An Introduction to GPGPU with a case study on CUDA

Christian Lessig (lessig@dgp.toronto.edu)

GPGPU

- General Purpose Computations on GPUs
- GPUs for applications beyond rasterization
 - Global illumination
 - Computer vision
 - Signal processing
 - Simulation

- ...

- Computational biology / finance

• Exponentially growing compute power

- Exponentially growing compute power
- Very high memory bandwidth

- Exponentially growing compute power
- Very high memory bandwidth
- Ubiquity
 - Available in most PCs and workstations

- Exponentially growing compute power
- Very high memory bandwidth
- Ubiquity
 - Available in most PCs and workstations
- Increasing programmability and functionality
 - Steadily improving precision
 - Full control flow (with small overhead)
 - High-level languages

- Inherently parallel architecture
- Threads are processed in batches
 - No explicit thread creation
 - Automatic load balancing
- SPMD / SIMD data parallel programming model
 - Same operations are applied to all data items
 - Resembles stream programming model

- Fine-grain (data) parallelism
 - Millions of vertices and fragments are processed per frame (each with one thread)
 - Thousands of threads necessary to fully utilise available compute power and hide latencies
 - Hundreds of threads are executed in parallel in hardware
 - Thread creation has zero overhead

GPGPU Programming Model

- Match computations with graphics pipeline
 - Input data are stored in floating-point texture
 - Computations are invoked by geometry
 - Computations are performed in the fragment processor
 - Results are written to floating-point texture (bound as render target)

• Finite differences for 2D domain

$$T(i,j) = T(i,j) + a_x \Delta T_x + a_y \Delta T_y$$

$$\Delta T_x = T(i+1,j) + T(i-1,j) - 2T(i,j)$$

$$\Delta T_y = T(i,j+1) + T(i,j-1) - 2T(i,j)$$

- Domain is discretized
 - Maps naturally to 2D texture
- One pixel corresponds to one point in the discretized domain

• Kernel updates T(i,j) for one point

uint2 pos = glFragCoord;

• Kernel updates T(i,j) for one point

```
uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;
```

• Kernel updates T(i,j) for one point

```
uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;
// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;
```

• Kernel updates T(i,j) for one point

```
uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;
// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
```

```
dx -= 2.0 * self;
```

// \Delta T_y

. . .

• Kernel updates T(i,j) for one point

```
uint2 pos = glFragCoord;
float self = tex2D( domain, pos.x, pos.y).x;
// \Delta T_x
float dx = tex2D( domain, pos.x+1, pos.y).x;
dx += tex2D( domain, pos.x-1, pos.y).x;
dx -= 2.0 * self;
```

// \Delta T_y

. . .

glFragColor = self + ax*dx + ay*dy;

GPGPU Limitations

- Highly specialised hardware architecture
 - "Fast path" is rendering and shading geometry
- Programs have to be written with graphics API
 - Steep learning curve for non-graphics people
 - Graphics API overhead
- Only gather, no scatter
 - Less flexibility
 - Makes it often necessary to re-design algorithms

GPGPU Limitations

- Computations have to be fully independent
 - No synchronisation, mutexes, ...
- Most GPGPU applications are bandwidth limited
 - GPGPU apps. read 32-bit floating point data from textures which is not common in graphics (and hence not the "fast path")
 - Waste of compute power

Next Generation GPGPU

- Middleware
 - Hide complexity of GPGPU through an additional software layer
 - Examples: SH, Brook, ...
 - + Easy to realize
 - + Easier to write programs
 - + Hardware and vendor independent
 - Graphics API and additional overhead
 - Software-only solution

Next Generation GPGPU

- Middleware
- Non-graphics APIs
 - Expose GPU functionality through a nongraphics API
 - Example: Close To Metal (ATI)
 - + Avoids graphics API overhead
 - + Easier to learn for non-graphics people
 - Software only
 - Vendor specific

Next Generation GPGPU

- Middleware
- Non-graphics APIs
- GPU as hybrid device
 - GPU as hybrid graphics and compute device
 - Example: CUDA (NVIDIA)
 - + In principle, can overcome all limitations of traditional GPGPU
 - Graphics still the "fast path"
 - Vendor specific

