DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TORONTO

CSC428F/2514F
HUMAN-COMPUTER INTERACTION

Lecture 13

USER INTERFACE DEVELOPMENT TOOLS 2

13.1 Architecture of user interface software..............c........... 2
13.2 Higher-level tools..........ccoviiiii e, 2
13.3 Card-based prototyping tool — HyperCard................... 3
13.4 Time-based prototyping tool — Director 3
13.5 The NeXT Interface Builderccooeveviiiiiiiiceennnnee, 4
13.6 Language-based tools..........ccccoieiiiiiiiiei e, 4
13.7 The Tcl language.........ccooiiiiiiiiiii e, 5
13.8 Some Tcl/tk code from the TimeStore prototype........... 5
13.9 The power of the Tcl/tk systemcccooevviviiiiiieeennnnee, 11
13.10 Application frameworksc.ccceeveviiieeiiieceieeeei, 11
13.11 Garnet: an amazingly comprehensive system............ 13

Ronald Baecker
Professor of Computer Science,
Electrical and Computer Engineering, and Management
University of Toronto

Copyright © 1991-1997, Ronald Baecker.
All rights reserved.

CSC 428/2514 Notes 13 —2— 22 October 1997

13.1 Architecture of user interface software

Application
Higher-level Tools
User Interface Toolkit
Windowing System
Graphics Library
Operating System
Hardware

13.2 Higher-level tools

Language-based tools
State transition network
Context-free grammars
Event languages
Declarative languages
Constraint languages
Screen scrapers
Database interfaces
Visual programming
Scripting language, e.g., Tcl

Application frameworks, e.g, MacApp, OLE
Model-based generation, e.g, ITS

Interactive graphical specification
Prototypers, e.g., Director
Cards, e.g., HyperCard
Interface builders, e.g., Visual Basic, NeXT
Data visualization tools
Graphical editors, e.g., Peridot

CSC 428/2514 Notes 13 —3— 22 October 1997

13.3 Card-based prototyping tool — HyperCard

Features of HyperCard
A system accessible to non-programmers
An interface builder!!!
A direct manipulation system
A hypertext system
A prototyping tool
An extensible system
An object-oriented system

Some limitations to HyperCard
Interface limitations
Best for card-based interfaces
Not good for interactive text manipulation
Not good for sketching, gesture-based interfaces
HyperTalk language limitations
No arrays
Little (weird) program structure
Few debugging tools

13.4 Time-based prototyping tool — Director

Features of Director
System for computer animation, structuring images
and their changes over time
Theatre as the unifying metaphor — actors, stage, etc.
Scripting language — Lingo
An extensible, object-oriented system

Limitations to Director
Very low-level specification of interfaces
Lingo language not much better than HyperTalk

CSC 428/2514 Notes 13 —4— 22 October 1997

13.5 The NeXT Interface Builder

Widgets predefined as part of object-oriented class library

Interactive selection, positioning, tailoring of widgets

Connecting widgets to represent dependencies,
communication via message passing

Behaviours coded in object-oriented language

Role in Rhapsody???

13.6 Language-based tools

Various formalisms for describing interaction as part of a
“User Interface Management System” (UIMS)

State Transition Networks
Arcs represent possible actions from a given state
Best in highly-moded contexts where choices are limited

Context-free Grammars
Best for textual command languages

Event Languages
Well suited for handling multi-threaded input

Declarative Languages
Best for highly patterned interactions, e.g., menus & forms

Constraint Languages
Best for defining relationships between dialogue objects
Increasingly, constraints build into object systems or
toolkit intrinsics

Scripting Languages and Environments, e.g., Tcl/tk

CSC 428/2514 Notes 13 —5— 22 October 1997

13.7 The Tcl language

Similar to other UNIX shell languages such as the Bourne
shell, the C shell, the Korn shell, and Perl

Only a few fundamental constructs and relatively little
syntax, making it easy to learn

Enough programmability (variables, control flow,
procedures) to allow one to create complex scripts

