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Fig. 1. Mushroom Madness: Adaptive subspace simulation captures the challenging detailed deformations and complex heterogeneous material interactions
as a rubber boot descends to stomp on the mushroom kingdom. In this large-scale simulation with 2.5M tets adaptive subspace simulation locally updates
both a subspace modal basis and local nodal refinements (dark-shaded) to carefully capture necessary local deformations. Here, as the shoe drops on the
mushroom guy, adaptivity enables it to squash the ground with sharp detail (note the boot pattern captured by enrichment), as boot and mushroom guy then
tumble across the kingdom, our method’s oracle progressively updates and downdates both nodes and modes to track the local deformations of the kingdom’s
homes, mushrooms and landscape, resulting in an order-of-magnitude speed-up over an equivalent full-space simulation with comparable visual quality.

We construct a subspace simulator that adaptively balances solution im-
provement against system size. The core components of our simulator are an
adaptive subspace oracle, model, and parallel time-step solver algorithm. Our
in-time-step adaptivity oracle continually assesses subspace solution quality
and candidate update proposals while accounting for temporal variations in
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deformation and spatial variations in material. In turn our adaptivity model
is subspace agnostic. It allows application across subspace representations
and expresses unrestricted deformations independent of subspace choice. We
couple our oracle and model with a custom-constructed parallel time-step
solver for our enriched systems that exposes a pair of user tolerances which
provide controllable simulation quality. As tolerances are tightened our
model converges to full-space solutions (with expected cost increases). On
the other hand, as tolerances are relaxed we obtain output-bound simulation
costs. We demonstrate the efficacy of our approach across a wide range of
challenging nonlinear materials models, material stiffnesses, heterogeneities,
dynamic behaviors, and frictionally contacting conditions, obtaining scalable
and efficient simulations of complex elastodynamic scenarios.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional KeyWords and Phrases: Adaptive Subspace Simulation, Nonlinear
Elastodynamics
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1 INTRODUCTION
We focus on the efficient and scalable simulation of large-deformation
contacting elastodynamic Finite Element (FE) models via subspace
reduction. Reduced subspace models have long been applied to
enable efficient computation of deformable body motion via low
degree-of-freedom (DOF) kinematics. In the extreme, rigid and affine
models reduce kinematics to a single transform per-body while, on
the other end of the spectrum, a base FE model’s nodes provide a
DOF upper bound. The development of subspace models that find a
happy balance between these two extremes remains a highly active
area of investigation.
Recently developed subspace models targeting fast simulation

and subspace construction are rapidly advancing in efficiency and
expressiveness. But the fundamental questions of how much of a
subspace to include and which subspace model to use remain, and
must be answered anew for each application. Specifically, subspace
simulations require expert knowledge and hand-tuning to carefully
select a suitable model and subspace truncation that neither under-
represents deformation nor unnecessarily increases compute cost
with too many DOFs.

In part to address these questions, adaptive subspace construction
methods have been proposed (see Section 2) to adaptively update
subspace bases to better capture deformation as needed. However,
these methods remain challenged by dynamics with high-speed
transients, localized deformations (especially, given the often global
support of reduced model modes) – such as those driven by con-
tact and friction, and domains with material and geometric hetero-
geneities. Essentially, subspace adaptivity poses a “chicken and egg”
problem: we generally cannot know what a reasonable subspace
approximation is until we have a baseline full-space model solution
to analyze and, by that point, we’ve already done the full-space
computational work we wish to avoid in the first place. Or, put more
simply, how can we measure the suitability of a specific subspace
choice for a simulation step yet to be run?
In this paper, we propose an adaptive subspace model, oracle,

and time-integration algorithm for large-deformation contacting
elastodynamics. Our adaptive model is subspace agnostic: it can
be used across subspace representations and allows unrestricted
deformations, independent of subspace choice. Starting with a base,
piecewise-linear volumetric FE model and user-selected subspace(s),
we propose an in-time-step adaptivity oracle that measures the
physical solution quality of a currently employed subspace basis,
and evaluates the potential improvement offered by both available
subspace updates and localized nodal enrichments.

We integrate our oracle into an adaptive subspace time-integrator
that provides a pair of exposed tolerances that enables users to bal-
ance cost against accuracy. As these tolerances are tightened, we
show that our model converges to a full-space solution. As this toler-
ance is relaxed, we obtain output-bound simulation costs primarily

tied to the complexity of the simulated deformable body dynam-
ics, rather than mesh resolution or simulated material type. In our
evaluation, we show these properties hold across a wide range of
challenging nonlinear materials models, material stiffnesses, hetero-
geneities, dynamic behaviors, and frictionally contacting conditions.
To support efficient and scalable simulation, we then build a

nonlinear time-step solve algorithm customized for our model and
oracle that supports fully parallel Newton-type time-step solves
with a parallel iterative linear solver and efficient, accurate sub-
space integration via localized BFGS [Broyden 1970; Fletcher 1970;
Goldfarb 1970; Shanno 1970] Hessian approximations.

For evaluation, we implement our adaptive subspace model, ora-
cle and time-stepper with a high-fidelity IPC-based [Li et al. 2020]
simulation model. We demonstrate our method’s ability to preserve
underlying model invariants (intersection and inversion-free tra-
jectories), and to model challenging nonlinear elastodynamics with
wide-ranging material variations and complex large-deformation
dynamics, with a maximum speed-up of over an order-of-magnitude
when producing simulations of equivalent visual plausibility to full-
space IPC simulations.

2 RELATED WORK
Implicit time integrators [Baraff and Witkin 1998] are a fundamen-
tal tool in elastodynamic simulation with robust and stable output,
even at large time steps. Many implicit integrators apply a variation
of a Newton-type solver which requires solving sequences of linear
systems constructed with Hessians of system energies [Hairer and
Lubich 2014; Martin et al. 2011]. Implicit time-step solvers often
distinguish themselves based on whether they utilize the exact-
computed Hessian [Gast et al. 2015] or proxies thereof [Liu et al.
2017], and based on whether they solve the resulting linear system
exactly (oftentimes via direct solvers) or iteratively using (for in-
stance) Krylov subspace approaches [Smith et al. 2018], or multigrid
methods [Liu et al. 2016]. Alternately, the implicit time-step solve
itself can instead be resolved by other nonlinear methods includ-
ing Gauss-Seidel iterations [Macklin et al. 2016; Müller et al. 2007],
local-global methods [Bouaziz et al. 2014; Overby et al. 2017] and
quasi-Newton strategies [Li et al. 2019; Liu et al. 2017]. These design
choices, along with decisions on how to measure convergence and
correspondingly how many inner and outer iterations to take, affect
integrator performance, solution quality, and domain of applicabil-
ity [Li et al. 2019]. While a full Newton-based method has the benefit
of generality and convergence across wide material and resolution
variations [Gast et al. 2015; Li et al. 2020], many methods often
trade performance for stability and convergence in regimes that
feature large stiffness ratios, stiff contacts and/or higher-resolution
discretizations.

2.1 Subspace Simulation
Subspace simulation is one of the earliest strategies for accelerat-
ing elastodynamic simulation in graphics [Pentland and Williams
1989]. Subspace methods arise in two ways. The first constructs a
reduced space that spans a low-energy set of deformations (either
defined via elasticity or a data distribution) [Barbič and James 2005;
Benchekroun et al. 2023; Chang et al. 2023; Sharp et al. 2023; Shen
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Fig. 2. Top left: available subspace models are generally well-suited for
large global deformation but unable to resolve local deformations. Bottom:
with our adaptive method a small amount of combined nodal and subspace
enrichment closely captures the full-space solution’s deformation (top right).

et al. 2021]. The second defines a small set of high-order DOF and
associated interpolation functions [Faure et al. 2011; Jacobson et al.
2011; Wang et al. 2015]. Simulation performance then comes from
operating on a smaller set of total variables due to a “small-enough”
subspace size, but sacrifices fidelity as lower-dimensional subspaces
tend to capture global modes and often just larger and smoother de-
formations. With active research focusing on new subspace models,
we instead focus here on the complementary problem of adaptively
utilizing available linear subspace models to their best advantage.

2.2 Adaptive Subspace Methods for Dynamics
The above-covered challenges to subspace simulation are especially
critical when large deformations and localized contacts can not be
expressed. To improve subspace simulation in these scenarios a
number of adaptive methods for subspace integration have been de-
veloped. Kim and James [2009] focus on swapping time-step solves
between a full-DOF solve and a subspace solve of dynamically updat-
ing orthogonalized snapshots. Here their oracle focuses on disagree-
ments between the running basis and the simulated full-space model,
with an emphasis on skipping as many full-DOF solves as possible.
Alternately, other methods maintain a fixed subspace model and
focus solely on its local enrichment with small regions of nodal
DOF [Teng et al. 2015] or localized displacement fields [Harmon
and Zorin 2013; Romero et al. 2022], at detected contacts [Harmon
and Zorin 2013; Teng et al. 2015] or regions of anticipated deforma-
tion [Mercier-Aubin et al. 2022].
These methods obtain impressive speedups [Teng et al. 2015].

