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Abstract

Toward More Efficient Motion Planning with Differential Constraints

Maciej Kalisiak

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2008

Agents with differential constraints, although common in the real world, pose a particular

difficulty for motion planning algorithms. Methods for solving such problems are still relatively

slow and inefficient. In particular, current motion planners generally can neither “see” the world

around them, nor generalize from experience. That is, their reliance on collision tests as the

only means of sensing the environment yields a tactile, myopic perception of the world. Such

short-sightedness greatly limits any potential for detection, learning, or reasoning about frequently

encountered situations. In result these methods solve each problem in exactly the same way, whether

the first or the hundredth time they attempt it, each time none the wiser. The key component

of this thesis proposes a general approach for motion planning in which local sensory information,

in conjunction with prior accumulated experience, are exploited to improve planner performance.

The approach relies on learning viability models for the agent’s “perceptual space”, and the use

thereof to direct planning effort. In addition, a method is presented for improving runtimes of the

RRT motion planning algorithm in heavily constrained search-spaces, a common feature for agents

with differential constraints. Finally, the thesis explores the use of viability models for maintaing

safe operation of user-controlled agents, a related application which could be harnessed to yield

additional, more “natural” experience data for further improving motion planning.
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Nomenclature

Below is a brief summary of common notation used throughout the thesis.

q configuration of the agent

x state of the agent; often x = (q, q̇)

~x state of the agent, when x denotes distance along x-axis in surrounding text

e state (and geometry) of the environment

x+ combined system state; x+ = (x, e)

X agent’s state-space; x ∈ X
Xfree free-space; the set of states where agent is not in collision (Xfree ⊆ X )

Xviab viable part of the state-space; Xviab = {x | x ∈ Viab(Xfree)}
Xric “region of inevitable collision”; Xric = Xfree ∩ ¬Xviab ;

Viab(K) viability kernel (i.e., set of viable states) under constraint set K

σ a virtual sensor

s sensory state; s = (σ1, σ2, . . . )

λ locally situated state

Λ locally situated state-space; λ ∈ Λ

Ωv viability “oracle” (i.e., model)

u a particular value for a control action

U set of all possible control actions

Û a discrete subset of U , usually sampled uniformly

Uv subset of control actions which maintain agent viability

vk control action selected by user at time-step k

Th time horizon; the duration of a look-ahead trajectory

Teb(x, u) time to (viability) envelope breach

Tgr grace period

F (x, u) system dynamics;

in discrete-time case: xk+1 = F (xk, uk)

in continuous-time case: ẋ = F (x, u)
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Chapter 1

Introduction

In simplest terms, motion planning is the problem of pathfinding, the piloting of an agent—a

subject under our control, such as a car or a robot—from a given starting point to a destination.

More formally, motion planning consists of discovering a trajectory for the agent from some initial

state, xinit , to a goal state, xgoal , subject to the agent’s laws of motion and any other applicable

constraints, such as collision avoidance, balance, or joint limits.

Although pathfinding is a core application, motion planning has a far wider scope. For example,

an incrementally more advanced application is the “Piano Mover’s Problem”, a canonical example

in motion planning which generally deals with the problem of how to manoeuvre a piano through

narrow corridors, stairwells and doorways, all the while avoiding walls and furniture, so that the

piano is delivered to its destination unharmed. Motion planning also addresses problems such

as how to parallel-park a car, or back a triple-trailer truck into a loading bay. Manipulation

tasks, where the aim of the manipulator’s (i.e., agent’s) motion is to move an external object to

a specified location and orientation, entail additional constraints, such as the avoidance of object-

environment collisions, manipulator-environment collisions, and manipulator self-intersections. The

general problem of planning, sequencing and coordinating movement of multiple agents also falls

within the purview of this field.

With such a wide scope it is not surprising that motion planning has many diverse and far-

reaching applications in the real world, and thus attracts considerable research attention. Aside

from the most obvious applications to autonomous robot locomotion, robot control, robot-aided

assembly, and the general problem of navigation, motion planning is also used in many virtual

environments: computer games, computer generated animation in movies, and virtual prototyping.

It even finds application in more remote domains, such as protein folding and drug design.

1
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Figure 1.1: A maze: one of the simplest motion planning problems.

1.1 Kinodynamic motion planning

A more difficult class of motion planning problems involves agents whose equations of motion place

restrictions, called differential constraints, on the agent’s instantaneous displacement. The motions

of a toy car and a typical bike, for example, exhibit differential constraints. The latter example,

the bike, belongs to an even more challenging subclass of problems, called kinodynamic systems.

Most typical motion planning problems are kinematic, in that they deal only with the agent’s

configuration—its position, orientation, and the internal arrangement of agent parts. Kinodynamic

motion planning, on the other hand, deals with the agent’s state, x, which consists of the agent’s

configuration, q, and its first time-derivative; that is, x = (q, q̇). What makes kinodynamic planning

difficult, aside from the larger search space1, is the frequent abundance of deep “dead-ends” in this

search space, regions that tend to ensnare the planner yet provide little prospect of advancing it

toward its goal, much like local minima in gradient descent methods. These difficult regions are

generally the result of the “cross product” of the agent’s laws of motion with additional constraints

imposed on the motion, such as the environment’s geometry.

Kinodynamic systems are common in the real world. Some typical examples include driving a

car on snow and ice, riding a bike, flying a helicopter, and even human motion, when it involves

dynamic or acrobatic moves. Generally, any system in which inertia or dynamic balance play a

significant role is kinodynamic, although the absence of these traits does not necessarily indicate

the contrary.

1The search space has up to twice the number of dimensions compared to the kinematic-only case, when the full
velocity vector q̇ is employed.
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1.2 A sample kinodynamic problem

Throughout this thesis we make repeated use of a particular kinodynamic system, namely the riding

of a bike, to illustrate points or present results. The system is introduced here so that the reader

is already familiar with it when it is employed. This also serves to illustrate the precise problem

parameters being presented to a motion planner in a typical query.

In this example system the bike has a fixed forward velocity, and the only mode of agent

control is the direct manipulation of the bike’s steering angle, which is generally constrained to

lie within some reasonable interval (e.g., [−π
4 ,+

π
4 ]). What makes this system particularly difficult

and interesting is the multi-purpose function of this one control input, which simultaneously acts

to effect progress, avoid obstacles, and keep balance. A further hindrance is the counter-intuitive

nature of bike motion, such as the execution of turns by first steering away from the intended

direction of travel in order to set up and “lean into” the turn.