Tcl is also an interpreter for the scripting language

Tcl commands derive additional power from substitution —
variable, command, and backslash

Tcl commands can be combined into procedures using Tcl
control structures

Tcl also has:
Arrays and lists
Advanced control structures
String manipulation
File access
Access to Tk widgets
Access to other X facilities
Interapplication communication facilities
C interfaces

13.8 Some Tcl/tk code from the TimeStore prototype

New message module from TimeStore (Figs. 13.1, 13.2, 13.3)

CSC 428/2514 Notes 13 —6— 22 October 1997

Figure 13.1 Calling the New Message function in TimeStore (Yiu, 1997)

- File Uiew BulEEHLE Mailbox Diew Calendar Task Note Help
I'I.-'F" L??ﬂ;::ihj T -_;:! H -I-l HESSﬂgE ;H%ﬂf' lﬂ'.q.ﬁ '?;Iﬁ#“-‘r L'j‘l-"',f' Vel T hj‘l.".f' ﬂ;l.‘:ﬁt—ﬁ.

r

: :. “ x T : T 1" i
Reply I e e i
Forward TlmESturE 3 0 - Man
Mark Message I£|| I:F"-| @| f |
Unmark Message T Ceotober, 19
E 4 R e el) | T e R I S R
Delete i, 8

TESHS -]

Tmmpkina, Addrizn
Tmrk:ms IMick

] : : &
Wmdwa Fel, Ay &

tMessages from Rosanna Reid of

4 Status | Whhio | Subjec
dlnread |Rosanna Beid (rosanniBe: Event 97 AGRMGY

chen == e 72 erher Unread |Rosanna Reid (rosanniUpdated Agenda for
rﬂ# 5.ut-:-r'-:-nt-:- Ca g ‘;-,'-;'

CSC 428/2514 Notes 13 —7— 22 October 1997

Figure 13.2 A New Message screen from TimeStore (Yiu, 1997)
At Options Help

TimeStore 3.0

|
Subject:
Ceoo

[
TimesStore 2026 (C) 1997 Kelvin

: .
=7, University of To

CSC 428/2514 Notes 13 —8— 22 October 1997

Figure 13.3 The Tcl/tk for the New Message function (Yiu, 1997)

#

FILE: ts_newmil nenu.tcl

#

#eval destroy [winfo child .]
wmtitle . "TineStore 3.0"
wm i conname . "TinmeStore 3.0"

configure -bg grey75

Check for screen resolution. Use different size fonts for different screen
resolution (ie. a small font for 640x480, a larger font for 1280x1024).
May use a math forrmula to scale font size later.

source ts_sysfont.tcl
menu . nmenu -tearoff 0O

Creates the "Action" Menu, with options "Send Mail" and "Cancel "
Relates "Send Mail" and "Cancel" to corresponding C functions.

set m . menu. action

nenu $m -tearof f 0

.nmenu add cascade -1label "Action" -menu $m

$m add command -1 abel "Send Mail" -command "ts_sendmail "
$m add command -1 abel "Cancel" -command "quit_editor”

Creates "Options" menu. Note that option "Wrd wap" can be checked on or off
using a procedure "change wap" defined in ts rest _of editor.tcl.

set m . menu.options

menu $m -tearoff O

.menu add cascade -label "Options" -nmenu $m

$m add check -label "Wrd Wap" -variable wordwap -conmand "change_w ap"

Creates "Hel p" Menu. |If option "About TineStore" is chosen,
it generates a dial og box.

set m.nenu. hel p

nmenu $m -tearoff 0O

.nmenu add cascade -l abel "Help" -nmenu $m -underline 0

$m add command -1 abel "About Ti meStore" -underline 0 -conmmand "tk_dial og
.di alog {About TinmeStore} {Version 3.0 al pha 4\n(C) 1997 Kelvin Yiu and
University of Toronto} {} 0 K"

configure -menu . nenu

CSC 428/2514 Notes 13 —9— 22 October 1997

#
FILE: ts_mail_headers.tc
#

Defines Email Message Headers

frane . header -relief raised -borderwidth 1 -bg grey75
frane .header.l1 -borderwidth 1 -bg grey75