However, extending them to full contacting elastodynamics has
remained challenging. Oracles either focus solely on deformation
energies [Kim and James 2009], without simulating contact at all,
or else apply refinement at all detected contact regions [Harmon

and Zorin 2013; Teng et al. 2015], without analyzing internal en-
ergies (leading to overrefinement) nor handling critical-to-model
self-contact. At the same time swapping between kinematic mod-
els per time step, as done in many of these methods, can generate
popping and other discontinuity artifacts in simulated trajectories
Kim and James [2009]. In this work we propose an oracle for com-
bined subspace adaptivity and nodal enrichment that considers the
coupled physics of contact and deformation forces, rather than geo-
metric contact proximity. We combine this with a backing model
that ensures consistent representation of full-space deformation
with adapted subspace displacements, and so without popping, that
can be computed efficiently online during the solve process, rather
than in-between time steps.

2.3 Full-Space Adaptive methods
Instead of enriching subspaces or basis functions, an alternate and
complementary strategy is adaptive meshing (see e.g., Manteaux
et al. [2017] for a comprehensive review). While we do not perform
explicit remeshing, related to this work is the question of how to
pick a criteria for adaptivity. Prior works rely on the geometric
discretization of the rest configuration [Bargteil et al. 2007], the
deformed configuration [Dunyach et al. 2013], or stress/strain of
a geometric primitive [Debunne et al. 2001; Ferguson et al. 2023;
Narain et al. 2013, 2012; Simnett et al. 2009; Spillmann and Teschner
2008; Wicke et al. 2010]. These works, in particular contact-centric
methods [Narain et al. 2013; Spillmann and Teschner 2008; Wicke
et al. 2010] and especially in-time-step adaptivity [Ferguson et al.
2023], inspire our work. However, while these full-space methods
focus on improving re-meshing, our adaptivity focuses onmeasuring
and improving the expressivity of currently adopted subspaces for
solving time steps on-the-fly.

2.4 IPC Simulation
Elastodynamics with large deformations, high stiffness ratios, and
frictional contact are common and challenging scenarios for simu-
lation. These features stress-test a solvers’ robustness, convergence
and speed. While our adaptive simulation framework is applicable
to general FE models, we evaluate it using the recently developed In-
cremental Potential Contact (IPC) [Li et al. 2020] model. IPC allows
us to challenge our oracle, model and solver to generate simulations
with tightly coupled resolution of contact, friction and deformation.
These are potentially expensive time-step solves with high-stiffness
(from both barrier functions and material properties) and and strong
nonlinearity that require many iterations to converge. This, with
the added overhead of continuous collision detection (CCD) [Li et al.
2021] highlights the necessity of efficient use of subspace DOFs.

2.5 Fast Solvers For Contacting Elastodynamics
A wide range of methods target fast performance for elastodynamic
simulation with contact (e.g., Bouaziz et al. [2014]; Macklin et al.
[2016]; Müller et al. [2007]; Overby et al. [2017]). Motivated by
IPC’s guarantees and solution quality, many recent such methods
develop algorithms specifically customized for accelerating IPC-type
simulations [Chen et al. 2024; Huang et al. 2024; Lan et al. 2023, 2022;
Li et al. 2023; Shen et al. 2024]. Similar in manner to accelerating
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Fig. 3. Comparing the convergence behavior of Stencil Descent [Lan et al.
2023] and Newton’s methods’ on a simple example highlights the challenges
with Stencil Descent’s convergence under mesh refinement. We solve a sin-
gle time step of a simple 1D bar with a nonlinear elastic material discretized
using linear elements. As with many coordinate descent methods, Stencil
Descent’s convergence rate worsens (i.e., an increase in the number of itera-
tions needed to converge) as the bar’s resolution increases. For comparison,
we plot a Newton solver’s convergence for the same time step.

standard implicit time integration, these methods apply various
combinations of quasi-Newton approximations and iterative-solver
strategies. These methods demonstrate significant and impressive
performance gains, especially when compared to the direct linear
solvers and Newton methods used in standard IPC implementations.

Of course, trade-offs for these speed-ups are unavoidable. As well-
covered in the literature, fast numerical solvers developed may often
only apply to materials with a restricted upper bound of Young’s
modulus [Shen et al. 2024], induce strong resolution dependent
convergence, may not model standard hyperelastic materials or
friction [Lan et al. 2022], or discard IPC non-penetration guaran-
tees [Chen et al. 2024]. As Young’s modulus increases to several
giga-pascal ranges (consistent with stiff real-worldmaterials), and/or
time-step sizes grow, convergence can likewise break down alto-
gether. As a concrete example, in Figure 3 we highlight the strong
mesh-dependent convergence degradation behavior of coordinate-
descent-type solvers. Here we implement a simple 1D elastic bar
simulation with Stencil Descent [Lan et al. 2023] as a representative
method, and see that even for this simple domain, iteration counts
required for comparable quality solutions blow up as we increase
resolution.

Ideally, a simulator’s performance should be proportional to the
complexity of the dynamics rather than mesh resolution, time step
or material properties. Unlike prior work on accelerating high-
fidelity frictionally contacting elastodynamic simulations in spe-
cific regimes, our method focuses on producing output that is user-
controllable, convergent, efficient, scalable, and general across a
wide range of materials, time-step sizes, mesh resolutions and sub-
space models. Of course this generality comes with a tradeoff: we
currently do not provide these additional, specialized solver speed-
ups that take advantage of restricted simulation parameter ranges.
However, when such restrictions are reasonable, future work could
certainly look to combine our subspace adaptivity with these further
accelerations.

3 METHOD

3.1 Background
We simulate large-deformation elastodynamics with frictional con-
tact on simplicial meshes T (tetrahedra in 3D, triangles in 2D).
Applying piecewise-linear discretization we store discrete fields for
position and velocity in vectors 𝑥, 𝑣 ∈ R𝑑𝑛 at the 𝑛 vertices of the
mesh in 𝑑-dimensional (𝑑 respectively 3 or 2) space. Each time step
update solve can then be cast in optimization form as

𝑥𝑡+1 = argmin
𝑥

𝐸 (𝑥), (1)

with the incremental potential [Kane et al. 2000; Li et al. 2020],

𝐸 (𝑥) = 𝐾 (𝑥) + 𝛼ℎ2 (Ψ(𝑥) + 𝐵(𝑥) + 𝐷 (𝑥)),
𝐾 (𝑥) = 1

2
∥𝑥 − 𝑥𝑡 ∥2𝑀 ,

(2)

formed by the weighted sum of deformation (Ψ), contact barrier
(𝐵), and friction (𝐷) potential energies, and an inertial weighting
energy (𝐾). Choice of predictor position, 𝑥𝑡 (an explicit function
of prior position and velocity), scaling term 𝛼 ∈ R+, and explicit
update equation for velocity from optimal solution 𝑥𝑡+1, then jointly
define the specific choice of numerical time integration method. As
a concrete example, consider implicit Euler with

𝑥𝑡 = 𝑥𝑡 + ℎ𝑣𝑡 , 𝑣𝑡+1 =
1
ℎ

(
𝑥𝑡+1 − 𝑥𝑡

)
, and 𝛼 = 1. (3)

Each piecewise-linear discrete energy in our incremental poten-
tial is then expressed as a weighted sum of energy functions over
mesh element stencils, 𝑠 (tetrahedral, triangle, edge, point or pairings
thereof depending on energy type and dimension) in T ,∑︁

𝑠∈T
𝑤𝑠𝑊𝑠 (𝑥), (4)

with𝑤𝑠 > 0 the volume, area or length-weighted scaling of a sten-
cil’s rest-shape elements 𝑠 , and𝑊𝑠 is the respective energy density
function of each potential restricted to this element’s stencil.

3.2 Adaptive Subspace Model
We begin our adaptive subspace model by considering subspaces
with bases 𝑈 = (𝑢1, · · · , 𝑢𝑟 ) ∈ R𝑑𝑛×𝑟 and corresponding reduced
coordinates 𝑞 ∈ R𝑟 . We do not, however, make the usual assumption
of a skinny subspace, with a “small enough” 𝑟 ≪ 𝑑𝑛 a priori assumed
sufficient to express full-space deformations. Instead, we adapt our
subspace basis on-the-fly, inside each time-step solve, to construct
locally well-suited subsets 𝑈𝑠 of the larger full-span basis 𝑈 .

We then break another standard subspace modeling convention:
we do not use subspace DOF, 𝑞, to define our kinematics (e.g., via
the linear map 𝑈𝑞). Instead, we always keep our full DOF model
𝑥 ∈ 𝑅𝑑𝑛 as our primary backing representation for each time-step
𝑡 ’s final deformed position 𝑥𝑡 . We then use our adapting subspace
basis and additional nodal enrichment DOF as a running reduced-
model scratch pad to efficiently compute displacements for each
time-step solve from 𝑡 to 𝑡+1. This provides lower-DOF computation
within each time-step solve, continuity for our deformable body
positions, and so ensures that each new update and downdate of our
reduced model does not wipe out pre-existing deformations that the
subspace currently cannot (and does not need to) express. In turn
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Fig. 4. Visualizing error and progress metrics: low magnitudes appear in
dark purple, highmagnitudes in bright yellow. Left: during an initial collision
of soft ball with a fixed spike contact forces at the spike tip produce high
measured error in our metric. Right: as visualized by our progress metric,
localized forces are poorly represented in the current subspace, demonstrat-
ing the need for adaptive enrichment.

this allows us to choose local subspaces solely on their usefulness
to improve our current time-step’s solution.

