closely
resembles that of the dataset. (Figure 7).

Fig. 7. Rhythmic Head Motion Prediction

5.6 Animator Scripting
Our modular architecture supports animator control in various
places. Speech transcripts embedded with directorial tags are a pop-
ular approach to controlling animation in games [Edwards et al.
2020b]. We thus demonstrate animator control in 𝑆3 using extend-
able tags embedded in a [Radford et al. 2022b] generated speech
text transcript.
We support three kinds of tags. look-at tags, which amplify the

salience of an object while the tag is active, causing an agent to focus
on an important object, or reflect specific gaze behavior, like looking
out a windshield while driving. directional tags are used to specify
ego-centric aversion behavior such as averting up to reflect thinking,
or averting down due to reflect guilt. Such tags zero out the salience
of scene objects in the opposite direction for the duration of the
tag. override tags can force focus/aversion labelling over the tag’s
duration, for example to specify speech agnostic concentration.
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Fig. 8. Tag varieties and their control: look-at tags (yellow); directional tags
(blue); gaze-on/gaze-off tags (green)

5.7 Microsaccades
When fixated on an object, humans perform small (<2 degrees) and
frequent (1-2 Hz) saccades [Chung et al. 2015] within the object to
prevent perceptual fading (where vision blurs due to de-sensitized
neurons). Microsaccades are found to be essential to the realism
of gaze animation [Krejtz et al. 2018]. We model microsaccades
during fixation as a post-processing step similar to [Pan et al. 2020].
During any gaze fixation interval longer than 0.5 seconds, we sample
irregular intervals from N(0.5, 0.1), where we induce a small eye
rotation Δ\𝑡 of amplitude N(0, 2), that is added to the output gaze
animation to enhance realism.

5.8 Three-Party Conversation
Unlike end-to-end regression approaches like [Jin et al. 2019; Le
et al. 2012], our modular approach can be readily adapted to N-party
conversations with some simple modifications. We illustrate this
extension to a three-party conversation with agents 𝑎, 𝑏, and 𝑐 ,
where we assume people speak one-at-a-time. We cast this scenario
as pairs of dyadic conversations. From the perspective of 𝑎, when 𝑏
or 𝑐 is speaking, it is a dyadic conversation between 𝑎 + 𝑏 or 𝑎 + 𝑐 ,
respectively.When 𝑎 is speaking, it is a dyadic conversation between
𝑎 and the previously speaking agent. The third interlocutor in all
cases is simply treated as a salient scene object.
We can thus dynamically re-register the conversation partner

for each agent when speaking turns change, and re-use our dyadic
algorithm. Further, changing a conversation partner automatically
triggers a gaze shift. The 3-party conversation model is implemented
in comparison to [Jin et al. 2019] in section 6.2.

Fig. 9. 3-party conversations cast as two dyadic conversations involving
𝑎 + 𝑏 and 𝑎 + 𝑐

6 EVALUATION
We manually checked about 10% of the audition videos to confirm
that both, our gaze annotation, and rhythmic head motion compu-
tation (Section 4), strongly matched viewer expectation.

We also presented quantitative validation of each technical com-
ponent of 𝑆3 in Section 5. Specifically we report:

• 98.4% and 78.9% accuracy on training and validation data, for
our aversion probability network (Section 5.2).

• Our state machine when correctly averted (Section 5.3), picks
the correct aversion gaze cluster in the audition dataset (Sec-
tion 4.2) with 90.7% accuracy.

• Our predicted IK head angle for gaze fixations (Section 5.4) has
a lower Mean Square Error of 10.92◦ (compared against the
audition dataset) than prior art.While fixated head+eye values
in the audition dataset are reliable, their motion trajectories
can be noisy, and thus we do not compare it to our head+eye
motion interpolation ouptut.

• Our rhythmic head controller produces a distribution of rhyth-
mic head motion (Figure 11) that closely matches the audition
dataset (Section 5.5).

• We show effective animator control using a variety of script
tags (Section 5.6).

• We show 𝑆3 can be easily adapted to generate gaze for pair-
wise dyadic, 𝑁 -party conversations (Section 5.8).

