
An Introduction to GPGPU
with a case study on CUDA

Christian Lessig (lessig@dgp.toronto.edu)

2

GPGPU

• General Purpose Computations on GPUs
• GPUs for applications beyond rasterization

– Global illumination
– Computer vision
– Signal processing
– Simulation
– Computational biology / finance
– ...

3

Motivation

• Exponentially growing compute power

100

NV30

Jan. Jun. Apr. May Nov. Mar. Nov.

NV35
NV40

2003 2004 2005 2006

Intel Core2 Duo

3.0 GHz

G70

G71

G80

G70-512

200

G
F

L
O

P
S

O
ri

g
in

al
 d

at
a

M
ar

k
 H

ar
ri

s
2
0
0
7

300

4

Motivation

• Exponentially growing compute power
• Very high memory bandwidth

5

Motivation

• Exponentially growing compute power
• Very high memory bandwidth
• Ubiquity

– Available in most PCs and workstations

6

Motivation

• Exponentially growing compute power
• Very high memory bandwidth
• Ubiquity

– Available in most PCs and workstations
• Increasing programmability and functionality

– Steadily improving precision
– Full control flow (with small overhead)
– High-level languages

7

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

8

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

9

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

10

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

11

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

12

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

13

GPU as Parallel Processor

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

GPU

14

GPU as Parallel Processor

• Inherently parallel architecture
• Threads are processed in batches

– No explicit thread creation
– Automatic load balancing

• SPMD / SIMD data parallel programming model
– Same operations are applied to all data items
– Resembles stream programming model

15

GPU as Parallel Processor

• Fine-grain (data) parallelism
– Millions of vertices and fragments are

processed per frame (each with one thread)
– Thousands of threads necessary to fully utilise

available compute power and hide latencies
– Hundreds of threads are executed in parallel

in hardware
– Thread creation has zero overhead

16

GPGPU Programming Model

• Match computations with graphics pipeline
– Input data are stored in floating-point texture
– Computations are invoked by geometry
– Computations are performed in the fragment

processor
– Results are written to floating-point texture

(bound as render target)

17

GPGPU Example

• Finite differences for 2D domain

• Domain is discretized
– Maps naturally to 2D texture

• One pixel corresponds to one point in the
discretized domain

T (i, j) = T (i, j) + axΔTx + ayΔTy

ΔTx = T (i + 1, j) + T (i − 1, j) − 2T (i, j)
ΔTy = T (i, j + 1) + T (i, j − 1) − 2T (i, j)

18

GPGPU Example

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;

19

GPGPU Example

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).x;

20

GPGPU Example

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D(domain, pos.x+1, pos.y).x;
dx += tex2D(domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;

21

GPGPU Example

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D(domain, pos.x+1, pos.y).x;
dx += tex2D(domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;

// \Delta T_y
...

22

GPGPU Example

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D(domain, pos.x+1, pos.y).x;
dx += tex2D(domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;

// \Delta T_y
...

glFragColor = self + ax*dx + ay*dy;

23

GPGPU Limitations

• Highly specialised hardware architecture
– “Fast path” is rendering and shading geometry

• Programs have to be written with graphics API
– Steep learning curve for non-graphics people
– Graphics API overhead

• Only gather, no scatter
– Less flexibility
– Makes it often necessary to re-design

algorithms

24

GPGPU Limitations

• Computations have to be fully independent
– No synchronisation, mutexes, ...

• Most GPGPU applications are bandwidth limited
– GPGPU apps. read 32-bit floating point data

from textures which is not common in graphics
(and hence not the “fast path”)

– Waste of compute power

25

Next Generation GPGPU

• Middleware
– Hide complexity of GPGPU through an

additional software layer
– Examples: SH, Brook, ...
+ Easy to realize
+ Easier to write programs
+ Hardware and vendor independent
― Graphics API and additional overhead
― Software-only solution

26

Next Generation GPGPU

• Middleware
• Non-graphics APIs

– Expose GPU functionality through a non-
graphics API

– Example: Close To Metal (ATI)
+ Avoids graphics API overhead
+ Easier to learn for non-graphics people
― Software only
― Vendor specific

27

Next Generation GPGPU

• Middleware
• Non-graphics APIs
• GPU as hybrid device

– GPU as hybrid graphics and compute device
– Example: CUDA (NVIDIA)
+ In principle, can overcome all limitations of

traditional GPGPU
― Graphics still the “fast path”
― Vendor specific

28

CUDA Overview

• Compute Unified Device Architecture
• NVIDIA proprietary solution
• Combination of hardware and software features
s

