An Introduction to GPGPU
with a case study on CUDA

| Christian Lessig (lessig@dgp.toronto.edu)

GPGPU

* General Purpose Computations on GPUs
* GPUs for applications beyond rasterization
- Global illumination
- Computer vision
- Signal processing
— Simulation

- Computational biology / finance

Motivation

* Exponentially growing compute power

A G80

(\&
-
-
L
Original data Mark Harris 2007

100 - Intel Core2 Duo
3.0 GHz
NV30 /‘
¥
T T T T T T >
Jan. Jun. Apr. May Nov. Mar. Nov.

2003 2004 2005 2006

Motivation

* Exponentially growing compute power

* Very high memory bandwidth

Motivation

* Exponentially growing compute power
* Very high memory bandwidth
* Ubiquity

— Available in most PCs and workstations

Motivation

* Exponentially growing compute power

* Very high memory bandwidth

* Ubiquity
- Available in most PCs and workstations

* Increasing programmability and functionality
- Steadily improving precision
— Full control flow (with small overhead)

- High-level languages

GPU as Parallel Processor

CPU

GPU

Y

Video Memory

Y

Vertex
Processor

A

Y

Y

Fragment
Processor

Raster

Y
Y

Unit

Y

Render
Target

Y

GPU as Parallel Processor

CPU

GPU

Y

Video Memory

Y

Vertex
Processor

A

Y

Y

Fragment
Processor

Raster

Y
Y

Unit

Y

Render
Target

Y

GPU as Parallel Processor

GPU

Y

CPU

Video Memory

Y

Vertex
Processor

Y

A

Y

Fragment
Processor

Raster

Y
Y

Unit

Y

Render
Target

Y

GPU as Parallel Processor

GPU

Y

CPU

Video Memory

Y

Y

Vertex Fragment
Processor Processor
Raster Render
g " Unit i - Target
>
< > \
\

Y

10

GPU as Parallel Processor

GPU

Y

CPU

Video Memory

Y

Y

Vertex Fragment
Processor Processor
Raster Render
>~ " Unit . - Target
)\/L =
< Yo, ~
\ \

Y

11

GPU as Parallel Processor

GPU

Y

CPU

Video Memory

Y

Y

Vertex Fragment
Processor Processor
Raster Render
>~ " Unit . - Target
H ‘
< Yo, .,
\ | | | |

Y

12

GPU as Parallel Processor

GPU

Y

CPU

Video Memory

|

Raster
Unit

Render
Target

A

N
Eanl
Y

ﬁﬂ

Y

13

14

GPU as Parallel Processor

* Inherently parallel architecture

* Threads are processed in batches
- No explicit thread creation
- Automatic load balancing

* SPMD / SIMD data parallel programming model
- Same operations are applied to all data items

- Resembles stream programming model

15

GPU as Parallel Processor

* Fine-grain (data) parallelism

- Millions of vertices and fragments are
processed per frame (each with one thread)

- Thousands of threads necessary to fully utilise
available compute power and hide latencies

- Hundreds of threads are executed in parallel
in hardware

— Thread creation has zero overhead

GPGPU Programming Model

* Match computations with graphics pipeline
- Input data are stored in floating-point texture
- Computations are invoked by geometry

- Computations are performed in the fragment
processor

- Results are written to floating-point texture
(bound as render target)

16

GPGPU Example

e Finite differences for 2D domain

TG,7) = T0,J)+ az ATy + ay AT,
AT, = T@G+1,5)+TGE—1,5)—2T(,5)
AT, = T(i,j+1)+T(,j—1)—2T(,j)

* Domain is discretized
- Maps naturally to 2D texture

* One pixel corresponds to one point in the
discretized domain

17

GPGPU Example

* Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;

18

GPGPU Example

* Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.Xx,

POS.Y) .X;

19

GPGPU Example

* Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).X;

// \Delta T_x

float dx = tex2D(domain, pos.x+1l, pos.y).X;
dx += tex2D(domain, pos.x-1, pos.y).X;

dx -= 2.0 * self;

20

GPGPU Example

* Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).X;

// \Delta T_x

float dx = tex2D(domain, pos.x+1l, pos.y).X;
dx += tex2D(domain, pos.x-1, pos.y).X;

dx -= 2.0 * self;

// \Delta T_y

21

GPGPU Example

* Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;
float self = tex2D(domain, pos.x, pos.y).X;

// \Delta T_x

float dx = tex2D(domain, pos.x+1l, pos.y).X;
dx += tex2D(domain, pos.x-1, pos.y).X;

dx -= 2.0 * self;

// \Delta T_y

glFragColor = self + ax*dx + ay*dy;

22

23

GPGPU Limitations

* Highly specialised hardware architecture

- “Fast path” is rendering and shading geometry
* Programs have to be written with graphics API

- Steep learning curve for non-graphics people

— Graphics API overhead
* Only gather, no scatter

- Less flexibility

- Makes it often necessary to re-design
algorithms

24

GPGPU Limitations

* Computations have to be fully independent
- No synchronisation, mutexes, ...
* Most GPGPU applications are bandwidth limited

- GPGPU apps. read 32-bit tfloating point data
from textures which is not common in graphics
(and hence not the “fast path”)

- Waste of compute power

Next Generation GPGPU

e Middleware

- Hide complexity of GPGPU through an
additional software layer

- Examples: SH, Brook, ...