We begin our simulations with a (small) initial active mode basis
�� (this can be as simple as just a single translational mode) and then
apply updates and downdates to this model with both new candidate
basis vectors from � , and via localized deformations enabled by
adding and removing a subset, X� ⊆ [1, �], of individual nodal
enrichment DOF, �� ∈ R� , � ∈ X� , to the reduced model. These
latter local nodal enrichments complement the generally global
support of subspace models. We can consider them as a special-case
subspace with each DOF �� matched to a corresponding “mode”
given by the node �’s selection matrix.

Given our currently active subspace basis�� ⊂ � and enriching
nodal DOF X� ⊆ [1, �], we evaluate a prospective mode’s poten-
tial utility to improve our current solution estimate, � . To do so
we balance the current solution estimate’s error expressed in this
candidate mode, against the currently active basis’s ability to reduce
this same error without inclusion of the candidate mode, as measured
by a mode’s corresponding progress metric.
In the following sections we first define our error and progress

measures, demonstrate their application to both modal and nodal
queries for updates of our running subspace model, and then con-
struct our corresponding in-time-step adaptive subspace method
and a custom solver algorithm for its efficient parallel computation
of time-step solves.

3.3 Measuring Error
We start by first constructing our measure of model error for each
individual node in the FE mesh. Within each time-step solve the IP’s
(Eq. (2)) gradient directly defines error with a measure of momentum
imbalance per-node. However, the relative scaling of these gradients
can widely vary spatially and by scene, with a strong dependence
on materials (e.g., stiffnesses), mesh structure, scene dimensions,
and temporal resolution.

Towards an errormetric independent of these factorswe construct
a dimension-normalizing scaling factor for each node � ,

�� = ℎ2���̄� . (5)

that gives us a re-scaled, per-node gradient norm measure of error :
‖∇��� (�)‖2/�� . Here, �̄� is the L2 norm of the elastic energy den-
sity Hessians computed at rest 1 (‖∇2�� (� )‖) averaged across the
elements node � contributes to, and �� is the surface area (length in
2D) of the 1-ring around node � containing these elements. The first
and second terms in �� above account for time-step dependence and
mesh variation respectively, while the last term accounts for the
(spatially varying) scaling of the system’s elastic energies, which
largely dominate the variations in scaling for large-deformation
elastodynamics.

Following the analysis of Zhu et al. [2018] we obtain the scaling
terms in �� by considering the gradient of our discrete elastic energy
in Eq. (2) at each node � ,

ℎ2∇��Ψ(�) = ℎ2
∑
�∈T�

� ��
�
� �∇�� (� ��), (6)

where T� are node �’s participating elements, � � is the gradient
operator for the �-th element (�� � its restriction to node �), and��

is again the elastic energy density function for each element � ’s
material, and� � are element volumes. We capture time-step scaling
in the gradient directly with ℎ2 and account for material variation
via the local average of participating�� norms. We then choose
scaling by � � from the observation that that ‖�� � ‖2 =

�� �
2��

, where
�� � is the area of the face (length of edge in 2D) opposed to node �
in element � [Zhu et al. 2018].

With a dimensionless argument to� its gradients share the same
dimensions, making the Hessian norm a suitable scaling. When com-
bined with our scaling by area and time-step, our rescaled gradient
is then unitless, providing a per-node error metric largely agnostic
to time step, material, and mesh variations2.

3.4 Measuring Progress
Regions with large measured error provide useful candidates for
enriching our subspace model. However, we also want to be fru-
gal with our enrichment – each new mode added incurs additional
cost. Before adding any promising candidate modes, we want to
check whether the currently active subspace model can resolve
the error identified in its associated region. For example, in Figure
5, we see large portions of the deformed sliding block are high-
lighted with large gradient error; nevertheless, a single (already
present) translational mode sliding the block downhill is sufficient
to solve the time-step and no enrichment is required. Similarly, as
stiffness increases, contact-induced deformations become increas-
ingly global, correspondingly making a small number of subspace
modes increasingly more effective, so less enrichment of regions
with high-gradient necessary.
1Rest Hessian for normalization: we prefer a dimension-normalized error metric
reflecting the magnitude of deformation. While the magnitude of the current Hessian
is an appropriate candidate for normalization, it increases faster than the magnitude of
the gradient during deformation, defying our purpose. Hence, we instead use the rest
Hessian, which still works well for dimensional normalization but keeps the metric
proportional to the magnitude of deformation.
2Error metric sanity check in 3D: the elastic energy density� is defined on a
unitless deformation argument (refer to Zhu et al. [2018] for details), and thus its
gradient and Hessian both have units of ML−1T−2 . Per Eq. (2), we have ‖∇��

� (� ) ‖2 ∼
ℎ2 ‖∇��

Ψ(� ) ‖ , which (see Eq. (6)) has units of T2 · L3 · L−1 ·ML−1T−2 = ML. Similarly,
the scaling factor�� has units of T2 · L2 ·ML−1T−2 = ML, which cancels out numerator
units ‖∇��

� (� ) ‖2 in the error metric, making the measure dimensionless.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.



6 • Ty Trusty, Yun (Raymond) Fei, David I.W. Levin, and Danny M. Kaufman
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Fig. 5. A soft cube slides on a frictionless ramp. Elastic forces are balanced,
so the resulting motion is pure rigid sliding. Left: large deformation results
in high gradient error. Right: but the energy decrease, as measured by
our progress metric, is also large since the rigid motion can be exactly
represented in the current subspace.

We thus measure the progress for each node � , by the change in
energy that would be generated nearby, if we were just to use the
currently active subspace. Specifically, we first compute the line-
search-scaled descent direction, �� , generated by a Newton step
using solely the currently active subspace, �� . We then consider
the stencil-size weighted sum of IP energies in the one-ring around
each node � , �� (�), and compute the potential change generated by
the subspace, per node, as

Δ�� = �� (�) − �� (� + ��). (7)

Following our above analysis of the IP gradient, we then consis-
tently re-scale our per-node energy change with the scaling factor

�� = ℎ2���̄� , (8)

to get our dimensionless 3 per-node progress measure: Δ��/�� . Here
�̄� is the same averaged energy-density Hessian measure derived
above, and �� is a per-node volume (computed by apportioning
element volume fractions equally to each node). For larger positive
Δ�� values, energy decrease is significant around node � , and so
we use this measure as a local estimate for our active subspace’s
effectiveness to resolve errors in regions with large gradients.

3.5 Subspace and Node Candidates
With our above measures in place we can now define corresponding
error and progress measures for nodal and modal update candidates.

Nodal Candidates. For an individual candidate node �� ∈ R3, � ∈
[1, �] we compute the gradient,

� =
∑
�∈T�

��∇�� (�) ∈ R3�, (9)

restricted to the node’s FE basis4. This amounts to a projection
of the full gradient, ∇� (�), into the node’s local basis, giving us a
smoother measure of the error at the node compared to ∇��� (�).
We then define its local error with

G� (�) =
‖� ‖2
��

, (10)

3Progress measure sanity check in 3D: Following Eq. (2), the difference of � (� )
has the unit of T2 · L3 · ML−1T−2 = ML2 . The scaling factor �� has the unit of
T2 · L3 · ML−1T−2 = ML2 , which cancels the unit of the numerator and makes the
progress measure dimensionless.
4Recall that T� are node �’s participating elements, �� are element stencil weights (e.g.,
volume for tetrahedral elements), and�� associated energy densities.

and progress by

E� (�) =
Δ��
��

. (11)

Modal Candidates. For an individual candidate mode �� ∈ R��

we compute its corresponding gradient and energy change by pro-
jection, respectively as

� = ��
��� ∇� (�)
��� ��

∈ R3�, (12)

and

�� = �̄�
�̄�� Δ�

�̄�� �̄�
∈ R�, (13)

where Δ� = (Δ�1, · · · ,Δ��) ∈ R� , and the scalar mode reduction
�̄� ∈ R� is formed by the per-DOF average of�� over each successive
set of � coordinates. The reduction, �̄� , enables distribution of per-
vertex scalar quantities (in our case energy change, Δ��) to per-
vertex vector-valued modal bases, �� ∈ R�� . Our choice, informed
by equal basis values per-dimension in most bases (e.g. eigenmodes),
is to average over the � coordinates to obtain the per-vertex scalar
basis vector.

We then define each mode’s error with a maximum (
∞ measure),

G� (�) = max
�∈[1,�]

‖�
�
‖2

� �
, (14)

and progress by total (cumulative) energy change

E� (�) =
∑

�∈[1,�]

��
�

� �
, (15)

across the mode’s (generally global) support in the mesh.