(a) agent (b) environment, xinit , xgoal (c) planner output

Figure 1.2: A sample kinodynamic system used throughout the thesis: a fixed-velocity bike. “1” and “2” indicate
the locations of xinit and xgoal , respectively; at both these states the bike is fully upright, facing right, and has zero
lean velocity.

Figure 1.2 illustrates a particular motion planning query for the bike. In general, a motion

planning problem specifies:

• the starting state xinit

• the goal state xgoal

• the geometry of the environment

• a description of the agent’s laws of motion

For actuated systems, the last is usually provided in the form of a function, F (x, u), where x is the

agent’s current state, and u is the control action being applied (e.g., the bike’s steering angle). In

continuous-time systems the function computes the resultant derivative of the state vector:

ẋ = F (x, u). (1.1)

Future states of the agent are thus obtained through integration of F (x, u). In the case of a
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discrete-time system, the function directly computes the subsequent state of the system:

xk+1 = F (xk, uk). (1.2)

Also, for motion planners that do not perform any pre-computation step on the environment, a

collision detection routine is usually provided in lieu of the complete description of the environment

itself.

Given this description of the problem, the task of the motion planner is to find a trajectory

from xinit to xgoal that conforms to the agent’s laws of motion and all other imposed constraints.

This trajectory is the planner’s output, although for actuated systems the solution usually also

includes the exact sequence of control actions that were applied to achieve the trajectory. The

latter is useful when planning motion for physical robots, since this control sequence can then be

fed to the agent, which then directly executes it to achieve the discovered solution trajectory.

1.3 Types of problems studied

There is much breadth and variety in the types of problems addressed by motion planning. In

this thesis we are primarily interested in the types of problems one may encounter in applications

of computer graphics and animation. In particular, this work has been motivated by an interest

in automating the animation of secondary characters2 and objects in various media, such as CG-

enhanced movies, virtual worlds, and computer games. Currently, animation of such subjects is

achieved using labour intensive methods, such as manual key-framing or motion capture sessions.

Most interesting animation subjects can be modeled adequately as kinodynamic systems, and

hence this class is the primary focus of this thesis. Experiments have shown that the methods

developed also work well with nonholonomic systems, hence the scope has been later widened to

encompass systems with differential constraints in general. Furthermore, we have gravitated toward

actuated agents, ones whose motion is controlled using control inputs, rather than through direct

manipulation of the agent’s degrees of freedom (DOFs), as this is slightly more general (e.g., a

kinematic point can be recast as an actuated agent, where the the point’s direction of motion and

speed are the control inputs). Finally, most of this work has centred around first- and second-order

systems with first-order control (e.g., integral control of car’s velocity and steering), although in a

few cases second-order control was used as well (e.g., the inertial point and the Lunar Lander).

2Primary characters—a protagonist of a story, for example—often need to portray subtle nuances and emotions,
things which even a skilled CG animator might find challenging, let alone a fully automated tool.
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1.4 Current state of motion planning field

Motion planning with kinematic agents, ones that are able to move along all DOFs independently—

and this includes generic pathfinding—is largely a “solved” problem, and adequate methods exist

to solve such queries. Unfortunately this is not the case with more complex agents, for example kin-

odynamic ones. Kinematic approaches either do not extend to these problems, or scale very poorly,

becoming intractable for agents with even a handful of DOFs. Kinodynamic motion planning thus

remains an active area of research, and is one of the key motivations behind this thesis.

There are naturally other challenges which motion planning research is actively pursuing, but

as many of these have limited overlap with the work in this thesis, we only mention them in passing.

For example, in the recent past there has been significant interest in the difficulty presented by

the presence of narrow passages in the environment, which for many algorithms prove difficult to

find and traverse. There has also been interest in systems with dynamic constraints and dynamic

environments (we touch on these later), which present novel challenges. Manipulation planning

(through grasping or using compliance) is also popular due to obvious industry applications. For

the most part, many of these topics simply amount to a focus on a different (difficult) sub-class of

motion planning problems.

A more basic and somewhat orthogonal issue that plagues motion planning, and either causes

or at least exacerbates the above problems, is the curse of dimensionality : the search space—and

thus also the runtime—grow exponentially with the agent’s complexity, or more specifically, as the

number of DOFs of the agent increases. What makes the problem acute is that many real-world

problems can be highly dimensional. Although it is sometimes possible to reduce a problem to

an approximation of sufficiently lower dimensionality, this is not always possible, as when a large

number of the DOFs are each instrumental to finding a solution.

This is interesting because this behaviour seems sharply disproportionate to the human-perceived

difficulty of the problems. Once sufficiently familiarized (i.e., after a period of experimentation and

learning), humans are capable of controlling very sophisticated dynamical systems with only a

moderate increase in planning time and effort. Furthermore, many motion planning problems are

relatively underconstrained, in that the set of possible solutions is relatively large. Clearly finding

an optimal solution, in the general case, requires an exhaustive search and hence warrants expo-

nential growth. But optimality is frequently not required, and finding just a single solution should

not be that difficult. To abuse the metaphor, when the number of needles is a linear function of

the size of the haystack, the difficulty of finding a single needle should never grow out of control,

no matter how big the haystack.

Part of the problem is the minute scale on which current methods operate. Tree-based planners

solve problems essentially by brute-force, exploring the search space through incremental agent

simulation, by applying fixed control actions over small time-steps dt. This is a convenient approach,
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and perhaps even necessary for agents with system dynamics that are acutely sensitive to the agent

state (e.g., many kinodynamic problems), and which therefore do not readily lend themselves to

broad approximations or pre-processing. More importantly, this minute discretization of time is

often also a necessary trait for the completeness proofs of the algorithms in question. Yet the

dt-sized discretization of the problem is the main factor in the poor scaling of the methods. In a

way, this represents a trade-off of speed for completeness guarantees. What if we chose a different

balance in the trade-off?

The second issue is that most current methods are extremely inobservant, memoryless, and

blind. That is, they neither “see” the world around them, nor learn from experience. In general,

current motion planners rely solely on collision detection tests for sensing the surrounding envi-

ronment, which leads to very tactile and myopic perception. As a result, such planners cannot

detect, anticipate, learn, nor reason about commonly occurring patterns or scenarios, and instead

end up solving all problem instances “from scratch” each time. For example, there is usually no

substantial difference between the first and the hundredth time in how a typical planner solves a

parallel parking problem for a car, or one that requires a three-point turn.