CUDA Overview

- Compute Unified Device Architecture
- NVIDIA proprietary solution
- Combination of hardware and software features
- GPU as highly multithreaded coprocessor for data-parallel computations
 - Thousands of very lightweight threads
- Software provides low-level abstraction
 - Explicit parallelization
 - Explicit memory management

CUDA Hardware

CUDA Hardware

- Parallel program is executed as {1,2,3}D grid of thread blocks
- Threads in a thread block can
 - be synchronised using barriers
 - efficiently share data via shared memory
- Each thread has unique {1,2,3}D identifier
 - For example to determine the data that is processed by the thread
- Atomic instructions

CUDA Memory (host-visible)

- Global Memory (RW)
 - Direct-access on-board RAM memory
 - High-latency, uncached
- Texture Memory(RO)
 - RAM memory accessed with special interface
 - Medium-latency, cached
- Constant Memory (RO)
 - Low-latency (coherent access), cached

CUDA Shared Memory

- Communicate data between threads
 - Limited to threads in one thread block
- User-managed cache
- Very low latency (approx. same as registers)
- Invisible to host
 - Has to be initialised by thread block
- Very limited in size: currently 16 KB

CUDA Software

- Extension of C realized as combination of intrinsics and API
 - Compiled using meta-compiler
- Goal: Easy port of C programs to CUDA

CUDA Host Extensions

- Kernel invocation
 myKernel<<< grid_dim , block_dim >>>(in, out)
- Memory management
 cudaMalloc(), cudaMemcpy(), cudaFree(), ...
- Device management
 cudaGetDeviceCount(), ...
- Graphics interoperability
 cudaGLRegisterBufferObject(), ...

CUDA Device Extensions

• Memory declaration

__shared__ float smem[1024]

• synchronisation (barrier)

__synchthreads()

Atomic operations
 atomicAdd(), atomicExch(), atomicXor(), ...

35

• Thread identifier

threadIdx, blockIdx, blockDim, ...

CUDA Program Flow

- Upload data to process into device memory
- Define execution environment (#threads etc.)
- Launch kernel
 - Read input data into shared memory
 - Process data
 - Write result from shared to global memory
- Read result back to host memory

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

a[x] = b[x - 1] + 3.0b[x] + b[x + 1]

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

• Simple 1D convolution

$$a[x] = b[x - 1] + 3.0b[x] + b[x + 1]$$

__global__ void conv(float* in, float* out) {

__global__ void conv(float* in, float* out) {
 __shared__ float smem[1024];

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

tid = threadIdx.x + blockDim.x * blockIdx.x; smem[tid] = in[tid]; ___syncthreads();

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

```
tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();
```

```
// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];
```

__global__ void conv(float* in, float* out) {

__shared__ float smem[1024];

```
tid = threadIdx.x + blockDim.x * blockIdx.x;
smem[tid] = in[tid];
__syncthreads();
```

```
// ignore tile boundary
float res = smem[tid-1];
res += 3.0 * smem[tid];
res += smem[tid+1];
```

```
out[tid] = res;
}
```

__host__ void run() {

// read input data

. . .

unsigned int mem_size = signal_size *
 sizeof(float);

__host__ void run() {

// read input data

. . .

unsigned int mem_size = signal_size *
 sizeof(float);

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel

conv<<<blocks,threads>>>(d_in, d_out);

// assume signal_size > 512 and not a
// multiple of 512
dim3 threads, blocks;
threads = 512;
blocks = (signal_size / 512) + 1;

// run kernel

conv<<<blocks,threads>>>(d_in, d_out);

}

Conclusion

- Traditional GPGPU
 - Potential for significant speedups for dataparallel problems
 - Hard to use

Conclusion

- Traditional GPGPU
 - Potential for significant speedups for dataparallel problems
 - Hard to use
- Next generation GPGPU
 - Alleviates many of the problems of traditional GPGPU
 - Practicality for real-world problems has yet to be shown

Conclusion

- Many open questions for the future:
 - Vendor-independent APIs?
 - Practical debugger?
 - Balancing CPU and GPU?
 - What about task parallelism?
 - How long does it make sense to have one chip for graphics and general purpose computations?

Slides available at

www.dgp.toronto.edu/people/lessig/talks/