Modal Block Candidates. For some subspace models (e.g., skinning
modes) it is natural to consider blocks of subspace modes �� =
(��,1, · · · ,��,� ) ∈ R��×� as a single unit for an individual error
and progress query. To do so, our modal projections in Eq. (12) and
Eq. (13) extend naturally as

� = ��

( ��,1
��,1���,1

, · · · ,
��,�

��,�
���,�

)�
∇� (�) ∈ R3�, (16)

and,

�� = �̄�

( �̄�,1

�̄�
�,1�̄�,1

, · · · ,
�̄�,�

�̄��,��̄�,�

)�
Δ� ∈ R�, (17)

respectively. Error and progress measures for the modes in �� then
follow unchanged with Eq.s (14) and (15).

3.6 In-Time-Step Adaptivity
We begin each time-step’s Newton solve with our current state
�� , �� ∈ R�� , our active subspace basis �� ∈ R��×�, � ≤ 	 , our
subset X� ⊆ [1, �], |X� | = � ≤ �, of enriching nodes, and a cor-
responding sparse selection matrix �� ∈ R��×�� that maps our
enriching nodal DOF to their full-space entries.
To reduce our subspace model’s kernel and to enable efficient

time-step solves (see Section 3.8 and Figure 6 below) we choose a
non-overlapping decomposition of our simulation domain between
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Trading Spaces: Adaptive Subspace Time Integration for Contacting Elastodynamics • 7

our nodal enrichment DOF and active modal DOF. To do so, in com-
puting displacements, we often employ in the following a masked
active modal basis �� = �′��� where � ′� ∈ ���×�� masks out all our
enriched DOF coordinates from the active modes’ displacements to
enforce the non-overlapping decomposition.
Within each time-step solve, at the start of each Newton iter-

ate � , we first incrementally update �� and X� using our current
error and progress measures, and then solve for new displace-
ments � = ��� + ���� ∈ R�� to update our improving solution
�� ← ��−1 + � . For modal updates, we visit modal block or indi-
vidual candidates in parallel. Similarly, for nodal updates we visit
all nodes in parallel. If a node is included, all nodes in its region
within a fixed decomposition 5 are added. This approach reduces
mesh-resolution dependency in nodal enrichment by adding uni-
formly sized groups of nodes (see Fig. 7). The fixed decomposition
is also used for subspace Hessian updates, as discussed in Sec. 3.9.
To summarize, we use two decompositions: the first is adaptive
for separating nodal and modal domains, and changes within each
time-step solve, the second is fixed and used exclusively for nodal
enrichment and Hessian updates. At the end of the time-step solve
we then use an a posteriori analysis based on our solution for down-
dating �� and X� . We visit each of these steps in greater detail in
the following sections below.

3.7 Adaptive Update Oracle
At start of each Newton iterate � we first compute an unmasked
subspace descent direction for the active modal coordinates, �� :

�� = −�−1
 ∇� (��−1 +����),

�� =
(
∇2
� (��−1 +����)

)
,

(18)

with a rescaling, �� ← ��� , given by line-search on the initial �� .
As covered above in Sections 3.4 and 3.5, we then apply �� and

��−1 to compute current errors, G� (�), and G� (�), and subspace
progressions, E� (�) and E� (�), for queried modes and nodal enrich-
ments. Our adaptivity oracle then activates all candidate queries
with both errors greater than threshold, G(�) > �G , and progress
less than target, E(�) < �E . Thus, when local error is high, and
the predicted improvement by the current active model is low for a
queried mode or node, the displacement subspace model is enriched
with the new DOF.

3.8 Newton-Iterate System
With our updated displacement model, (��,X�), we next build the
full system to compute our next descent direction. Expanding the
corresponding IP energy evaluation, � (��−1 + ���� + ����), w.r.t.
variations in modal and enriched coordinates, we solve the linear
system (

� �

�� ��

) (
�

��

)
= −

(


�

)
. (19)

5We precompute our subdomain decomposition with METIS [Karypis and Kumar 1997],
which yields nodal partitions that are geometry-aware, uniformly shaped, and roughly
equal volume. Example partitions are seen in Fig. 7, and the number of partitions for
each scene are reported in Table 2.

Fig. 6. Left: our adaptive subspace decomposition. Right: visualization of
the corresponding matrix structure for our method’s linear system solve.

for subspace and nodal enrichment descent directions � and �� .
Here � ∈ R�×� and �� ∈ R��×�� are our active modal and node
Hessians respectively, � ∈ R�×�� is our coupling Jacobian capturing
interaction between enriching nodes and modes, and  = ���∇�,
and � = ��� ∇� are the corresponding IP gradients for modal and
nodal DOF.
Computation of the nodal Hessian �� = ∇2

��
� = ��� ∇2

�� ��

sandwiches our full-space Hessian, ∇2
��, with our sparse selection

matrix. However, in practice, as the selection stencils pull out just
our� enriched DOF, we efficiently compute the sparse �� matrix
with just the corresponding enriched DOF stencil entries.

The coupling Jacobian � = �2�
�����

= ��� ∇2
�� �� then covers the

interaction between enriched and modal DOF. Because of our design
choice of a non-overlapping decomposition (see Section 3.6 above)
for enriched nodes and modal subspaces, computing the Jacobian
is also efficient with Hessian contributions to the sparse matrix �

only sourced from energy stencils that include both enriched and
subspace DOF (see Figure 6). This decomposition reduces � assembly
cost, but also the resulting sparsity (often more than 10x fewer non-
zeros than an overlapping decomposition), greatly reduces the cost
of the matrix-vector products in the linear solve (Sec. 3.10).
On the other hand, because of the generally large subspace sup-

port, our subspace Hessian, � = ∇2
�
� = ��� ∇2

�� �� is the most
computational challenging term in each linear system. Unmasked
subspaces, spanning an entire deformable body’s domain, contribute
large dense Hessian matrix entries to � for each energy stencil
contribution, while evaluation of their entries could require compu-
tation of all full DOF internal energy Hessians in the domain. Direct
computation of � is thus impractical. Nevertheless, we require
accurate approximations of these entries for efficient and stable
simulation solutions.

3.9 Subspace Hessian Construction
To efficiently compute our subspace Hessian, within each time-step
solve we maintain a running BFGS [Broyden 1970; Fletcher 1970;
Goldfarb 1970; Shanno 1970] approximation for the deformation
energy (Ψ) contributions to our unmasked subspace Hessian �� =
��
� ∇2

���� . To have a more accurate approximation, and to be free
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8 • Ty Trusty, Yun (Raymond) Fei, David I.W. Levin, and Danny M. Kaufman

Fig. 7. We apply a precomputed METIS-constructed [Karypis and Kumar
1997] subdomain partition to both locally update our nodal DOFs in con-
structing our subspace Hessian (Sec. 3.9) and to form candidates groups for
nodal enrichment queries (Sec. 3.5).

from parameter tuning, we do not use L-BFGS[Liu and Nocedal
1989] or other quasi-Newton strategies but rather direct BFGS-type
secant updates to efficiently approximate the subspace integration
of elastic energy Hessians 6. We then adopt an exact evaluation of
inertial (�) and contact (� and �) energy contributions to �� . We
choose this balance due to the following observations:

(1) elasticity costs dominate the computation of �� ,
(2) overhead for the constant inertial and sparse surface contact

Hessians are small in comparison, and
(3) most critically, the large gradient variations introduced by

contact energies significantly break down BFGS approxima-
tion accuracy over iterations.

We thus balance efficiency and accuracy by applying BFGS approxi-
mations for deformable energy stencil contributions to the subspace
Hessian but exact contact and inertial energy Hessian evaluations.
While it is then tempting to simply and directly apply a BFGS

approximation for all subspace elasticity contributions across our
entire integration domain, there is a subtle but critical obstacle that
requires care. Considering Eq. (19), notice that subspace energy
contributions enter our solved linear system from both � and off-
diagonal � entries. Using different approximations for these two
blocks would significantly harm our approximation accuracy (and
so significantly degrade convergence) and can break the positive
definiteness of our system, blocking solver progress altogether.
To guarantee system consistency in Eq. (19), we instead exactly

integrate elastic energy contributions to the subspace Hessians for
all for all stencils that become coupled by including both subspace
and enriched DOF. We do this because a BFGS approximation
becomes inconsistent once even a single node within it is enriched,
and we must regularly account for this as nodal updates can be
applied in each new Newton iteration.
To allow for an efficient, consistent, and reusable BFGS approxi-

mation, we precompute an element-wise decomposition of our full
simulation mesh T into 
 subspace-integration subdomains, reusing
the fixed decomposition introduced in Sec. 3.6. For each subdomain
ℓ ∈ [1, 
], across iterations of each time-step solve, we maintain
our running elastic energy BFGS approximation (re-initialized at
the start of each time step). Then, to ensure system consistency,

6 We apply BFGS as it significantly improves accuracy over L-BFGS. Since we are
already working with a small, dense subspace Hessian that is factorized at a low cost,
we do not need an L-BFGS approximate Hessian inverse.

once any node in a subdomain ℓ is enriched and added to X� , we
invalidate that subdomain and swap it over from BFGS approxima-
tion to exact evaluation. This allows us to apply exact evaluations
only where and when needed and to continue our efficient BFGS
approximations everywhere else in the domain away from nodal
enrichments. These per-subdomain BFGS Hessians are guaranteed
to remain positive semi-definite [Nocedal and Wright 2006], ensur-
ing that the final assembled subspace Hessian is both consistent
and positive definite. Finally, it’s important to emphasize that this
subdomain decomposition is fixed and soley for efficient subspace
integration updates. It is maintained separately from our adaptively
updating non-overlapping decomposition between subspace and
nodal enrichment domains (Sec. 3.6).

