DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TORONTO

CSC 428F/2514F

HUMAN-COMPUTER INTERACTION

Lecture 4

UNDERSTANDING USERS AND USER NEEDS; RESEARCH AND EVALUATION METHODOLOGIES

4.1 Understanding users with research and evaluation	2
4.2 Research and empirical evaluation in design	3
4.3 An HCI research and evaluation taxonomy	4
4.4 HCI research and evaluation strategies	6
4.5 Scenarios, mockups, prototyping, manuals	7
4.6 User (usability) testing	8
4.7 Demonstrations	9
4.8 Usability inspection methods	10
4.9 Customer surveys, interviews and questionnaires	10
4.10 References	11

Ronald Baecker Professor of Computer Science University of Toronto

Copyright © 1991-7, Ronald Baecker. All rights reserved.

—2—

4.1 Understanding users with research and evaluation

Goals of research and evaluation

Understanding users — Who they are, what they know, what they do, what they want

Understanding how systems work in practice Interface quality Interface problems What factors seem to affect interface quality (for particular classes of users)

Understanding why it happens Building models to achieve a deeper understanding standing of casual factors (Lectures 15-17) Yet there are only a small number of examples where this has proved cost-effective, so we usually rely on empirical approaches

Research approaches — four dimensions (Ray & Ravizza, 1985)

Methodology

Naturalistic observation (watching & recording) True experiments (manipulating & measuring) Setting — Field research or laboratory research Experimental role — Scientist as participant or observer Size: one, few, or many subjects

Naturalistic observation

Noninterference with phenomena Observations of patterns and invariants Useful for big picture Qualitative, descriptive (typically) **True experiments**

Interfere, manipulate, control Measurements of observed patterns Detailed results Quantitative

A deeper approach is that of McGrath... (see Ch. 2 in BGBG)... but first lets review the relationship of evaluation to design

4.2 Research and empirical evaluation in design

	Design>	Implement>	Evaluate>
Information	Questionnaires		
Collection	Interviews with discipline specialists		
	Characterizations of users and tasks		
	Days in the life scenarios		
Concept design	Initial design concepts	Design mockups	Interviews with users to get reactions to design mockups
Functionality and		Implementation of "smoke and	Heuristic evaluation
interface design	functionality and look- and-feel	mirrors" prototype	
			Experiments
Prototype	Design of "critical	Implementation of	Usability tests
implemen-tation	mass" of system	partial working system	Model-based analysis
Deliverable system im- plementation	Design and modification of deliverable system	Implementation and installation of this system	Usability tests
System en- hancement and evolution	Design of monitoring and feedback system	Implementation of this system	Interviews and questionnaires, data collection and
			analysis

4.3 An HCI research and evaluation taxonomy

We list some strategies (Fig. 4.2) and organize them according to a taxonomy from McGrath (Fig 4.1); we shall later (Lecture 18) position these strategies in the development cycle

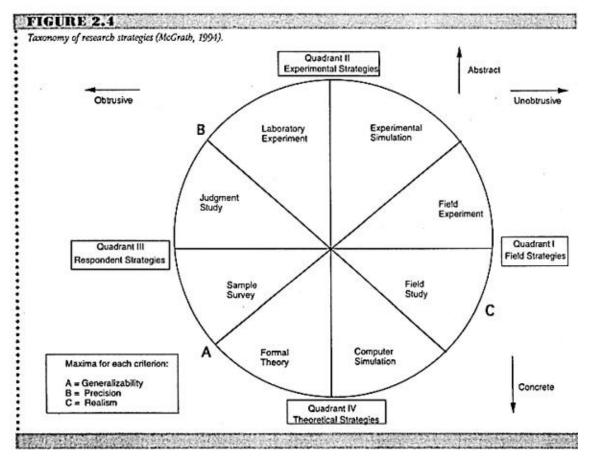


Figure 4.1. Taxonomy of research strategies (BGBG, Fig. 2.4, p. 81)

Quadrant 1 — Field strategies

Study systems in real use on real tasks in real work environments

Field studies — Study systems in situ, disturbing as little as possible

-4---

Field experiments — Observe impact of changing (ideally) one aspect of a work environment

Quadrant 2 — Experimental strategies

Study systems in a laboratory under controlled conditions

Laboratory experiments — Carry out controlled experiments studying impacts of (ideally) one interface parameter

Experimental simulations — Create in laboratory for experimental purposes a real system that is used by real users on (usually) artificially simplified tasks

Quadrant 3 — Respondent strategies

Ask informants to tell us something about themselves and/or their work or about an interface

Judgment studies — Ask respondents about an interface

Sample surveys — Ask respondents about themselves and/or their work

Quadrant 4 — Theoretical strategies

Ask a theory to tell us something about people's work or about an interface

Formal theory — Use a qualitative theory or some equations

Computer simulation — Use and run a computer model

4.4 HCI research and evaluation strategies

Figure 4.2. HCI research and evaluation methods (based on BGBG, Fig. 2.5)