We further present a comprehensive analysis of our aversion
prediction network, the core of 𝑆3. This is followed by a perceptual
study comparing our output with prior art [Jin et al. 2019; Le et al.
2012]. We present a large number of compelling and varied anima-
tions of conversational gaze, and animator critique of our workflow
and results.

6.1 Aversion Prediction Network Evaluation
Beyond high per-frame accuracy in predicting a gaze focus/aversion
state, we analyze the performance of our network on various met-
rics, compared to a few baselines. Specifically we compare against
stare a commonly used model with no gaze aversion; and a statistical
model that alternately samples gaze focus/aversion aversion inter-
vals randomly, from distributions of focus/aversion interval length
in the audition dataset. The outputs of the three models, relative to
ground truth, for an example 20 second clip are shown in Figure 10.
We evaluated each model’s predictions {𝑝𝑛}𝑁𝑛=1 against ground

truth data {𝑝𝑛}𝑁𝑛=1 using accuracy, Jaccard similarity (IOU), gaze-
on/off transition accuracy, and aversion instance ratio.

Accuracy measures the per-frame agreement between 𝑝𝑛 and 𝑝𝑛
i.e. (𝑎𝑐𝑐 = 1 − (∑𝑁

𝑛=1 |𝑝𝑛 = 𝑝𝑛 |)/𝑁 ). Jaccard similarity measures the
frame overlap between predicted gaze aversion and ground truth
(⊮ is the indicator function below):

𝑁∑︁
𝑛=1

⊮{𝑝𝑛 = 𝑝𝑛 = 1}
⊮{𝑝 |𝑛 = 1} + ⊮{𝑝𝑛 = 1}

Gaze-on (or off) accuracy is a binary measure of alignment between
a predicted gaze transition and the closest ground truth, at percep-
tually significant moments of gaze transition from aversion to focus.
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Fig. 10. Gaze focus/aversion using 𝑆3, statistical, and stare vs. ground-truth.

The aversion instance ratio simply counts the number of aversions,
relative to those in ground truth.

Table 2. Comparison of models to predict gaze aversion

Model Acc IOU Gaze-on
Acc

Gaze-off
Acc

Avert
Instances

Stare 0.63 0.00 0.00 0.00 0.00
Statistical 0.47 0.23 0.31 0.33 1.04
𝑆3 0.79 0.36 0.53 0.53 1.08

From the table, we can see that while stare (performing no aver-
sion) achieves 63% accuracy (because gaze focus is predominant),
it performs poorly on the other perceptual metrics. The statistical
model also fails to generate gaze aversion at times that perceptually
make sense. 𝑆3 performs well on all metrics with high accuracy,
Jaccard similarity, good alignment of gaze transition, and generates
a similar number of gaze transitions as the ground truth.

6.2 Perceptual Prior Art Comparison Study
As far as we knowwe are the first to combine speech audio and scene
context in a model for conversational head+eye motion (Table 1).
the closest conversational gaze prior art to us are perhaps [Jin et al.
2019; Le et al. 2012]. We were unable to access code, executable or
animation curves for either work. We thus ran our model using the
audio from their their supplementary video examples (three from
[Le et al. 2012], and two from [Jin et al. 2019]) (see Video 2:55-3:24
and supplemental).

We chose camera views and framing to match their output for our
results. We then conducted a 4 point (weak or strong preference)
forced choice user study with 36 users, between our output and
[Le et al. 2012] or [Jin et al. 2019] (approved by ethics protocol
#38139). We instructed users to focus on head+eye motion and
ignore rendered appearance and other factors. We also asked the

users to provide reasons for their choice, and overall impression of
the animations. We eliminated results from 5 users because their
choices were statedly made on the rendered appearance or the
quality of lip-sync. Our final user demographics consist of 6 facial
animators, 6 non-facial animators, and 19 lay viewers. The results
of the forced choice experiment are shown below. A binomial test
evaluates the significance of the result, with a p-value displayed on
the top of each bar graph. It can be seen that our model compared
favourably against both [Le et al. 2012] and [Jin et al. 2019].

Fig. 11. Perceptual study comparing 𝑆3 and [Jin et al. 2019; Le et al. 2012]

6.3 Animator and Casual Viewer Feedback
Facial animators noted that the head movements from [Le et al.
2012] were “too smoothed” but also “had many discontiniouties”,
and that the movements look “repetitive”. Casual users found the
gaze “aimless” and “does not look connected with speech”. They
also noted “a lot of head movements” and we divided between it
seeming "expressive" or "erratic".