We apply our BFGS update, at Newton iteration � , for each valid
subdomain ℓ ∈ [1, 
], to compute its subspace elastic Hessian con-
tribution, � ℓ

� , by solving the local subspace secant system,

� ℓ
� (��� − ��−1

� ) = ��
� �ℓ

(
∇Ψ(�� ) − ∇Ψ(��−1)

)
, (20)

where �ℓ is a selection matrix that extract nodes in subdomain
ℓ , and averages (evenly distributed) contributions from interface
nodes shared by multiple subdomains. We then assemble our full
elastic subspace Hessian by summing the contributions from all
per-subdomain BFGS approximations and Hessians.

3.10 Adaptive Time-Step Solver
At the start of each new Newton iteration � , we compute our un-
masked subspace Hessian �� , use it to compute tentative subspace
direction �� , and apply it, as detailed above, to update our modal
and nodal enrichments. If the subspace basis, �� , is updated, we
rebuild �� from scratch, and reinitialize BFGS using the updated
subspace Hessians. Then, to assemble our linear system in Eq. (19)
we first directly mask �� to compute our non-overlapping subspace
Hessian, � . Then, taking advantage of our decomposed system
structure, we construct a Schur-complement-based iterative method
to solve the system.

Leveraging the subspace Hessian’s small dense structure, we first
(Cholesky) factorize � . With

� = −�−1
 (��� + ) (21)

we obtain
(�� − ���−1

 � )�� = �−1
  − � . (22)

We solve this latter system with diagonal (�-blocked) precondi-
tioned conjugate gradient (PCG) 7 via efficient matrix-vector prod-
ucts. Here ���� is inexpensive with sparse �� applying a small
fraction of the full-space Hessian’s non-zeros. Likewise, we apply
the sandwiched subspace inverse ���−1

 ��� in three efficient sub-
steps. First �1 = ��� ∈ R� is efficiently applied due to our choice of
non-overlapping subspaces. Next �2 = �−1

 �1 is extremely fast with
our pre-factorization and subspaces with � � �. Then, �3 = ���2
follows as per �1 with a final add of −�3 to ���� to complete a
matrix-multiply. Once we complete a CG solve we generate the new
iterate’s nodal descent direction �� . Substituted into Eq. (21), we
then get � , and so our corresponding full-space descent direction
for iteration � : �� = ��� + ���� .
7We use 10−5 relative tolerance.
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We then perform backtracking line-search with 𝛼 on 𝐸 (𝑥𝑘−1 +
𝛼𝑑𝑘 ) to get our new updated full-DOF state 𝑥𝑘 ← 𝑥𝑘−1 + 𝛼𝑑𝑘 .
Convergence and solution accuracy after each Newton iteration are
measured in full space using a Newton-solve termination criteria
with ∥𝑑 ∥/ℎ ≤ 𝜖 following Li et al. [2021]. After the solve, we update
our active subspace basis and enriched nodal set with downdating
(Sec. 3.11). We summarize our full algorithm below in Algorithm 1.

Algorithm 1: One step of our adaptive time-step solver
Function SimulationStep(𝑥𝑡 ,𝑈𝑎, X𝑎):

𝑥 ← 𝑥𝑡 ;
𝑞 ← 0;
while not converged do

𝐻𝑎 ← SubspaceHessian(𝑥 ) ; // Sec. 3.9

𝑈𝑎, X𝑎, 𝐻𝑎 ← UpdateBasis(𝑥,𝑈𝑎, X𝑎, 𝐻𝑎 ) ; // Sec. 3.6

// Compute descent direction (Sec. 3.10)
𝑑𝑞, 𝑑𝑥 ← LinearSolve(𝑥,𝑈𝑎, X𝑎, 𝐻𝑎 ) ;
𝛼 ← LineSearch(𝑥,𝑑𝑞, 𝑑𝑥 ) ;
𝑥 ← 𝑥 + 𝛼 (𝐵𝑎𝑑𝑞 + 𝑆𝑎𝑑𝑥 ) ;
𝑞 ← 𝑞 + 𝛼𝑑𝑞 ;

𝑈𝑎, X𝑎 ← DowndateBasis(𝑥,𝑞,𝑈𝑎, X𝑎 ) ; // Sec. 3.11
return 𝑥,𝑈𝑎, X𝑎 ;

3.11 Downdating
We end each adaptive time-step solve with an optimal full-DOF
solution 𝑥𝑡+1 ∈ R𝑑𝑛 , with a corresponding subspace displacement,
𝑑𝑡+1𝑞 ∈ R𝑎 . We then apply these optimal end-of-step solutions for an
a posteriori analysis to downdate the active subspace 𝑈𝑎 ∈ R𝑑𝑛×𝑎
and the active nodal set X𝑎 .
First, for modal downdating, we consider the amount of utility,

in the form of actual displacement, that each active subspace mode
contributed during the just-completed time-step solve. To do so,
for each active mode 𝑢𝑖 ∈ 𝑈𝑎 with corresponding displacement
𝑑𝑡+1𝑞𝑖

, we downdate mode 𝑖 from the active subspace basis 𝑈𝑎 if
the full-space displacement applied by the mode was small, i.e.,
∥𝑢𝑖𝑑𝑡+1𝑞𝑖

∥∞/(𝑙ℎ) < 𝜖𝑑 . Here we scale by characteristic object length,
𝑙 (given by bounding-box diagonal), and time-step, ℎ, to correspond-
ingly make our downdating criterion robust to scale and time-step
size variation.
Correspondingly, for nodal downdating, we measure the util-

ity (value added) of the nodal enrichment to the current subspace
model. We do this by comparing the difference between the dis-
placement that would have been effected at each node 𝑖 ∈ X𝑎 using
the subspace displacement at end of step solve 𝑑𝑎𝑥𝑖 = 𝑆𝑖𝑈𝑎𝑑

𝑡+1
𝑞 ∈ R𝑑

(where 𝑆𝑖 is node 𝑖’s selection matrix) against the actual displace-
ment applied at the enriched nodal DOF, 𝑑𝑥𝑖 = 𝑥𝑡+1

𝑖
− 𝑥𝑡

𝑖
∈ R𝑑 .

We downdate all enriched DOF 𝑖 from X𝑎 for which the currently
active subspace model already well-captures their displacement,
∥𝑑𝑥𝑖 − 𝑑𝑎𝑥𝑖 ∥2/(𝑙ℎ) < 𝜖𝑑 .

4 RESULTS
Our code is implemented in C++ with Eigen [Guennebaud et al.
2010] for linear algebra and parallelized with Intel TBB [Pheatt 2008]

and OpenMP [Dagum and Menon 1998]. All timings are reported on
a machine with a 32-core AMD Ryzen Threadripper PRO 3975WX
CPU and 512 GB of RAM. For our Schur-complement’s iterative
solver phase, we use Eigen’s Conjugate Gradient (CG) solver. The
same CG solver is adopted when compared with full-DOF IPC using
CG in its Newton solver. On the other hand, when comparing with
full-DOF IPC using a direct solver, we use Intel Pardiso [Schenk
et al. 2001] for LLT factorization8.
For all examples, we use non-inverting, Neo-Hookean elastic-

ity for our material model and BDF2 for our base time integration
method 9. We use a progress metric threshold of 𝜖E = 1e-4 through-
out this paper for our oracle.We evaluatemost exampleswith default
error metric threshold settings of 𝜖G = 0.5 for both nodal and modal
adaptivity. In some examples, we vary these settings to explore
the balance between the aggressiveness of each enrichment mode.
Table 2 summarizes these and other parameters for all examples.

The full-time-step cost of each large scene can be found in Table
1. For each scene, we report the mesh statistics and the amount of
nodal and modal enrichment for a representative time step with
a significant iteration count and large number of contacts. For
the same time step, we compare the cost of computing a solution
with our method versus IPC using Pardiso LLT with both TBB and
OpenMP parallelization – the fastest variant of IPC we test. We also
compare with IPC using Eigen’s CG solver with a 3× 3 block-Jacobi
preconditioner, against which we see speedups over of up to 70x (see
Sec. 4.5). For all examples, we choose tolerance settings to achieve
comparable high-fidelity outputs to IPC (please see our supplemen-
tal video) while observing significantly faster times. We observe
speedups of 6-40x for timestep solves, depending on scene scale and
amount of adaptivity. Unless expressly specified, all examples in
this table and elsewhere (e.g., for comparing subspace models) use
subspaces constructed from Skinning Eigenmodes [Benchekroun
et al. 2023].