1.5 Macro-primitives: a way forward?

It seems clear that, in order to get a better handle on the curse of dimensionality, future planners

will have to work on a scale larger than the current canonical dt time step. Since humans and other

biological systems are capable of handling highly dimensional systems significantly better, it might

be useful to try to imitate the mechanisms they use to do this. Recent research in neuroscience,

such as [MIB00, MIS04], indicates that motion is realized through the sequencing and blending of

motion primitives or control programs. This, in effect, acts as a means to reduce the dimensionality

of the input problem, allowing the organism to successfully execute much more complex tasks.

In our context of motion planning, a similar effect could be achieved through the use of motion

macro primitives, the building blocks of motion from which trajectories and solutions are con-

structed. These could be derived atomically or through chunking of lower operations. For example,

in the case of the bike system introduced earlier, a simple macro-primitive could consist of a “turn”

operation (likely parameterized by the turn radius), which would encapsulate the idea that one first

needs to steer away from the desired direction of travel in order to setup a lean into the turn. More

advanced primitives could then be built on top of this turning primitive, such as one for threading

more smoothly between multiple obstacles, or for properly setting up the bike for narrow corridors

which can only be entered from a particular direction. Even larger primitives could in turn be built

on top of these, for example, for handling particular environment set pieces which might occur

frequently.

A motion planner which works in terms of such macro-primitives would clearly scale significantly
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better to more complex agents than current alternatives. As such, it makes an attractive research

direction and goal. Alas, this has numerous open problems, and thus it is likely than any such

general planner is still quite distant. In the next section, following the description of the key

contributions of the thesis, a brief summary is presented of how the various contributions relate to

this larger goal.

1.6 Contributions of thesis

The overall focus of this thesis is the enhancement of motion planning efficiency and speed. Even

though the larger goal of a general motion planner capable of discovering and employing macro-

primitives is still out of reach, this work also offers some ideas for a number of the open problems;

these are discussed at end of this section.

The specific contributions of the thesis are as follows. In Chapter 3 we address the efficiency

problem that a currently prominent motion planner has with more constrained environments, where

it often wastes much time without making any progress. This problem becomes acute with more

complex agents, especially kinodynamic ones. Viability plays a secondary role in this approach.

An even more substantial and general improvement is presented by Chapter 4, where local

models of agent’s viability are learned and exploited during motion planning to again reduce the

amount of needlessly wasted effort. A viable state is one from which safe, collision-free agent

operation can be maintained indefinitely; conversely, a nonviable state is one which will unavoidably

lead to failure. For many complex agents each of the above improvements can often, on its own,

reduce planning time by an order of magnitude or more.

Finally in Chapter 5 we look at using viability information to constrain user-control of agents,

rather than planner exploration. This has many benefits, even for motion planning. Firstly, there

are numerous dynamical systems where collision or failure carries prohibitive costs, and hence where

Figure 1.3: The problem space explored by the thesis.
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such automatic safety enforcement is of value. More importantly, there is strong potential for a

symbiotic relationship between motion planning and user control of the corresponding agent. For

example, the lessons learned during motion planning (i.e., viability, other implicit characteristics

of agent dynamics) can be exploited during computer-aided user control of the agent. At the same

time, the user’s control of the agent could be analyzed for common patterns and strategies which

could then be exploited by the motion planner to yield faster and more “natural looking” solutions.

Also, an interesting novel and completely unexplored research direction is the inclusion of a human

during the planning process. This could be done for a number of reasons, such as human-aided

computer motion planning, where the human’s experience and intelligence is used to help with the

particularly more difficult sections of the problem, or where the human is used to guide the solving

process toward solutions of a particular topological or stylistic nature.

In terms of advancing toward motion planning with macro-primitives, the most notable is Chap-

ter 4. Primarily, it demonstrates that using virtual sensors can be an effective way to capture the

local context of the agent (i.e., local layout of the environment), a key requirement for representing

macro-primitives so that they are environment neutral, and thus transferrable to environments

other than in which they were learned. It also explores ideas on how learning can be employed

to extract common motion primitives, using sequences or histories of such perceived local states.

The other chapters relate on a more secondary level. Motion planning with macro-primitives will

occasionally nonetheless need to resort to dt-sized exploration of particularly novel situations, hence

a more robust planner is bound to still play a key role. The safety enforcement of Chapter 5, on

the other hand, could significantly facilitate the acquisition of sample training data from human

subject demonstrations, a topic explored further in Chapter 6 (Future Work).



Chapter 2

Previous Work

This chapter consists of three main parts, each providing an overview of previous work in the three

key areas that most pertain to this thesis, as identified in the previous chapter (see Figure 1.3).

Since the overarching goal of the thesis is faster, more efficient motion planning, previous work in

this area is surveyed first, and more thoroughly. This is followed by a review of viability, which

pervades every major chapter in this thesis. Finally, the last section gives only a cursory overview

of user-control of an agent since this is a secondary consideration relative to the thesis’ main goal.

It is also worth noting that each of the key chapters corresponds to an earlier publication. In

particular, Chapters 3, 4, and 5 correspond respectively to [KvdP06], [KvdP07],and [KvdP04].

2.1 Motion planning

This section presents a brief review of motion planning. A thorough exposition of this topic can

be found in a number of comprehensive references. [Lat91], one of the earlier noteworthy books,

gives a thorough introduction to older methods, while [HA92a] provides a shorter survey. Their

contemporary, [DW91] adopts a unified viewpoint between planning and control. In recent years

a number of new texts have appeared, namely [CLH+05] and [LaV06], which present an updated

view of the field and discuss newer developments, such as sampling-based planners.

Motion planning, sometimes called path planning or trajectory planning1, originates in the field

of robotics. There is a distinct divide in motion planning research between what could be called

“theoretical” vs. “real-world” approaches, a part of a larger trend in the robotics field (e.g., Field

Robotics vs. work assuming “ideal conditions”), and to a lesser extent that in other fields (e.g.,

theoretical vs. applied science). A key difference between the two groups is one of objectives and

criteria. Whereas theoretical motion planning approaches focus on issues such as path- or time-

optimality and query speed, real-world problems often dictate greater focus on motion safety (i.e.,

1In this thesis “path planning” refers to kinematic problems, “trajectory planning” refers to kinodynamic ones,
while “motion planning” is a general term representing both types of problems.