Define "To:" field and correspondi ng text area and add themto the header

set | .header.|1

| abel $l.to | -text " To:" -width 8 -relief raised -font $font1l
-hi ghlightthickness O -borderwidth O -justify left -bg grey75

entry $l.to_e -relief sunken -borderwi dth 0 -highlightthickness 0
-background white -width 46 -font $fontl -textvariable vl

pack $l .to_| -side left

pack $l .to_e -side left

pack $I -side top -expand yes -fill x
frane . header.l2 -borderwidth 1 -bg grey75
set | .header.[2

Define "Subject:"” field and correspondi ng text area and add themto the header
| abel $l.to | -text "Subject:" -width 8 -relief raised -font $fontl
-hi ghlightthickness O -borderwidth O -justify left -bg grey75
entry $l.to_e -relief sunken -borderwi dth 0 -highlightthickness 0
-background white -width 46 -font $fontl -textvariable v2
pack $l .to_| -side left
pack $l .to_e -side left

pack $I -side top -expand yes -fill x
franme .header.|3 -borderwidth 1 -bg grey75
set | .header.[3

Define "Cc:" field and correspondi ng text area and add themto the header

| abel $l.to | -text " Cc:" -width 8 -relief raised -font $fontl
-hi ghlightthickness O -borderwidth O -justify left -bg grey75

entry $l.to_e -relief sunken -borderw dth 0 -highlightthickness 0
-background white -width 46 -font $fontl -textvariable v3

pack $l .to_| -side left

pack $l .to_e -side left

pack $I -side top -expand yes -fill x

frane . header.l4 -borderwidth 1 -bg grey75

set | .header.l4

Define "Bcc:" field and correspondi ng text area and add themto the header

| abel $l.to | -text " Bcc:" -width 8 -relief raised -font $fontl
-hi ghlightthickness O -borderwidth O -justify left -bg grey75

entry $l.to_e -relief sunken -borderwi dth 0 -highlightthickness 0
-background white -width 46 -font $fontl -textvariable v4

pack $l .to_| -side left

pack $l .to_e -side left

pack $I -side top -expand yes -fill x

pack .header -side top -expand no -fill x
focus .header.l1.to_e

CSC 428/2514 Notes 13 —10— 22 October 1997

#
FILE: ts rest _of editor.tc
#

This code is used when creati ng new nessages, tasks, notes and cal endar events.

Define the text area for editing and the correspondi ng scroll bar

frame .editor -borderwidth O

frame .editorbottom -borderwidth O

text .editor.edit -width 80 -height 25 -relief ridge -borderwidth 1
-hi ghlightthi ckness 0 -background white -font $font3 -xscroll comand
".editorbottomxscroll set" -yscrollconmand ".editor.yscroll set"

scrol | bar .editorbottom xscroll -comrand ".editor.edit xview' -width 15
-orient horiz -borderwidth 1 -bg grey75
scrol | bar .editor.yscroll -conmand ".editor.edit yview' -width 15

-borderwidth 1 -bg grey75
| abel .editorbottom panel -bitmap @othing. bnp -width 15 -height 15 -bg grey75

Add the editor and the scroll bar

pack .editor.edit -side left -expand yes -fill both

pack .editor.yscroll -side right -expand no -fill vy

pack .editor -side top -expand yes -fill both

pack .editorbottomxscroll -side |left -expand yes -fill x
pack .editorbottom panel -side right -expand no

pack .editorbottom -side bottom-expand no -fill x

Define the procedure that toggles between allow ng
and disal |l owi ng word w appi ng.
proc change_wap args {

gl obal w wordw ap

if {$wordwrap == 1} {
.editor.edit config -wap word
} else {
.editor.edit config -wap none
}

}

set default word wap
set wordwap 1

bind . <Destroy> "quit_editor"

CSC 428/2514 Notes 13

13.9 The power of the Tcl/tk system

System programming lang.