4.1 Oracle Evaluation
In Fig. 2, we highlight the inability of subspace bases (here Quadratic
and Skinning Eigenmodes) to resolve localized deformations due
to contact. However, with our (small) enriched nodal basis plus the
same number of Skinning Eigenmodes (10 modes each), our method
produces a simulation state qualitatively close to full-space IPC with
a fraction of total DOFs.
Fig. 4 we visualize our error and progress metrics for a collision

between a soft sphere a fixed cone. At the point of contact, our
metrics measure high error and low energy progress, resulting in
our adaptive model’s downstream enrichment of nodal DOFs near
this point of contact. In contrast, in Fig. 8, we see that full-space
Newton decrement measure for the same time step, a residual that

8We also test with Cholmod Supernodal LLT [Chen et al. 2008], Eigen Simplicial
LLT [Guennebaud et al. 2010], AND AMGCL [Demidov 2020]; we find that Pardiso is
consistently fastest.
9For BDF2 (second-order backward differentiation) time-integration we use

𝛼 = 4/9, �̃�𝑡 =
1
3

(
4𝑥𝑡 − 𝑥𝑡−1 ) + 2ℎ

9
(
4𝑣𝑡 − 𝑣𝑡−1 ) ,

𝑎𝑡+1 =
4ℎ2

9
(
𝑥𝑡+1 − �̃�𝑡

)
, and 𝑣𝑡+1 =

1
3

(
4𝑣𝑡 − 𝑣𝑡−1 ) + 2ℎ

3
𝑎𝑡+1 .

in our IP energy (see Eq. (2)).
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Table 1. We report statistics for a single time-step solve (choosing a step with large deformation and contact) for both our method and IPC. |	 |, |� |, |� | are
the number of vertices, faces, and tetrahedra, respectively, in the scene. | E� |/|	 | is the ratio of enriched vertices to total vertices. |�� |/|� | is the ratio of
enriched bases to the total number of available bases. These values are measured at the end of the time-step. Timings are reported in������ : �������
format for our algorithm as well the time taken for a full-space IPC to solve the same time-step.

Scene |  | | | |� | |E� |/|  | |�� |/|� | Ours (� : �) IPC (� : �)
Iceberg (Fig. 12) 18k 26k 64k 0.16 72/204 0:02 0:03
Roller Terrain (Fig. 11) 80k 72k 357k 0.049 72/240 0:18 7:29
Jello Soft (Fig. 14) 149k 39k 815k 0.77 120/216 0:49 4:19
Jello Rubber (Fig. 14) 149k 39k 815k 0.11 84/216 0:12 4:38
Jello Stiff (Fig. 14) 149k 39k 815k 0.0 84/216 0:07 33:17
Spiky Ball Eigenmodes (Fig. 18) 116k 207k 329k 0.27 84/204 2:21 3:49
Spring Fist (5e-3) (Fig. 15) 245k 67k 1314k 0.037 312/384 0:24 3:20
City (Fig. 13) 465k 634k 1719k 0.028 204/204 7:11 27:45
Mushroom Kingdom (Fig. 1) 550k 472k 2516k 0.051 264/576 14:36 153:36

Table 2. Scene parameters: � is Young’s Modulus, � is Poisson’s Ratio, Δ� is the time-step size, � is the number of subdomains (same for both nodal enrichment
and BFGS), ��G and ��G are the error thresholds for the subspace DOF and nodal DOF, respectively. �� is the downdating threshold and |�init | is the size of the
initial basis.

Scene � (Pa) � Δ� tol 
 ��G ��G �� |�init |
Iceberg (Fig. 12) 1e6 0.45 0.01 1e-3 200 0.1 0.1 0.1 60
Roller Terrain (Fig. 11) 1e5-1e7 0.4 0.01 5e-4 500 0.5 0.5 0.05 72
Jello Soft (Fig. 14) 1e5-1e9 0.4 0.005 5e-3 700 0.5 0.5 0.1 72
Jello Rubber (Fig. 14) 1e6-1e9 0.4 0.005 5e-3 700 0.5 0.5 0.1 72
Jello Rubber (Fig. 14) 1e9 0.4 0.005 5e-3 700 0.5 0.5 0.1 72
Spiky Ball Eigenmodes (Fig. 18) 5e5 0.4 0.01 1e-3 800 0.2 0.1 0.1 36
Spring Fist (5e-3) (Fig. 15) 1e5-1e8 0.4 0.005 1e-2 300 0.5 0.5 0.2 312
City (Fig. 13) 1e5-1e7 0.4 0.01 1e-4 1000 0.5 0.5 0.1 204
Mushroom Kingdom (Fig. 1) 1e5-1e9 0.4 0.005 1e-3 800 0.5 0.5 0.1 132

Newton DecrementNewton Decrement Timestep Solution

Low displacement

Large displacement

Large deformation

No deformation

Fig. 8. The magnitude of an expensive full-space Newton decrement is
not a useful measure for evaluating an individual vertex’s contribution to
the dynamics. For a sphere falling on spike example, deformation occurs
near the point of contact, but points at the contact are not displaced (so
the Newton decrement is small here); instead, the surrounding vertices
translate vertically. Please compare with our adaptive method’s inexpensive
and effective oracle evaluation for the same example in Fig. 4.

we otherwise might presume to be a better-scaled error measure
(albeit also prohibitively expensive), is not useful for determining
the utility of a DOF’s contribution to the dynamics.
Fig. 5 demonstrates the application of our progress metric. In

this simulation, we slide a soft E=5e3 Pa cube down a frictionless

Low Resolution High Resolution Irregular Mesh Stiff Material

Fig. 9. Visualizing enrichment for a cube falling on a spike. In all simulations,
we use the same parameters, demonstrating the oracle’s robustness to
configuration changes. In the first three simulations, we vary the mesh
topology, but see similar enrichments. In the last simulation, we increase
the stiffness (Young’s Modulus 1e5 Pa to 1e8 Pa), and as expected, no
enrichment occurs despite similar contact forces.

ramp. Once elastic forces balance and oscillations dampen, the cube
remains compressed and only slides rigidly while deformed. In
contrast to our example in Fig. 4, our error measure is significant
due to the high elastic gradient. However, our progress measure
is also correctly large, indicating that a simple modal basis that
includes rigid motion, already applied, can capture the necessary
error reduction via a rigid motion so that no additional unnecessary
enrichment is applied.
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EigenmodesEigenmodes

}
}

Enriched

Not
enriched

Fig. 10. To visualize modal enrichment, we drop a beam on a fixed sphere
using a Skinning Eigenmodes subspace. Starting with just a constant affine
basis, we query the addition of 4 additional Eigenmodes (left). The oracle
enriches with necessary bending modes upon contact, resulting in the
desired global bending deformation at the end of the time step (right).

In Fig. 9 we drop a cube on a fixed spike to evaluate the mesh-
independence andmaterial-awareness of our adaptivity oracle. Here,
we run the same scene up to the same time step with four variations:
a low-resolution mesh, a high-resolution mesh, a nonuniform mesh,
and a stiff material. In the first three examples (left to right), all
scene parameters are held the same (including material stiffness) so
we expect the same effective compliance and see that our oracle’s
applied adaptivity helps achieve this. Likewise, we see that in all
three examples, the enrichment and, as a result, the total deforma-
tion is qualitatively close, demonstrating the oracle’s consistency
across variations in mesh resolution and topology. In the fourth
(rightmost) example, we highlight the oracle’s ability to account for
material variation. Here, the cube’s stiffness is increased from 1e5
Pa to 1e8 Pa, so that no deformation is expected. In response, we see
that our oracle correctly does not enrich (with nodal nor subspace
DOF), and the dynamics remain fully and correctly governed by the
current simple subspace basis.
Next, in Fig. 10, we demonstrate the effectiveness of our modal

adaptation. Here, we drop a beam on a fixed sphere with a Skinning
Eigenmodes subspace. Our starting subspace basis includes just
the constant affine basis. At each Newton iteration, we query the
addition of 4 additional subspace Eigenmodes for modal adaptivity.
In this scenario, the expected behavior is to bend after contact with
the sphere. During the beam’s initial contact with the sphere, the
oracle appropriately enriches with additional necessary bending
modes, generating the desired global bending deformation at the
end of the time step.

4.2 Downdating
In Fig. 11, we evaluate the effectiveness of our downdating. In this
example, we drop a stiffer spiky roller on a soft terrain. Keeping
parameters fixed, we simulate this scene with (bottom) and without
(top) our downdating enabled. Our posterior analysis ensures that
when downdating is enabled we only remove DOFs that contribute
little utility to the current displacement. In turn, we see that our sim-
ulation with downdating produces a simulation with qualitatively
identical dynamics at a fraction of enriched DOFs. This results in a
1.7x speedup in the end-to-end simulation over our method without
downdating applied.

Without
Downdating

full-spacefull-spacefull-space subspacesubspace

With
Downdating

(1.7x speedup)
Downdating

(1.7x speedup)
Downdating

Fig. 11. Downdating reduces DOF, leading to significant speedups. We drop
a spiky roller on a soft terrain and compare the simulation without (top)
and with (bottom) downdating enabled. With downdating, we see fewer
active DOF (in yellow) and a 1.7x speedup in the end-to-end simulation
time with no loss in visual fidelity.

