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GPGPU

• General Purpose Computations on GPUs
• GPUs for applications beyond rasterization

– Global illumination
– Computer vision
– Signal processing
– Simulation
– Computational biology / finance
– ...
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Motivation

• Exponentially growing compute power
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Motivation

• Exponentially growing compute power
• Very high memory bandwidth
• Ubiquity

– Available in most PCs and workstations
• Increasing programmability and functionality

– Steadily improving precision
– Full control flow (with small overhead)
– High-level languages



7

GPU as Parallel Processor
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GPU as Parallel Processor

• Inherently parallel architecture
• Threads are processed in batches

– No explicit thread creation
– Automatic load balancing

• SPMD / SIMD data parallel programming model 
– Same operations are applied to all data items
– Resembles stream programming model
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GPU as Parallel Processor

• Fine-grain (data) parallelism
– Millions of vertices and fragments are

processed per frame (each with one thread)
– Thousands of threads necessary to fully utilise

available compute power and hide latencies
– Hundreds of threads are executed in parallel

in hardware
– Thread creation has zero overhead
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GPGPU Programming Model

• Match computations with graphics pipeline
– Input data are stored in floating-point texture
– Computations are invoked by geometry
– Computations are performed in the fragment

processor 
– Results are written to floating-point texture

(bound as render target)
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GPGPU Example

• Finite differences for 2D domain

• Domain is discretized
– Maps naturally to 2D texture

• One pixel corresponds to one point in the
discretized domain

T (i, j) = T (i, j) + axΔTx + ayΔTy

ΔTx = T (i + 1, j) + T (i − 1, j) − 2T (i, j)
ΔTy = T (i, j + 1) + T (i, j − 1) − 2T (i, j)
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GPGPU Example

• Kernel updates T(i,j) for one point 

uint2 pos = glFragCoord;
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GPGPU Example

• Kernel updates T(i,j) for one point 

uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;
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GPGPU Example

• Kernel updates T(i,j) for one point 

uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;
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GPGPU Example

• Kernel updates T(i,j) for one point 

uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;

// \Delta T_y
...
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GPGPU Example

• Kernel updates T(i,j) for one point 

uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;

// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;

// \Delta T_y
...

glFragColor = self + ax*dx + ay*dy;
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GPGPU Limitations

• Highly specialised hardware architecture
– “Fast path” is rendering and shading geometry

• Programs have to be written with graphics API
– Steep learning curve for non-graphics people
– Graphics API overhead

• Only gather, no scatter
– Less flexibility
– Makes it often necessary to re-design

algorithms
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GPGPU Limitations

• Computations have to be fully independent
– No synchronisation, mutexes, ...

• Most GPGPU applications are bandwidth limited
– GPGPU apps. read 32-bit floating point data

from textures which is not common in graphics
(and hence not the “fast path”)

– Waste of compute power
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Next Generation GPGPU

• Middleware
– Hide complexity of GPGPU through an

additional software layer
– Examples: SH, Brook, ...
+ Easy to realize 
+ Easier to write programs
+ Hardware and vendor independent
― Graphics API and additional overhead
― Software-only solution
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Next Generation GPGPU

• Middleware
• Non-graphics APIs

– Expose GPU functionality through a non-
graphics API

– Example: Close To Metal (ATI)
+ Avoids graphics API overhead 
+ Easier to learn for non-graphics people
― Software only
― Vendor specific
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Next Generation GPGPU

• Middleware
• Non-graphics APIs
• GPU as hybrid device

– GPU as hybrid graphics and compute device
– Example: CUDA (NVIDIA)
+ In principle, can overcome all limitations of

traditional GPGPU
― Graphics still the “fast path”
― Vendor specific
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CUDA Overview

• Compute Unified Device Architecture
• NVIDIA proprietary solution
• Combination of hardware and software features
s

• GPU as highly multithreaded coprocessor for
data-parallel computations
– Thousands of very lightweight threads

• Software provides low-level abstraction
– Explicit parallelization
– Explicit memory management
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CUDA Hardware
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CUDA Hardware