System integration language
(Scripting language)

C, C++, Java Perl, Tcl/Tk, Javascript
Building components Plugging together components
Strongly typed Typeless

Usually compiled

Usually interpreted

22 October 1997

Use systems programming language when:
Need to implement complex algorithms or data structures
Large data sets are manipulated and speed is critical
Functionality is well-defined and changing slowly

Use scripting language when:
Main task is connecting together pre-existing components
Application includes a GUI (but see other approaches
in these lectures)
Functionality evolving rapidly over time
Need for extensibility

Scripting on the rise due to GUIs, the Internet, and component

frameworks, e.g., ActiveX, OpenDoc, JavaBeans, and
due to facilitation of rapid prototyping (Fig. 13.4)

13.10 Application frameworks

Class libraries built on top of a toolkit designed to support
particular kinds of applications

Example: MacApp system for implementing applications that
adhere to the Mac look and feel (on top of Mac Toolkit)

Example: Garnet (Lisp) and Amulet (C++)

CSC 428/2514 Notes 13

22 October 1997

Figure 13.4 Productivity enhancements with Tcl/Tk

(Osterhout, 1997, http://www.sunlabs.com/~ouster/scripting.html, p. 7)

Application Comparison Ratio Comments
Software test and test application: 272K lines, | 22-47F & version me].n:mcnﬁ
installation 120} engineer months. Tel/Perl version replac
C FIS application: 20K lines, both C applications.
60 enginesr months.
Tel/Ped version: 7.7K lines, &
engmeer months
Dambase library and 4+ Library: 2-3 months A-12 4+ version implemen
application Tel library: 1 weel first; Tel version of Libr
C++ application: 2 months L]0 more functionality.
Tel application: 1 day
Display ol well pro- C version: 3 months 6 Tel version implement
duction curves Tel wersion: 2 weeles
(Juery disparcher C version: 1200 lines, 4-8 2.5-8 C version implementex
weeles uncommented, Tel ver
Tel version: 500 lines, 1 weesk had comments, moemre h
tlonality,
Spreadshest tool C version: 1460 lines 4 Tel version implement
Tel version: 380 lines
Silmulator and GUIT Java version: 3400 lines, 3-4 2-3 Tel version had L0-206
weslkes, funetionality, was impl
Tel version: 1600 lines, = 1 mented first,
weele

Table 1. Each row of the table describes one or two applications that were implemented
twice, once with a system programming langnage such as © or Java and onece with a seript
ing langpnage such as Tel, The Ratio column gives the ratio of lines of code or develop-
ment time for the two Lmplementations (1 means the system programming language
required more effort). In most cases the two versions were implemented by different peo-
ple. The information in the table was provided by various Tel developers in response to ar
article posted on the comp.lang el newsgroup. Seripting langnages showed less improwve-
ment in sitnations where they were used for the first implementation, mast Lilkely becanse

the serond implementation benefited from the experiences of the first.

CSC 428/2514 Notes 13 —13— 22 October 1997

13.11 Garnet: an amazingly comprehensive system
The mother of all interface software tools (Fig 13.4)

Garnet video (Siggraph Video Review 97, #13)

Fig. 13.5 Structure of the Garnet system (Myers et al., 1990, from BGBG, p. 359)

C12 spreadshgat

SI0G sy B i
v ditier,

Ligsdary grachacal
Pt ace Dudcer

0=

L

— DR craprees

Gt Towsint

]
Y Winddow 5,.«.;..—.1
ar Macirmeas Common Lap

l Cparanng Sysierm

Figure 3, The atructure of ihe Garneg syilem,

Lapidary
Draw graphics
Demonstrate inter-
active behaviour
(programming
by example)

CSC 428/2514 Notes 13 —14— 22 October 1997