4.3 Error Analysis
We expose our two oracle error (nodal and modal) thresholds to al-
low users to vary output fidelity against cost. With these thresholds,
users can change solution quality in their simulations, ranging all
the way from very little enrichment to full-space solutions of the
underlying full-DOF IP in Eq. (2).
In Fig. 12, we demonstrate this control. We simulate a soft toy

boat dropped on a fixed iceberg geometry and, varying our error
thresholds, reporting our method’s corresponding generated enrich-
ment (nodal and modal) and the full-space residuals of the solutions
averaged over the five most challenging (and expensive) time steps
mid-drop.
We hold our subspace error threshold fixed (at ��G = 0.5) for

the two left plots and vary our nodal error threshold. We report
the ratio of enriched nodes at each threshold and the full-space
residual. The full-space residual is measured using the full IPC
Newton Decrement norm (∞-norm), giving us the exact error of
each of our adaptive subspace simulations w.r.t. their accuracy in
the full-space IPC simulation solution. We observe that at small
thresholds (i.e., ��G = 1e-2) all or almost all nodes are enriched, giving
a residual that tightly satisfies the IPC tolerance. As we increase our
threshold, the ratio of enriched nodes decreases, and the residual
monotonically increases, giving simulation results that span the
entire spectrum from accurate IPC solutions to fast approximations.

In the next two plots, we perform the same threshold analysis on
our modal subspace, varying our subspace adaptivity error thresh-
old while holding the nodal error threshold fixed at ��G = 0.5. As
in the nodal experiment above, as we decrease the threshold, our
number of added modes increases, and our subspace solution’s full-
DOF residual decreases. However, as expected, with the limited
ability of modes to fully resolve local deformations, solely varying
subspace thresholds has less impact on residuals. In summary, we
see that decreasing the error threshold improves accuracy and ex-
pressiveness while increasing the DOF count for both nodal and
modal components.
In Fig. 13, we drop a spiky mace on a large squishy city scene.

Taking a simulation snapshot from the middle of our adaptive sub-
space simulation, we solve this same corresponding middle step
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10⁻²

10⁻¹

10⁻³
10⁻¹10⁻²

Error Threshold (full DOF)

Ratio of Full-DOF

Error Threshold (full DOF)
10⁻¹10⁻²

1.0

0.6

0.2

10⁻¹10⁻²
24

72

120

168

#Active Modes Full-space Residual

10⁻¹10⁻²
0.25

1.0

1.75

Error Threshold (modal) Error Threshold (modal)

Full-space Residual

Fig. 12. We drop a soft boat on an iceberg and perform a threshold analysis for the full-space error metric (left two plots) and the subspace error metric
threshold (right two plots). As the error threshold decreases for full DOF enrichment, our solver’s enrichment increases and monotonically reduces the residual
(measured using the full-space IPC residual) all the way to the full IPC solution. Similarly, for the modal error, reducing the threshold improves the residual
and increases the number of active modes.

Fig. 13. (Left) Three sequential frames from the City simulated with adaptive subspaces. (Right) We compare the difference (displacement distance) between
our adaptive subspace solution and the full-space IPC solution at the middle time step. The highest error is concentrated at the deepest-compressed contact
points, where the largest deformation occurs. Small displacement differences are also measured (right) but not visible in comparisons at some of the interfaces
between modal and full DOF spaces, and likewise elsewhere in the scene due to the modal deformations imperfectly resolving the full-space deformations
below the currently applied thresholds.

with full-space IPC and measure the magnitude of the differences
between our method and the IPC solution. As expected, the largest
solution difference between the two is at the deepest-compressed
points of contact. Additionally, we also measure much finer, not
visible, displacement differences at the interface between the sub-
space and full-space representations (on the far left of the domain).
Interspersed throughout the scene are also other small magnitudes
differences due to the modal deformations imperfectly resolving
the full-space deformation solution. Of course, as covered above,
decreasing tolerance thresholds then further decreases these differ-
ences with increasing cost.

4.4 Varying Materials and Time Steps
Subspace adaptivity enables efficient simulation across a wide range
of variations in scene parameters. In Fig. 14, we drop a stiff (E=1e9)
anvil on a “jello” block that we progressively stiffen across simu-
lations with Young’s moduli ranging from 1e5 to 1e9 Pa. For each
simulation we show the frame at effective maximum compression.

Soft
(E=1e5 Pa)

Rubber
(E=1e6 Pa)

StiffStiff
(E=1e9 Pa)

Fig. 14. Our oracle performs well across a broad spectrum of material stiff-
nesses. We drop a stiff anvil (E = 1e9 Pa) onto a “jello” block with varying
stiffness (1e5 Pa, 1e6 Pa, and 1e9 Pa) and observe that the amount of nodal
enrichment (shown in dark red) directly varies with the stiffness and so on
the amount of localized deformation.

Light red indicates no enrichment, and dark red indicates enriched
nodes.
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Δt=5e-3Δt=5e-3 Δt=5e-4Δt=5e-4 Δt=5e-5Δt=5e-5

Soft
(E=1e5 P(E=1e5 Pa)

Rubber
(E=1e6 P(E=1e6 Pa)

Stiff
(E=1e8 Pa)

Fig. 15. Our model can incorporate heterogeneous materials with Skinning
Eigenmodes. We initialize the spring-fist in a compressed state and release
it to punch a gelatin head. Simulations at different timesteps show that as
the timesteps decrease, elastic shocks are better resolved, resulting in more
nodal-DOF enrichment (in dark blue and dark red).

In the softest case where deformation is expected to be largest, the
oracle correctly heavily enriches (77% of full DOF are active) near
the points of contact and large deformation. The adapted Skinning
Eigenmodes subspace resolves the more global bulging around the
perimeter with some nodal corrections. As we increase the stiffness,
we see less compression and, correspondingly, less enrichment. In
the stiffest setting the oracle then requires no enrichment at all,
with dynamics entirely expressed by the subspace.

In Fig. 15, we perform a similar experiment but now both vary
time step size and material spatially. Here, smaller time-steps are
expected to capture higher-frequency dynamics. In this example, we
have a soft gelatin (E=1e5 Pa) head and a heterogeneous spring-fist
model with a rubber boxing glove (E=1e6 Pa) and a stiff (E=1e8 Pa)
spring.

We initialize the simulation by compressing the spring-fist model
using the subspace dynamics with heterogeneous Skinning Eigen-
modes. Starting in the compressed state, once the simulation begins,
the fist springs towards the head, punching it at high speed.
We simulate this scene with three time-step sizes decreasing

in order of magnitude: ℎ = 5e-3s, 5e-4s, 5e-5s. As the time-step
decreases, our adaptive subspace simulation increases nodal enrich-
ment and so better resolves the elastic shockwave that propagates
across the head after collision. This corresponds with the expected
improved resolution of high-frequency deformation dynamics as
time-integration accuracy improves with decreasing time step size.
Please see our supplemental video.

In most algorithms, scene parameter variations have substantial
performance implications. For example, large material stiffnesses
significantly impact linear system conditioning, leading to poor
convergence of iterative linear solvers, e.g., CGmethods.We observe
that our oracle and custom iterative solver remain robust to wide
variations in parameters and, when coupled with our reduced DOF
representation, we see a heavily reduced performance impact on
the linear solver as we increase material stiffnesses.

Timing (in seconds) Iterations

Young’s Modulus
10⁵ 10⁷ 10⁹ 10¹¹

0

20

40
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80
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4000

6000

8000

10000
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Ours
IPC-CG
IPC-LLT

Ours
IPC-CG

Fig. 16. We drop a rubber hand on a bed of spikes, vary the spike stiffness,
and measure resulting linear solve costs. As the stiffness increases, the
runtime of IPC-LLT is effectively fixed, but IPC with a Conjugate Gradient
iterative solver with block-jacobi preconditioning explodes in cost. We cap
the iterative solves at 10,000 iterations and see that IPC-CG reaches this
at stiffnesses of 1e8 Pa and above. Our solver also sees an iteration count
increase, but is far less sensitive to stiffness variations than IPC-CG.

In Fig. 16, we perform a similar experiment to our above “jello-
drop” example. Here we drop a rubber (E=1e6 Pa) hand on spikes
and take a time-step snapshot in contact. Using this frame for a
consistent initialization, we vary the Young’s moduli of the spikes
from 1e4 to 1e12 Pa. For each stiffness, we report the linear solver
time and iteration count for our adaptive subspace linear solver, as
well as for corresponding solves for two full-space IPC methods, the
first using Pardiso (IPC-LLT) and the second applying CG with a
3 × 3-block-Jacobi preconditioner (IPC-CG). As expected, the IPC-
LLT solver’s performance is agnostic to material variations. On the
other hand, the IPC-CG solver’s performance (and iteration count)
quickly explodes in cost as we increase material stiffness: we cap
the PCG solver at 10,000 iterations and, after E=1e8 Pa, we observe
the PCG solve always saturates to max iterations. Our adaptive
subspace solver also increases in cost and iterations with stiffness,
but the resulting impact on performance is far “softer”, converging
in practical counts across simulations. Notably, we find that there is
a crossing point at which LLT solves become faster than our solver.
However, even here, costs remain of a similar order of magnitude
between our iterative solver and LLT.