9
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protecting the agent from the environment, and vice-versa), robustness to error, and are often

subject to additional hard constraints. This disparity has led to the development of two bodies of

knowledge that share little overlap, although recent research is starting to remedy this. Since the

work in this thesis addresses issues mainly on the theoretical side of motion planning, the bulk of

this section reflects this. We do however start off with a brief glimpse of the problems typically

encountered in the real-world motion planning applications.

2.1.1 Real-world problems

Physical agents generally are subject to time pressures. It is dangerous for an agent to work

out a full solution while remaining oblivious to its surroundings, especially in environments with

moving obstacles. A logical way to deal with this is through Partial Motion Planning (PMP)[PF05],

whereby time and agent operation is partitioned into slots, so that in time slot k the agent executes

the partial plan derived in time slot k− 1, and simultaneously plans motion to be executed in time

slot k + 1 (i.e., planning and the execution of corresponding plans are staggered by one time slot).

Another important trait of real-world problems is that one usually does not have full knowledge

of the environment, but must instead work with a limited local model, obtained from agent-mounted

sensors. A number of works address this problem, such as [FA04, BK07, BF95]. The “information

space” approach ([BF95], and more recently [LaV06]) is particularly interesting. An information

space I for a particular agent is the set of all its possible sensor readings i, where i is a tuple of

length equal to the number of sensors. A noteworthy result in this area is that successful motion

planning can often be achieved by working purely in I, as opposed to using the sensory reading i

to merely predict or estimate the agent’s current state x, and then applying traditional X -based

motion planning methods.

A related problem is that the agent’s exact state is often not fully known. A common source of

uncertainty is the agent’s less-than-perfect execution of prior motion plans, a consequence of using

real-world sensors and actuators that are inherently subject to limitations and noise. Detecting and

compensating for the resultant drift, between the expected and the achieved agent states, typically

requires an accurate model of the surrounding environment, yet this often is not available. This

is especially troublesome in applications where the agent’s central purpose is to explore and map

out the environment, since deriving an accurate model of the environment from agent sensor data

usually assumes knowledge of exact agent state. Simultaneous Localization And Mapping (SLAM)

[SC86, LDW91] research addresses this particularly troublesome chicken-and-egg problem.

Dynamic environments present a particular difficulty in real-world planning problems because,

unlike under ideal conditions, the motions of the obstacles are not fully known. It is common in

such cases to assume obstacle motion is linear (i.e., zero acceleration), but recent work has looked

at predicting obstacle motion using statistical means [VF04].
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2.1.2 Relevance to Computer Graphics and Animation

A long-standing goal of Computer Graphics and Animation (CGA), whether in film or interactive

entertainment, has been the development of autonomous characters and objects, or at least ones

which can be directed at a relatively abstract level (e.g., able to implement commands such as “go

to garage”, “get into car” or “drive to bank”). Motion planning is thus clearly relevant and of

particular interest to CGA since such entities will need to independently solve various navigation

and locomotion problems.

It is also worth noting that, in a large way, the task of animation is essentially a motion plan-

ning problem in disguise. Both problems consist of finding a suitable trajectory for the subject’s

state or configuration. Much like the motion planner, the animator must craft a trajectory that

satisfies a number of constraints, such as the starting and the final pose, as well as a number

critical intermediate waypoints or keyframes (e.g., establishing grasps, switching tasks, etc.) The

only difference between the two is a disparity in constraints and objective functions: the animator

generally focuses on the style and nuance of the motion whereas the motion planner is mainly con-

cerned about avoiding collisions and, depending on application, finding the time-optimal solution.

In fact, exploiting this apparent duality through borrowing and cross-applying ideas and techniques

between these two fields seems like a promising future research direction.

Luckily, Computer Graphics and Animation are generally free from the real-world restrictions

and the considerations discussed in the previous subsection. Neither safety nor complete realism

are strictly necessary, and minor agent-obstacle interpenetrations are often permissible, aesthetic

considerations aside. The main focus of this thesis will thus be on “pure” motion planning (i.e.,

under “ideal” conditions).

2.1.3 Useful distinctions

Before reviewing particular motion planning algorithms, it is worthwhile to first describe a number

of categorizations which can be applied to them, to better understand their place, strengths, and

applicability.

Kinematic vs. Kinodynamic

One of the most important distinctions in motion planning is between kinematic and kinodynamic

methods. Kinematic planners work exclusively in terms of the agent’s configuration, the set of

values denoting the agent’s position, orientation, and arrangement of internal parts. The symbol q

is typically used to denote an agent’s configuration, while C denotes the configuration space, the set

of all possible configurations for an agent. Kinodynamic approaches, on the other hand, additionally

take into consideration the first time derivative of the configuration, or some subset of it (i.e.,

kinodynamics = kinematics + dynamics). The combination of configuration and its time derivative
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is called the agent’s state, and denoted by x, while X is the agent’s state space (also sometimes

called phase space), the set of all possible states for the agent. Clearly kinematic approaches are

simpler, but many problems that involve inertia or balance can only be addressed using kinodynamic

methods.

Holonomic vs. Nonholonomic

Another important division is between holonomic and nonholonomic problems, and relates to the

constraints placed on the system. In classical mechanics, holonomic constraints are ones that can

be written in the form

f(x1, x2, x3, . . . , t) = 0. (2.1)

That is, these are constraints which depend only on the agent’s configuration parameters, and time.

In contrast, nonholonomic constraints depend on additional quantities, such as agent velocity or

momentum. Nonholonomic problems arise in the presence of rolling contacts (e.g., car) or velocity

constraints (e.g., airplane). In general, nonholonomic systems are path-dependent, in that the

agent’s local configuration does not automatically determine the overall global configuration, but

rather must be augmented with its full history. For example, knowing the net applied rotation to

all the wheels of a car is insufficient to determine its final displacement; to do so one must also

know in what sequence or combination the rotations were applied. Nonholonomic problems garner

substantial attention due to the ubiquity of wheeled vehicles in every-day life.

Differential constraints

The above two classification schemes can be seen as special cases of a more general one. In par-

ticular, the kinodynamic and nonholonomic classes can be grouped together into problems with

differential constraints. In essence, both classes deal with agents whose configurations may change

through time only in a restricted manner: nonholonomic agents are limited by their nonholonomic

constraints, whereas kinodynamic agents are limited by their velocity-dependent equations of mo-

tion. Such differential constraints problems are markedly more difficult, and are thus a focus of

this thesis.