• GPU as highly multithreaded coprocessor for
data-parallel computations
– Thousands of very lightweight threads

• Software provides low-level abstraction
– Explicit parallelization
– Explicit memory management

29

CUDA Hardware

SMEM

L1

SMEM

L1

SMEM

L1

SMEM

L1

SMEM

L1

SMEM

L1

SMEM

L1

SMEM

L1

L2

MEM

L2

MEM

L2

MEM

L2

MEM

L2

MEM

L2

MEM

Host

Input Assembler

Thread Scheduler

Setup / Raster / ZCull

30

CUDA Hardware

• Parallel program is executed as {1,2,3}D grid of
thread blocks

s

• Threads in a thread block can
– be synchronised using barriers
– efficiently share data via shared memory

• Each thread has unique {1,2,3}D identifier
– For example to determine the data that is

processed by the thread
• Atomic instructions

31

CUDA Memory (host-visible)

• Global Memory (RW)
– Direct-access on-board RAM memory
– High-latency, uncached

• Texture Memory(RO)
– RAM memory accessed with special interface
– Medium-latency, cached

• Constant Memory (RO)
– Low-latency (coherent access), cached

32

CUDA Shared Memory

• Communicate data between threads
– Limited to threads in one thread block

• User-managed cache
• Very low latency (approx. same as registers)
• Invisible to host

– Has to be initialised by thread block
• Very limited in size: currently 16 KB

33

CUDA Software

• Extension of C realized as combination of
intrinsics and API
– Compiled using meta-compiler

• Goal: Easy port of C programs to CUDA

34

CUDA Host Extensions

• Kernel invocation
myKernel<<< grid_dim , block_dim >>>(in, out)

• Memory management
cudaMalloc(), cudaMemcpy(), cudaFree(), ...

• Device management
cudaGetDeviceCount(), ...

• Graphics interoperability
cudaGLRegisterBufferObject(), ...

• ...

35

CUDA Device Extensions

• Memory declaration
__shared__ float smem[1024]

• synchronisation (barrier)
__synchthreads()

• Atomic operations
atomicAdd(), atomicExch(), atomicXor(), ...

• Thread identifier
threadIdx, blockIdx, blockDim, ...

• ...

36

CUDA Program Flow

• Upload data to process into device memory
• Define execution environment (#threads etc.)
• Launch kernel

– Read input data into shared memory
– Process data
– Write result from shared to global memory

• Read result back to host memory

37

CUDA Example

• Simple 1D convolution

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

38

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

39

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

a

b

40

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

x
a

b

41

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

x
a

b

42

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

x
a

b

43

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

x
a

b

44

CUDA Example

• Simple 1D convolution

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

a

block

b

block block block

45

CUDA Example

__global__ void conv(float* in, float* out) {

46

CUDA Example

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

47

CUDA Example

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

48

CUDA Example

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];

49

CUDA Example

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];

out[tid] = res;
}

50

CUDA Example

__host__ void run() {

// read input data
...

unsigned int mem_size = signal_size *
sizeof(float);

51

CUDA Example

__host__ void run() {

// read input data
...

unsigned int mem_size = signal_size *
sizeof(float);

float* d_in, d_out;
cudaMalloc((void**) d_in, mem_size);
cudaMalloc((void**) d_out, mem_size);
cudaMemcpy(d_in, signal, mem_size,

cudaMemcpyHostToDevice);

52

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

53

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>(d_in, d_out);

54

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>(d_in, d_out);

// copy result back to the host array result
cudaMemcpy(result, d_out, mem_size,

cudaMemcpyDeviceToHost);
}

55

Conclusion

• Traditional GPGPU
– Potential for significant speedups for data-

parallel problems
– Hard to use

56

Conclusion

• Traditional GPGPU
– Potential for significant speedups for data-

parallel problems
– Hard to use

• Next generation GPGPU
– Alleviates many of the problems of traditional

GPGPU
– Practicality for real-world problems has yet to

be shown

57

Conclusion

• Many open questions for the future:
– Vendor-independent APIs?
– Practical debugger?
– Balancing CPU and GPU?
– What about task parallelism?
– How long does it make sense to have one chip

for graphics and general purpose computations?
– ...

58

Slides available at

www.dgp.toronto.edu/people/lessig/talks/