Field strategies
(Settings under conditions as natural as possible)
Field studies
Ethnography and interaction analysis (Lect. 18)
Contextual inquiry (Lect. 6) Field experiments (Lect. 18)
Beta testing of products (CSC 454)
Studies of technological change (CSC 300)
Experimental strategies
(Settings concocted for research purposes)
Experimental simulations
Usability testing (Tut. 1, Lect. 4, Lect. 18, CSC318)
Usability engineering
Laboratory experiments
Controlled experiments (Lect.'s 19-21)
Respondent strategies
(Setting is muted or made moot)
Judgment studies
Demonstrations (Lect. 4)
Usability inspection methods (e.g., heuristic evaluation) (Tut. 2, Lect. 4)
Cognitive walkthroughs (Lect. 18)
Sample surveys
Customer surveys, questionnaires, and interviews (Lect.'s 4-6)
Theoretical strategies
(No observation of behavior required)
Formal theory
Design theory, e.g., Norman's 7 Stages (Lect. 10)
Behavioral theory, e.g., color vision (Lect.'s 7-9)
Computer simulations
Human information processing theory (Lect.'s 15-17)

We shall begin with user (usability) testing, then briefly discuss demonstrations and usability inspection, then proceed to surveys, questionnaires, and interviews

—6—

4.5 Scenarios, mockups, prototyping, manuals

User testing should begin as early as possible, even before a real system is built, therefore requiring scenarios, mockups, and prototypes (Experimental simulations)

—7—

Method

Produce facsimile of interface

Construct scenario — words, pictures, animation, video Build physical mockups

"Program" interactive prototypes

Write manual in advance of system

Design and produce situation

Observe behaviour of users

Roles

Elicits initial reactions to, problems with user's model, interface

Engages potential users, gets them excited and involved, makes them see that they can contribute

Advantages

Can be done in advance of actual system construction

Disadvantages

Facsimile will not embody all characteristics of system

Examples

Scenarios, prototypes in CHI'89 Information Kiosk (Salomon, Case A, BGBG) Designing a human memory aid

(Newman and Lamming, 1995; Case Study B)

—8—

4.6 User (usability) testing

Methods

Design scenario for the experimental simulation Record user behaviour in the experimental simulation Typical usage, or critical incidents Keystroke recording (Lecture 18) Thinking aloud protocols (Lecture 18) Videotape protocols (Lecture 18) Interviews for subjective impressions Analyze user behaviour Protocol analysis (Lecture 18)

Roles

Understanding user methods Understanding user problems Discovering user thought processes

Advantages

Observation of real usage of real system

Disadvantages

Individuals often know only limited aspects of a system Scenarios often exercise only limited aspects Scenarios may be artificial, not encompassing complexity or real work on real tasks in real environments

Examples

Mack, et al. studies of text editor learning (BGBG, Ch. 10) Usability tests of SASE, SASSE (BGBG, Ch. 12)

Typical steps in user testing – Gomoll (in Laurel, pp. 85-90)

- 1. Set up the observation
- 2. Describe the purpose of the observation
- 3. Tell the user that it's OK to quit at any time
- 4. Talk about & demonstrate the equipment in the room
- 5. Explain how to "think aloud"
- 6. Explain that you will not provide help
- 7. Describe the task and introduce the system
- 8. Ask if there are any questions before you start; then begin the observation
- 9. Conclude the observation & debrief (interview) subjects
- 10. Analyze the data
- 11. Tabulate the results
- 12. Interpret the results in the context of other results

More detailed procedures — BGBG, Fig. 2.8, also Assignment 1

4.7 Demonstrations

Method for this kind of judgment study

Demonstrate system to anybody, potential customers, "power-that-be," etc., and take detailed notes

Role

Elicit reactions to user's model, functionality, interface

Advantages

Get feedback early in prototype or system construction Always have to demo — why not learn from them?

Disadvantages

System still rough, which introduces noise into process

Examples — Pick your favorite project!

4.8 Usability inspection methods

Methods for more advanced kinds of judgment studies Heuristic evaluation (one kind of usability inspection) Cognitive walkthroughs (Lecture 18)

Roles

Studies that don't involve users (in contrast to demos, usability testing, etc.)

Elicit expert opinion re functionality, user's model, interface

Advantages

Structured method of using accumulated wisdom of experts

Disadvantages

Doesn't take advantage of real insights from real users

Nielson's 10 heuristic evaluation usability guidelines

Visibility of system status Match between system and real world User control and freedom Consistency and standards Error prevention Recognition rather than recall Flexibility and efficiency of use Aesthetic and minimalist design Help users recognize, diagnose, and recover from errors Help and documentation

See BGBG, Fig. 2.7, tutorials, Assignment 1

4.9 Customer surveys, interviews and questionnaires

Methods

Sample surveys, in language of McGrath Via questionnaires or interviews

Roles

Understanding user needs and characteristics Background, work practices, attitudes Satisfaction/dissatisfaction in use, suggestions Carrying out a task analysis Understanding the work context

Advantages

Broad coverage of the user population Interviews can be free-ranging, uncover unexpected and novel insights

Disadvantages

Subjects may not be able to conceptualize new technology Abstract, may not be well grounded in real application Danger of low response rate for surveys Danger of bias – Putting words into people's mouths Need for careful design, pre-testing

Examples

Gould & Boies interviews with principals that led to design of SDS/ADS (B&B, pp. 8-37) Posner's interviews w. collaborative writers (BGBG, Ch. 11) Designing a human memory aid (Newman and Lamming, 1995; Case Study B)

More on interviews and questionnaires in the next 2 lectures

4.10 References

Baecker, R. and Buxton, W. (Eds.) (1987). *Readings in Human-Computer Interaction: A Multidisciplinary Approach*. Morgan Kaufmann Publishers.

Ray, W. and Ravizza, R. (1985). *Methods Towards a Science of Behaviour and Experience*. 2nd Edition. Wadsworth.