2.1.4 Kinematic motion planning

Kinematic problems were first to be studied, by virtue of being simpler, and thus have yielded a

vastly more extensive body of research, to the point where the problem is being considered solved in

general. Early work in motion planning generally revolved around three key approaches: roadmaps,

cell decomposition, and potential fields.
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(a) (b) (c)

Figure 2.1: left: a visibility-graph roadmap; middle: exact cell decomposition (channel is shaded); right: approxi-
mate cell decomposition using a quadtree (channel is outlined with heavier line).
Figures adapted from [Lat91].

Early methods

The first planners used the notion of a roadmap. A roadmap captures the topology of the envi-

ronment’s free-space with a graph of canonical paths. Motion planning with roadmaps generally

reduces to finding paths that connect the initial and goal configurations to the roadmap, and

then finding the shortest path through the augmented graph. Numerous ways of generating such

roadmaps have been studied. The seminal roadmap paper, [Nil69], used a visibility graph (also

known as “shortest-path graph”) of the agent’s configuration space C, where the graph nodes cor-

respond to C-obstacle corners, and edges are created between each pair of nodes which can “see”

each other. The left diagram of Figure 2.1 shows a solved problem using this method. Roadmaps

have seen a resurgence with the advent of probabilistic methods, and the Probabilistic Roadmap

Planner (discussed later) remains in current usage.

A related approach is cell decomposition [Lat91, HA92a], where the agent’s free-space Cfree (i.e.,

subset of C in which agent is collision-free) is decomposed into a set of simpler fragments, termed

cells. The connectivity of the cells is then captured using a graph, very similar to a roadmap.

To plan a motion one simply finds a sequence of cells, called a channel, which connects the cell

containing qinit to the one containing qgoal . The solution path is then obtained by plotting a path

from qinit to qgoal by way of the midpoints of the cell walls that segment the channel. The middle

diagram in Figure 2.1 demonstrates the approach.

Various cell shapes may be used, however they must make it easy to check for adjacency between

two cells, find the portion of the cell boundary which two neighbouring cells share, and find a

connecting path between any two points in a cell. These conditions ensure, respectively, the ease of

constructing a connectivity graph of the cells, finding the midpoints, and constructing a continuous

solution from the sequence of midpoints. Together they ensure the speed and robustness of the

approach. In less regular environments, to comply with these constraints, approximate[Lat91] or

probabilistic[Lin04] variants of the method are used.
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Figure 2.2: Potential field planner operation: (a) the query; (b) the qgoal -attracting potential (top) and obstacle-
repulsing potential (bottom); (c) sum of potentials; (d) isoline plot of potential field, and gradient descent path.
Figures adapted from [Lat91].

The last class of early planners employs navigation functions or potential fields, scalar functions

erected over the search space that “lead” the agent toward the goal. These potential fields are

usually the sum of a number of simpler fields; typically one field attracts the agent toward the goal,

while the others repel it from individual obstacles. Solutions are obtained by performing gradient

descent down the aggregate manifold. Figure 2.2 illustrates the key components of this approach.

A key weakness of such planners, typical of gradient descent methods, is that they frequently

get trapped in local minima. The Randomized Path Planner (RPP)[BL91], a prominent algorithm

at the time, proposes a number of mechanisms to mitigate this. Firstly, it uses specially constructed

navigation functions, computed using a blend of medial axis and level-set methods, that guarantee

absence of local minima for a kinematic point robot, and aim to reduce their incidence for more

complex agents. Random-walks are used if the agent becomes trapped: that is, when the planner

detects that a local minimum has been reached, the agent undergoes a series of random pertur-

bations. Although there is no guarantee that any particular random-walk will escape the local

minimum, the duration of the random-walks is chosen so that, based on the size and discretization

of the workspace, escape is very likely. Should a random-walk fail to escape, the agent will return

to the same local minimum and another escape attempt can be made. RPP operation is illustrated

further in Figure 2.3.

An important feature of the RPP algorithm, one which allows it to produce good results for

many problems, is the use of sampling to estimate the gradient of the potential field. Computing

the gradient in high-dimensional spaces, whether analytically or through exhaustive inspection of a

neighbourhood, is prohibitively expensive, in general; instead, a sufficiently accurate approximation

is obtained by inspecting the potential values of a small set of randomly chosen neighbouring

points. Such approximation-through-sampling allows the planner, in a way, to break the curse

of dimensionality of the search space, and has since become a key component of most current
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(a) (b) (c) (d)

Figure 2.3: Randomized Path Planner (RPP) operation: the first step is computation of a “navigation function”,
using a combination of medial axis and level-set methods; (a) shows the function using isolines (“X” in lower right
marks the goal), while (b) and (c) render it as a height-field from different angles. Planning consists of gradient
descent down this manifold, and local minima are escaped using random-walks (d).
Figures (a)–(c) adapted from [Lat91].

planners (i.e., “sampling-based planners”). Interestingly, more recent work [LL03] argues that

the randomness is not essential to the power of this technique, and that deterministic sampling

strategies can be made to work equally well, thus avoiding the disadvantages of the former (e.g.,

non-repeatability, large variance in runtimes).

PRM

One popular sampling-based planner is the Probabilistic Roadmap method (PRM)[OS95]. This

approach is usually limited to applications that perform multiple queries on a single static environ-

ment since a somewhat expensive pre-computation step is required. The pre-computation consists

of first populating the workspace with milestones—a set of agent configurations chosen uniformly

from Cfree—and then building a roadmap by connecting each milestone with a number of its closest

neighbours, whenever this is possible without incurring a collision. For simple, holonomic agents

straight lines are used to link the milestones, but in the general case the connections are attempted

using an externally provided “local planner”. Once this pre-processing step is done, queries are

answered in the usual roadmap way: the initial and goal configurations are linked to the roadmap,

the shortest path in the graph between the two points is found, and the solution is constructed by

concatenating the trajectories corresponding to the edges in this path. Figure 2.4 illustrates the

algorithm.

The key issues with PRM are the lack of robust local motion planners for most nontrivial

dynamical systems, and the “narrow passage problem”. The implicit premise behind PRM is one

of “divide and conquer”, where the planning task is explicitly split into global and local planning

components, with the assumption that this results in two simpler subtasks. Alas, for more complex

agents this is usually not true because the local planning problem is just as difficult as the global

one. The “narrow passage problem”, on the other hand, refers to the difficulty of capturing the

topology of narrow passages with the roadmap, a side-effect of the stochastic milestone sampling.
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(a) (b) (c)

Figure 2.4: The Probabilistic Roadmap (PRM); (a) the environment is uniformly sampled with a set of random
milestones; (b) each milestone is connected, where possible, with a number of its nearest neighbours, yielding a
roadmap; (c) solution is found by connecting qinit (“1”) and qgoal (“2”) to the roadmap, and then finding the shortest
path in the graph.