+ Easy to realize

+ Easier to write programs

+ Hardware and vendor independent

— Graphics API and additional overhead

— Software-only solution

25

Next Generation GPGPU

* Middleware
* Non-graphics APIs

- Expose GPU functionality through a non-
graphics API

- Example: Close To Metal (ATI)

+ Avoids graphics API overhead

+ Easier to learn for non-graphics people
— Software only

— Vendor specific

26

Next Generation GPGPU

* Middleware

* Non-graphics APIs

* GPU as hybrid device
- GPU as hybrid graphics and compute device
- Example: CUDA (NVIDIA)

+ In principle, can overcome all limitations of
traditional GPGPU

— Graphics still the “fast path”

— Vendor specific

27

CUDA Overview

* Compute Unified Device Architecture
* NVIDIA proprietary solution
* Combination of hardware and software features

« GPU as highly multithreaded coprocessor for
data-parallel computations

- Thousands of very lightweight threads
* Software provides low-level abstraction
- Explicit parallelization

- Explicit memory management

28

CUDA Hardware

Host

Input Assembler |

| Thread Scheduler |

Setup / Raster / ZCull

Y
Y Y Y Y Y Y Y Y
SMEM SMEM SMEM SMEM SMEM SMEM SMEM SMEM
[LI [LI [LI LI | LI | LI [LI LI |
A | A | A | | A A | \ |
L2 L2 L2 L2 L2 L2
Y Y Y Y Y y y y Y y
MEM MEM MEM MEM MEM MEM

CUDA Hardware

* Parallel program is executed as {1,2,3}D grid ot
thread blocks

« Threads in a thread block can

- be synchronised using barriers

- efficiently share data via shared memory
* Each thread has unique {1,2,3}D identifier

— For example to determine the data that is

processed by the thread

e Atomic instructions

30

CUDA Memory (host-visible)

* Global Memory (RW)
— Direct-access on-board RAM memory
- High-latency, uncached
* Texture Memory(RO)
- RAM memory accessed with special interface
- Medium-latency, cached
* Constant Memory (RO)

- Low-latency (coherent access), cached

31

CUDA Shared Memory

* Communicate data between threads
— Limited to threads in one thread block
* User-managed cache
* Very low latency (approx. same as registers)
* Invisible to host
- Has to be initialised by thread block
* Very limited in size: currently 16 KB

32

CUDA Software

e Extension of C realized as combination of
intrinsics and API

- Compiled using meta-compiler

* Goal: Easy port of C programs to CUDA

33

CUDA Host Extensions

e Kernel invocation
myKernel<<< grid_dim , block_dim >>>(in,

* Memory management
cudamalloc(), cudamemcpy(), cudaFree(),
* Device management
cudaGetDeviceCount(),
* Graphics interoperability

cudaGLRegisterBufferobject(),

34

out)

CUDA Device Extensions

* Memory declaration
__shared__ float smem[1024]

* synchronisation (barrier)
__synchthreads()
* Atomic operations

atomicAdd(), atomicExch(), atomicXor(),

e Thread identifier

threadIdx, blockIdx, blockDim,

35

CUDA Program Flow

* Upload data to process into device memory
* Define execution environment (#threads etc.)
* Launch kernel

- Read input data into shared memory

- Process data

- Write result from shared to global memory

* Read result back to host memory

36

CUDA Example

* Simple 1D convolution

alx] = blz — 1] 4 3.0b|z] + b|z + 1]

37

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary

block overlap

38

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

39

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

40

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

X

41

/N

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

X

42

/N

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

X

43

/N

44

CUDA Example

* Simple 1D convolution
alx] = blx — 1] + 3.0b[z] + b[z + 1]

* Assume infinite signals and ignore necessary
block overlap

< > > < e
< > =< i > > <t

block block block block

CUDA Example

__global__ void conv(float* 1n, float* out) {

45

CUDA Example

__global__ void conv(float* 1n, float* out) {

__shared__ float smem[1024];

46

CUDA Example

__global__ void conv(float* 1n, float* out) {
__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

47

CUDA Example

__global__ void conv(float* 1n, float* out) {
__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// 1gnore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];

res += smem[tid+1];

48

CUDA Example

__global__ void conv(float* 1n, float* out) {
__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// 1gnore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];

res += smem[tid+1];

out[tid] = res;

49

CUDA Example

__host_ void run() {

// read 1nput data

unsigned int mem_size

signal_size *
sizeof(float);

50

CUDA Example

__host_ void run() {

//

read 1nput data

unsigned 1nt mem_size = signal_size *

sizeof(float);

float* d_in, d_out;

Cud
Ccud

Ccud

aMalloc((void**) d_in, mem_size);

aMalloc((void**) d_out, mem_size);

aMemcpy(d_in, signal, mem_size,
cudaMemcpyHostToDevice) ;

51

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512

dim3 threads, blocks;

threads = 512;

blocks = (signal_size / 512) + 1;

52

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512

dim3 threads, blocks;

threads = 512;

blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>(d_in, d_out);

53

54

CUDA Example

// assume signal_size > 512 and not a
// multiple of 512

dim3 threads, blocks;

threads = 512;

blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>(d_in, d_out);

// copy result back to the host array result
cudaMemcpy(result, d_out, mem_size,
cudaMemcpyDeviceToHost) ;

Conclusion

e Traditional GPGPU

- Potential for significant speedups for data-
parallel problems

- Hard to use

55

Conclusion

e Traditional GPGPU

- Potential for significant speedups for data-
parallel problems

- Hard to use
* Next generation GPGPU

- Alleviates many of the problems of traditional
GPGPU

- Practicality for real-world problems has yet to
be shown

56

57

Conclusion

* Many open questions for the future:
- Vendor-independent APIs?
- Practical debugger?
- Balancing CPU and GPU?
— What about task parallelism?

- How long does it make sense to have one chip
for graphics and general purpose computations?

Slides available at

www.dgp.toronto.edu/people/lessig/talks/

58