• Parallel program is executed as {1,2,3}D grid of
thread blocks

s

• Threads in a thread block can 
– be synchronised using barriers
– efficiently share data via shared memory

• Each thread has unique {1,2,3}D identifier
– For example to determine the data that is

processed by the thread
• Atomic instructions
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CUDA Memory (host-visible)

• Global Memory (RW)
– Direct-access on-board RAM memory 
– High-latency, uncached

• Texture Memory(RO)
– RAM memory accessed with special interface
– Medium-latency, cached

• Constant Memory (RO)
– Low-latency (coherent access), cached
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CUDA Shared Memory

• Communicate data between threads
– Limited to threads in one thread block

• User-managed cache
• Very low latency (approx. same as registers)
• Invisible to host

– Has to be initialised by thread block
• Very limited in size: currently 16 KB
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CUDA Software

• Extension of C realized as combination of
intrinsics and API
– Compiled using meta-compiler 

• Goal: Easy port of C programs to CUDA
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CUDA Host Extensions

• Kernel invocation
myKernel<<< grid_dim , block_dim >>>(in, out)

• Memory management
cudaMalloc(), cudaMemcpy(), cudaFree(), ...

• Device management
cudaGetDeviceCount(), ...

• Graphics interoperability
cudaGLRegisterBufferObject(), ...

• ...
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CUDA Device Extensions

• Memory declaration
__shared__ float smem[1024]

• synchronisation (barrier)
__synchthreads()

• Atomic operations
atomicAdd(), atomicExch(), atomicXor(), ...

• Thread identifier
threadIdx, blockIdx, blockDim, ...

• ...
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CUDA Program Flow

• Upload data to process into device memory
• Define execution environment (#threads etc.)
• Launch kernel

– Read input data into shared memory
– Process data
– Write result from shared to global memory

• Read result back to host memory
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CUDA Example

• Simple 1D convolution 

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]



38

CUDA Example

• Simple 1D convolution 

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]
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CUDA Example

• Simple 1D convolution 

• Assume infinite signals and ignore necessary
block overlap

a[x] = b[x − 1] + 3.0b[x] + b[x + 1]

a

block

b

block block block
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CUDA Example

__global__ void conv( float* in, float* out) {
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CUDA Example

__global__ void conv( float* in, float* out) {

__shared__ float smem[1024];
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CUDA Example

__global__ void conv( float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();
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CUDA Example

__global__ void conv( float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];
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CUDA Example

__global__ void conv( float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();

// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];

out[tid] = res;
}
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CUDA Example

__host__ void run() {

// read input data
...

unsigned int mem_size = signal_size * 
sizeof(float);
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CUDA Example

__host__ void run() {

// read input data
...

unsigned int mem_size = signal_size * 
sizeof(float);

float* d_in, d_out;
cudaMalloc( (void**) d_in, mem_size);
cudaMalloc( (void**) d_out, mem_size);
cudaMemcpy( d_in, signal, mem_size,

cudaMemcpyHostToDevice);



52

CUDA Example

// assume signal_size > 512 and not a 
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;
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CUDA Example

// assume signal_size > 512 and not a 
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>( d_in, d_out);
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CUDA Example

// assume signal_size > 512 and not a 
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel
conv<<<blocks,threads>>>( d_in, d_out);

// copy result back to the host array result
cudaMemcpy( result, d_out, mem_size,

cudaMemcpyDeviceToHost);
}
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– Potential for significant speedups for data-

parallel problems
– Hard to use 
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Conclusion

• Traditional GPGPU
– Potential for significant speedups for data-

parallel problems
– Hard to use 

• Next generation GPGPU
– Alleviates many of the problems of traditional

GPGPU 
– Practicality for real-world problems has yet to

be shown
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Conclusion

• Many open questions for the future:
– Vendor-independent APIs?
– Practical debugger?
– Balancing CPU and GPU?
– What about task parallelism?
– How long does it make sense to have one chip

for graphics and general purpose computations?
– ...
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Slides available at

www.dgp.toronto.edu/people/lessig/talks/