Even with a straight-line local planner a great many (random) milestones must be generated before

a subset of them lines up in a way that allows the narrow passage to be “discovered” (i.e., traversed

with a piecewise-linear curve).

RRT

The other predominant sampling-based approach to motion planning is that of the Rapidly-exploring

Random Trees (RRT)[LaV98, LK00]. Rather than working globally like PRM, RRT works incre-

mentally, building search trees with a strong bias for diffusion. Since RRT forms the basis of large

portions of this thesis, a more extensive discussion of this algorithm and its variants follows.

The defining characteristic of RRTs, and the reason for the “rapidly-exploring” qualifier, is the

tree’s bias for growing toward unexplored space (see Figure 2.6). RRT’s operation is best described

using the most basic variant, where a single tree, rooted at the initial configuration qinit , is grown

iteratively until a branch stumbles upon the goal configuration qgoal .2 At each iteration the planner

attempts to add a single edge to the tree. It first picks a random agent configuration, qtgt ∈ Cfree ,

and identifies its nearest tree node, qnear .3 The planner then attempts to form a collision-free

edge that extends a short distance from qnear toward qtgt . For holonomic agents (i.e., without any

constraints on q̇) the attempted edge extends directly toward the target qtgt ; for other agents the

direction is determined indirectly: a small discrete subset of potential edges is selected (e.g., for

actuated agents, a subset of possible control actions is applied over a small time-step), and from

2Or until the tree reaches some ε-neighbourhood of qgoal . In most tree-based planning approaches it is assumed
that such minor discrepancies can be later corrected using suitable methods (e.g., “shooting method”, trajectory
deformation[LFV04], etc.)

3Note: we will often use the symbol q to refer to both, an agent configuration as well as the corresponding tree
node. This node-configuration aliasing pervades the thesis, especially the pseudocode, and is extended to node-state
aliasing when kinodynamic systems are considered.
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Figure 2.5: Steps of an RRT iteration: 1) randomly choose a target configuration, qtgt ; 2) find nearest tree node,
qnear ; 3) attempt to grow the tree from qnear toward qtgt , for a single time-step ε, yielding new node at qnew .
Figure adapted from [KL00].

these the planner instantiates the candidate that advances the closest to qtgt without incurring a

collision. These steps are illustrated in Figure 2.5, while Algorithm 1 summarizes the planner with

pseudocode.

The above basic scheme works well for quickly exploring the free-space, but finding a solution is

relatively slow since the tree must blindly “stumble upon” qgoal . Hence a very common modification

in single tree variants is to bias qtgt . That is, in some portion of the iterations (e.g., 5%–10%) qtgt
is set to qgoal rather than to a random configuration, making the planner more goal-oriented.

RRT-Connect[KL00], another common variant typically used with holonomic agents, builds

“maximal” tree edges. That is, once qnear has been found, the new tree edge is permitted to extend

multiple time-steps, not just one, until it either hits an obstacle, reaches qtgt , or reaches the point

in its trajectory where it comes the closest to qtgt . This serves to span large open spaces quickly in

holonomic problems, but is often counter-productive when applied to most agents with differential

constraints (e.g., leads to excessive weaving with cars, encourages loss of balance in bikes).

Despite these improvements, the single-tree RRT algorithm achieves only mediocre performance,

and is thus rarely used. Much better results can be obtained by employing two trees[LK00]: the first

rooted at qinit as before, and a second one at qgoal , which is grown in reverse-time (see Figure 2.7).

Figure : Two trees constructed for a simple discrete  ×  grid in D. The purely random tree (left) is biased towards already visited
states. The tree on the right rapidly explores the space.

Algorithm  BUILD_RRT(xinit)
Require: T is an empty tree
T .init(xinit);
for k = 1 to K do

xrand ← RANDOM_STATE();
EXTEND(T , xrand)

end for
Return T

Algorithm  EXTEND(T , x)
xnear ← NEAREST_NEIGHBOR(x, T );
if NEW_STATE(x, xnear, xnew, unew) then
T .add_vertex(xnew);
T .add_edge(xnear, xnew, unew);
if xnew = x then

Return Reached; (new vertex reaches the actual sample)
else

Return Advanced; (new vertex added to RRT)
end if

end if
Return Trapped; (could not produce a state ∈ Xfree)

larger Voronoi regions, corresponding to unexplored space, causing the graph to spread uniformly. The two components of
the algorithm that construct an RRT are given in Alg.  and Alg. .

The control input unew that pulls the tree towards xrand can be chosen by trying all inputs and choosing the one that yields
the state closest to xrand when applied for some time increment ∆t, which can be fixed or randomly selected. The algorithm
also assumes that NEW_STATE performs collision detection and only returns states that satisfy the global constraints, which
can usually be done very efficiently.

. RRTs and state space

Several additional concerns need to be taken into account when building RRTs in state space, as opposed to the trivial
D examples given in Fig. . Besides the omnipresent drift in dynamical systems, the two main issues are the increased
dimensionality of the space and the fact that a good metric for state space (needed to find xnear using nearest neighbor) may
be considerably difficult to construct and very problem-specific. LaValle & Kuffner suggest the use of a carefully considered
metric to some degree based on the optimal metric (which always exists but is at least as hard to compute as the solution to the
planning problem itself ) and the use of approximate nearest neighbor techniques (see [] for an overview done by Andrew
Moore’s group) as possible ways to deal with these concerns. However, their original implementation uses a straightforward
Euclidean metric and linear nearest neighbor search.
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Figure 2.6: left: tree grown with new edge direction chosen uniformly over (0, 2π); right: RRT, with each edge
biased to grow toward unexplored space. Both trees have exactly 2000 nodes.
Figures taken from [LK99].
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Algorithm 1 single-tree RRT for an actuated agent
1: function query(qinit ,qgoal)
2: T ← tree(qinit)
3: while time elapsed() < MAX TIME do
4: qtgt ← random q()
5: qnew ← grow tree(T, qtgt)
6: if qnew ∧ ρ(qnew , qgoal) < ε then
7: return extract soln(qnew)

8: return failed

9: function grow tree(T ,qtgt)
10: qnear ← nearest neighbour(T, qtgt)
11: ubest ← pick ctrl(qnear, qtgt)
12: if ubest then
13: T ← T + new edge(qnear, ubest)

14: return qnew

15: function pick ctrl(q,qtgt)
16: dmin , ubest ← ρ(q, qtgt),∅
17: for u ∈ U do
18: qnew ← sim(q, u)
19: if failure(q, u, qnew) then
20: next u
21: d← ρ(qnew , qtgt)
22: if d < dmin then
23: dmin , ubest ← d, u

24: return ubest

where

• ρ(x1, x2): distance metric

• extract soln(...): constructs solution by concatenating all edge trajectories on the graph path between qinit

and qgoal .