Viewers felt [Jin et al. 2019] had very “static eyes”, headmovement
that looked “robotic”, and gaze that “lacked eye contact”.

In comparison, facial animators found 𝑆3 to have "convincing mu-
tual gaze", “reasonable gaze targets”, “high-quality motion control”,
and generating “great aversion” that “fits the sentence structure” and
audio. It was mentioned that 𝑆3 eye movement was “a bit dramatic
given the neutral manner and speaking content” of video 3. Casual
users praised 𝑆3 gaze as “sensible”, “natural”, and the performance
as “lifelike”. On the critical front, some users felt the gaze was not as
smooth as [Le et al. 2012], and that the 𝑆3 "doesn’t generate enough
head motion".

6.4 Cinematic Results
Finally, we include eight clips from film/TV (see supplemental video
8:38-17:34) from outside of our Audition dataset. Each clip was
diarized, and a 3D scene with the speakers and 3-5 salient points cre-
ated to match the clip. We additionally used scripting on "Royal with
Cheese" and "Dear Dolores" to establish the contextual importance
of a moving car windshield and reading a letter, respectively.
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Fig. 12. Direct gaze and gaze aversion transition examples, taken from the
Heat restaurant scene.

For each clip, we begin by creating audio-driven facial perfor-
mances using JALI [Edwards et al. 2020a], on the character rigs
shown for example in Figure 12. We then employ 𝑆3 to automati-
cally generate head and eye motion trajectories, that are mapped
to control the head/neck and eye transforms on the rigs. Further,
the animated head and eye rotations produced by 𝑆3, can be eas-
ily combined with any existing head and eye motion to support
a variety of rigs and workflows. The run-time for components of
𝑆3 on a 1 min. audio clip (run on a RTX3060 GPU) are roughly:
diarization 25s, audio2text 10s, audio features 30s; rhythmic head
motion 2-3s, gaze planning and control 2-3s. We include additional
automatically generated clips in supplementary material along with
the comparison videos used in the perceptual study, showing nearly
15 minutes of conversational gaze animation.

7 CONCLUSION
While our evaluation shows 𝑆3 to be an effective workflow to ani-
mating conversational gaze, our approach is not without limitations.

• perfect phonetic alignment between a Directorial script (tran-
script) and audio, remains a challenge for long audio clips
with non-lexical or muffled sounds, noise, cross-talk and back-
ground chatter. While this poses a greater problem for lip-
synchronization [Pan et al. 2022] (see inaccurate lip-sync
around 15:16-15:18 and 16:15-16:19 of the supplementary
video), it can cause problems with the timing of scripted
gestures and other tags.

• the complexities of speakers talking simultaneously, cross-
talk, multi-person group interaction, or speaking to a crowd
however, are subject to future work.

• we do not exploit any emotional or cognitive information in
the input speech audio or transcript, that could be extracted
by sentiment analysis and used to modulate the output head
and eye animation. Presently such information can be explic-
itly authored using a tagged script.

• we rely on existing audio-driven approaches to animate blinks
and other paralingual behavior [Edwards et al. 2020a]. Con-
ceptually this can produce undesirable results, as we do not
explicitly model correlations between blinks and gaze tran-
sitions. In practice however, our blinks align well with the
onset of gaze transitions.

In summary, 𝑆3 is a novel modular approach to conversational
head and eye animation. We model ego-centric gaze behavior as

speech audio based transitions of gaze focus/aversion, refined by
exo-centric gaze behavior based on 3D scene saliency, to output
conversational gaze trajectories. A novel gaze control IK algorithm,
then generates head and eye animation, to satisfy the conversational
gaze trajectories, combined with audio-driven rhythmic head mo-
tion, and script-driven emblematic head+eye gestures. Favorable
comparison to prior art, viewer critique, and compelling results
show 𝑆3 to be a ’sound’ approach to audio-driven head and eye ani-
mation. We anticipate our insights and workflow to meaningfully
impact audio-driven hand and posture animation, and inspire new
directions in expressive facial animation.
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