In Fig. 1 we show frames from our largest “Mushroom Kingdom”
simulation. This scene includes material heterogeneties with a stiff
castle (E=1e9 Pa), soft terrain with mushrooms and houses (E=1e5
Pa), a soft and evil mushroom guy (E=1e6 Pa), and a rubber stomp-
ing shoe (E=1e7 Pa). Here the shoe is initially dropped on the evil
mushroom, squashing it and the nearby terrain with large deforma-
tion contact (note the boot pattern captured by our oracle’s nodal
enrichment). As the boot and mushroom guy tumble across the do-
main, our oracle progressiveley updates and downdates both nodes
and modes to track local deformations of the kingdom’s homes,
mushrooms and landscape. Comparing IPC’s cost to ours on an
expensive time step, we see that our method is significantly faster,
with over a 10x speedup over IPC with Pardiso LLT (see Table 1).
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Table 3. We report the linear solver costs of the scenes shown, comparing our Schur complement solver against IPC with Pardiso LLT, and IPC-CG with
3 × 3-block-jacobi preconditioning. Linear systems are collected from the beginning of a representative time-step (large deformation and contact). We report
the number nonzero in our full coupled system, the number of nonzeros for the full-space IPC problem, as well the number of iterations. Both iterative solvers
are solved to a relative residual of 1e-5.

Scene Ours (s) IPC-LLT (s) IPC-CG (s) Ours’ nnz IPC nnz Ours’ iters IPC-CG iters
Iceberg 0.04 0.25 2.10 7.6e5 1.8e6 59 450
Roller Terrain 0.08 1.71 5.02 8.5e5 9.3e6 268 674
Jello (Soft) 0.53 10.3 7.00 2.5e7 1.9e7 84 782
Jello (Rubber) 0.10 10.2 7.63 4.8e6 1.9e7 68 846
Jello (Stiff) 5e-5 10.4 9.28 7.1e4 1.9e7 0 1035
Spiky Ball (Eigenmodes) 0.91 1.57 3.00 6.4e6 1.1e7 315 348
Spring Fist (5e-3) 0.03 12.4 23.0 2.9e6 3.1e7 50 2232
City 1.30 9.64 14.2 1.5e7 4.9e7 356 689
Mushroom Kingdom 0.52 21.4 36.5 5.5e6 6.4e7 307 1598

4.5 Linear Solver
Our adaptive-subspace-customized iterative solver leverages our
model’s linear system structure (see Fig. 6). With a small dense
subspace block and its correspondingly cheap factorization, we
efficiently solve the Schur complement form of the system, leading
to an iterative solve of just the enriched nodal DOF. In general
the nonzeros (nnz) of this system is dramatically smaller than the
full-space Hessian, leading to much faster solutions, as reported
in Table 3. We report linear solver costs for our adaptive subspace
iterative solver, IPC with Pardiso LLT (IPC-LLT), and IPC with a
Conjugate Gradient solver with a 3 × 3-block-Jacobi preconditioner
(IPC-CG) for a single solve at the beginning of a representative
time step in each scene (the same costly timesteps from Table 1).
Our linear solver is consistently an order of magnitude faster than
IPC-LLT, and even faster than IPC-CG, which was consistently the
slowest. Additionally, we report the number of nnz of our coupled
system and the full-space IPC system, showing that our systems
typically have an order of magnitude fewer nonzeros than the IPC
system.

4.6 Subspace Suitability
So far we have focused on our method’s ability to jointly adapt
modes for global deformation and nodal DOF for additional en-
richment to make up the difference. As covered in Sec. 2 not all
subspaces are created equal. As the provided subspace becomes less
suitable for an application and/or fewer modes are made available
for adaptivity, the same error tolerance will provide less utility and
more nodal refinement and tighter tolerances will be required to
make up the difference for a less expressive basis (see Sec. 5 below).
In Fig. 17 we compare three common subspace models: Skin-

ning Eigenmodes [Benchekroun et al. 2023], Biharmonic Coordi-
nates [Weber et al. 2012], and standard Eigenmodes. We apply our
beam drop on a sphere experiment (same scene settings for all)
with these three different subspaces. For skinning eigenmodes and
biharmonic coordinates we use a modal subspace 192 DOF and a
smaller corresponding subspace of 48 DOF standard eigenmodes.
Here we see the amount of enrichment depends heavily on the

quality and size of the subspace. Skinning Eigenmodes and Bihar-
monic Coordinates both have the same DOF count (and so can

Skinning
Eigenmodes

Biharmonic
Coordinates

Eigenmodes

full-spacefull-spacefull-spacesubspace

Fig. 17. The quality of the chosen subspace greatly influences the amount
of full-space enrichment needed. Using the same oracle tolerances, we sim-
ulate a beam dropping on a sphere with Skinning Eigenmodes, Biharmonic
Coordinates, and standard Eigenmodes – the first two with 192 DOF and
the latter with 48 DOF. Darker colors denote enriched full DOF, and lighter
areas are subspace only. Skinning Eigenmodes and Biharmonic Coordinates
require relatively little nodal enrichment, whereas standard Eigenmodes,
which are not rotationally invariant, require heavy nodal enrichment.

satisfactorily resolve global bending deformation) but we see that
skinning modes generally do a better job with overall least amount
of enrichment, whereas Biharmonic coordinates introduce a greater
amount of enrichment near the point of contact. In contrast, Eigen-
modes are not rotation invariant and, with fewer DOF, do not resolve
dynamics satisfactorily, leading to heavy full-space enrichment and
less reasonable overall deformation for the same tolerances.

5 LIMITATIONS AND FUTURE WORK
As covered in the last section, likely the biggest limitation of our
method is a remaining reliance on starting with a sufficiently expres-
sive subspace basis from which to adapt from. As our experiments
in Figures 17 and 18 demonstrate, poor subspace model choices can
hinder simulation quality while better choices of subspace bases
likewise enable both better subspace and nodal refinement. In the
extreme (see Figure 18 top) insufficient subspace expressivity can
prevent high error norms and so require tighter error tolerances
for refinement. This can be ameliorated by lowering our error tol-
erances or (as we demonstrate in Figure 18 middle) by providing
improved and/or larger subspace bases (recall our method auto-
matically updates and downdates the active basis, so there is little
cost for providing large initial candidate bases or even multiple
subspaces). This intriguingly opens the door to the possibility of
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Fig. 18. Adaptive subspaces require sufficiently expressive subspace bases
from which to adapt. With unsuitable candidate subspaces, adaptivity can
be challenging. Here we simulate the drop of a soft spiky “Koosh” ball
with a Skinning Eigenmodes subspace (16 modes) and an empirical Proper
Orthogonal Decomposition (POD) [Sirovich and Kirby 1987] basis with 11
modes. Here the Skinning Eigenmode basis is completely unsuited for the
small tendril deformation and so is unable to resolve the global deformation
of the tentacles. On the other hand the small PODbasis built using snapshots
from a corresponding full-DOF simulation more closely matches the full
simulation, but still requires significant enrichment to capture details.

combining our subspace adaptivity with online updates of our sub-
space model basis � [Kim and James 2009]. This also speaks to
a second related limitation of our method (also demonstrated in
Figure 17) that, like all adaptive schemes, our exposed tolerances
must be changed with the quality of the basis provided. However,
no matter what tolerances are chosen, we retain the guarantees
of the underlying simulation model (in the case of IPC – stability,
non-inversion and non-interpenetration).
For future work, we intend to explore applying our approach

to libraries of disparate subspaces, rather than linear spaces de-
rived from a single procedure. We could also employ continuous
neural subspaces [Fulton et al. 2019; Modi et al. 2024] or fracture
modes [Sellán et al. 2022], which have shown the ability to handle
topology change. In addition, extending our method to shells and
rods should be a promising direction that could broaden its utility,
while its application for solving static volumetric equilibria should
be immediate. Further developments may also focus on refining
our subspace construction methods to enhance memory efficiency,
which is crucial for managing complex scenarios containing billions
of elements. Finally, given our fully parallel pipeline, exploring our
model’s performance on GPU architectures (e.g., via GIPC [Huang
et al. 2024]) is a promising direction for advancing our method’s
performance.

6 CONCLUSION
We have presented an adaptive subspace time integration method
composed of a general-purpose adaptivity oracle for guiding sub-
space refinement and a corresponding adaptive subspace model and

a custom-built fast solver, that operates in the augmented subspace.
Our method differs significantly from prior subspace approaches:
it applies adapted subspaces solely for efficient computation of dis-
placements during the time-step solution procedure, storing all final
states in maximal coordinates, while its oracle works online, during
time integration, to predict areas of required refinement regardless
of whether they arise from contact or other sources of deformation.
Our custom linear solver, built around these pieces, is 6 to 40 times
faster than MKL Pardiso and up to 70 times faster than Eigen’s
Jacobi preconditioned conjugate gradient solver. This leads to speed-
ups of over an order-of-magnitude when producing simulations of
equivalent visual plausibility.
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