• new edge(x, u): create new edge from state x using control input u for a single (Extend) or maximal (Connect)
number of time steps

• failure(x1, u, x2): test whether the transition from x1 to x2, using control input u, incurs a collision or
violates other global constraints

• sim(x, u): compute state of agent after application of control input u from starting state x (paper assumes a
constant time step)
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Figure 2.7: RRT commonly employs two trees, one rooted at xinit , and the other at xgoal .

Algorithm 2 dual-tree RRT (RRTExtExt, etc.)
1: function query(qinit ,qgoal)
2: Ta, Tb ← tree(qinit), tree(qgoal)
3: while time elapsed() < MAX TIME do
4: qtgt ← random q()
5: qnewA ← grow tree(Ta, qtgt)
6: if qnewA then
7: qnewB

← grow tree(Tb, qnewA
)

8: if qnewB
then

9: if ρ(qnewA
, qnewB

) < ε then
10: return extract soln(qnewA

, qnewB
)

11: Tb, Ta ← Ta, Tb

12: return failed

(inherits grow tree() & pick ctrl() from single-tree RRT)

A solution is found when the two trees meet. The benefit of this approach is clear to see: as the

trees grow, they provide an ever larger target for each other to connect to; the single tree, on the

other hand, is always seeking a singular point (i.e., qgoal ). Algorithm 2 outlines the operation of

the dual-tree approach. In brief, on any given iteration one tree is treated in the same manner as

before: a random qtgt is chosen, qnear is found, and an edge is grown from qnear toward qtgt . If this

results in a new tree node, qnewA , then the second tree is grown in a similar fashion, except that its

target qtgt is set to qnewA . That is, the first tree is grown toward a randomly chosen qtgt , yielding

a new tree node qnewA , while the second tree is grown toward qnewA . At the end of each iteration

the trees switch roles.

The RRT-Connect technique can be applied equally well to the dual-tree RRT algorithm, either

to only one of the trees, or to both. This results in four possible variants, commonly named

RRTConCon, RRTConExt, RRTExtCon, RRTExtExt. Here, “Con” (i.e., connect) refers to the

RRT-Connect method of growing edges, while “Ext” (i.e., extend) refers to the simpler, single
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time-step alternative. In each of the variant names, the first identifier pertains to the first, random-

target-seeking part of the iteration, while the second identifier pertains to the second, tree-seeking

part. RRTConCon is popular for holonomic agents, but in some cases RRTExtCon is preferred,

as it emphasizes attempting to connect the trees over exploration, while RRTExtExt often makes

more sense for agents with differential constraints.

The prospect of getting better performance through the use of even more trees has been explored

in [Str04]. In this approach, whenever the planner encounters a qtgt toward which extant trees

cannot make any progress, the isolated configuration is used to seed a new, local tree, one which

then takes equal part in the usual process of growth toward random targets and neighbouring trees.

Trees are merged whenever they branches meet, while a connection between the primal, endpoint

trees (i.e., the ones rooted at qinit and qgoal ) signals the discovery of a solution. The benefit of

the extra local trees is that difficult-to-reach areas of the free-space are explored earlier, from the

inside out; this populates (with nodes) the ingress points to such poorly-accessible regions, thus

increasing their exposure and likelihood of connection.

2.1.5 Kinodynamic motion planning

The first work to address kinodynamic motion planning, and in fact to coin the term, is [DX90,

DXCR93], where (time) near-optimal trajectories are sought for a kinodynamic point mass with

velocity and acceleration bounds. By limiting the agent’s acceleration to {−amax , 0,+amax} in each

component, the method effectively discretizes the state-space into a regular grid (see Figure 2.8).

A near-optimal trajectory is then found by computing the shortest path in the resulting graph.

Although this approach has provably good time complexity and optimality, it suffers immensely

from the curse of dimensionality, making it only applicable to simple agents with few degrees of

freedom.

It was not until the advent of sampling-based planners that more complex agents could be han-

dled adequately. Although these planners were introduced mainly for kinematic problems, refitting

them for kinodynamic operation requires only a minor adjustment, namely the generalization of

the search space to X , the agent’s state-space, in lieu of the purely kinematic configuration space

C. Alas, although useful solutions can be obtained with these algorithms, their runtimes can often

be excessive (e.g., on the order of hours), even for relatively simple problems. For this reason there

has been much attention recently in either optimizing these methods, or designing new algorithms

specifically suited to kinodynamic motion planning.

The extension of the popular RRT algorithm to the kinodynamic domain is discussed in [LK99].

One important issue worth noting is that, with the transition from geometric paths to velocity-

augmented agent trajectories, the trees are now necessarily directional. In particular, the xgoal

tree must be grown using backward integration of the agent’s dynamics (i.e., simulated using a
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ẍ

ÿ
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Figure 2.8: Seminal kinodynamic planner of [DX90, DXCR93]. left: the point agent is limited to a small set of
acceleration vectors which are then applied for small, fixed durations τ . The use of such (amax , τ)-bang motions
results in a grid-like discretization of agent’s state-space; right: cross-section of agent’s state-space at y = 0.
Figures adapted from [DX90].

negative time-step). This has significant repercussions, and even hinders the migration of some

RRT extensions. For example, this presents problems for local trees[Str04]: since a single local

tree can directly connect the xinit and xgoal trees, clearly it must consist of both, forward-time and

reverse-time branches, but this leads to many unresolved questions and open problems with regards

to implementation.

One of the key problems with RRTs is their sensitivity to the distance metric used to bias

the exploration process: if the metric does not accurately reflect the true cost-to-go, as is often

the case when the L2 metric is used as a quick approximation for kinodynamic agents, RRT’s

performance suffers severely. [CL01b] proposes to mitigate this problem by introducing two key

changes to the algorithm: 1) that the algorithm note which edge creation attempts result in collision,

and subsequently disqualify them from future consideration; and 2) that the collision tendency of

each node in the tree be tracked. We refer to this approach throughout the thesis as RRT with

Collision Tendency (RRT-CT). Algorithm 3 outlines the planner in more detail. It is worth noting

that the collision tendency value kept by the planner for a particular node is only a lower-bound:

whenever an edge creation attempt incurs a collision, the parent node’s collision tendency is suitably

incremented, as well as that of all its ancestors, with the adjustment proportional to the edge’s

relative importance or “contribution” to each node. Thus a node’s collision tendency asymptotically

approaches its ultimate true value as the exploration of the subtree proceeds.

A number of alternative planners to RRT have also been proposed. [KHLR00, HKLR00,

HKLR02] presents a PRM-inspired planner specifically designed for kinodynamic systems, ini-

tially dubbed KDP [HKLR00] but also referred to as Expansive Space Tree (EST) planner in later

literature[LK05a, LK05b, PKV07]. It resembles RRT in that it is also a tree-oriented approach, but

differs in its strategy for biasing exploration: rather than using a random target qtgt to “attract”
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new growth, the algorithm selects the node to grow (i.e., counterpart to RRT’s qnear ) based on

the number of other nearby nodes, with preference given to candidates in more sparsely populated

areas. An edge is then grown by picking a control action uniformly over the set of allowable control

actions, U(q).

One drawback of the above planner, at least for actuated agents, is that proofs of probabilistic

completeness for the algorithm assume uniform sampling of the agent’s state-space X , whereas

most practical implementations sample uniformly only the agent’s control space U , which does not

usually lead to the former. Frazzoli et al [FDF99, FFD00] address this issue with a new planner

inspired by [KHLR00], although it is limited to agents capable of coming to a “stop”, and further

assumes knowledge of control policies that can bring the agent to a halt at a pre-specified location

from an arbitrary starting state. The planner is used for real-time motion planning of a simulated

autonomous helicopter among static and dynamic obstacles.

More recently, [LK05a] proposes the Path-Directed Subdivision Tree exploration planner (PDST-

EXPLORE), a novel approach to tree-based planning, where the tree nodes represent motion seg-

ments rather than individual states, and branching can occur at an arbitrary point along an extant

motion segment, rather than only at sampled states. The latter trait allows greater exploration

freedom while keeping the number of tree nodes down. Like RRT, the planner iteratively grows ad-

ditional tree edges, but in contrast uses a deterministic, greedy, metric-free node selection strategy

that tends to focus tree growth to less populated areas and “younger” nodes. Steps are also taken

to limit redundant exploration by enforcing density bounds on the creation of new nodes. PDST-

EXPLORE aims to avoid the problems prior planners have with milestone placement, metrics, and

coverage estimation. [LK05a] shows encouraging results for a kinodynamic point mass, a differen-

tial drive robot, and a blimp robot, while [LK05b] demonstrates the use of PDST-EXPLORE for

motion planning in the game of Koules.

Finally, most recently [PKV07] insightfully notes that a key problem with existing tree-based

kinodynamic planners is that they often get “stuck”, and that this is due to their reliance on purely

local information. A new algorithm is thus proposed, namely the Discrete Search Leading contin-

uous eXploration (DSLX) planner, which directly addresses this weakness by guiding tree growth

using global indicators. In particular, DSLX erects a coarse regular grid over the environment,

and captures the adjacency of the resultant boxes using a weighted adjacency graph. The weights

capture and reflect the likelihood of success (and thus desirability) of achieving the transition, and

are influenced by node density, how much time has been already spent in attempting such a tran-

sition, and generally by the history of previous attempts. The adjacency graph is used to generate

promising leads, favourably weighted “rough plans” which the underlying continuous tree then at-

tempts to follow. The key benefit of this approach is that whenever the planner starts getting

stuck, the graph weights automatically shift in response to reflect the fruitless directions, which

in turn exposes more promising avenues for exploration that remain. The work goes on to show
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Algorithm 3 RRT w/“Collision Tendency” (RRT-CT)

(inherits query() & grow tree() from single- or dual-tree RRT)

1: function nearest neighbour(τ, x)
2: dmin , nbest ←∞,∅
3: for n ∈ τ do
4: if ∃ unexpanded input out of node n then
5: r ← random(), r ∈ [0, 1]
6: if r > σ(n) then
7: d← ρ(n, x)
8: if d < dmin then
9: dmin , nbest ← d, n

10: return nbest

11: function pick ctrl(x,xtgt)
12: dmin ←∞
13: for u ∈ U do
14: if u has not been expanded for x then
15: xnew ← sim(x,u)
16: if failure(x,xnew) then
17: mark u as expanded
18: update tendencies(x,τ)
19: else
20: d← ρ(x, xnew )
21: if d < dmin then
22: dmin , ubest ← d, u

23: mark ubest as expanded
24: return ubest

25: function update tendencies(x,τ)
26: p← 1
27: while x do
28: p← p/|| U ||
29: σ(x)← σ(x) + p
30: x← parent(x)

where

• σ(n): collision tendency of node n
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significant runtime speedups with DSLX, sometimes of two orders of magnitude over the canonical,

single-tree RRT algorithm.

2.1.6 General notes

Completeness & complexity

A complete planner is one that, in finite time, either returns a solution or (correctly) pronounces

that no solution is possible. When designing a motion planner, or for that matter any algorithm

for solving a challenging problem, it is typically desirable to construct it so that it is complete.

Of course, it is even more desirable that an algorithm return its decision quickly, but typically it

is very hard to characterize or bound an algorithm’s rate of convergence to a solution. Thus the

weaker condition of completeness is often the best achievable guarantee.

It turns out that motion planning is a difficult problem, and that complete motion planners do

not scale well. Although runtime complexity can be expressed in terms of the dimensions of the

environment, or the number and characteristics of the obstacles, the least scalable factor is typically

the number of dimensions of the search space. In this respect motion planning has been shown by

Reif [Rei79] to be PSPACE-hard, and later to be PSPACE-complete by Canny [Can88]. PSPACE

denotes the class of problems which require polynomial space. More importantly, PSPACE ⊇ NP.

Reif’s result in [Rei79] was demonstrated for the Generalized Mover’s problem, a generalization

of the Piano Mover’s problem discussed earlier; clearly problems such as kinodynamic motion

planning or planning amid moving obstacles are at least as hard, if not harder. More thorough

review and discussion of the complexity of motion planning can be found, for example, in [LaV06].

Although specific subsets of motion planning problems may occasionally reduce to an easier class

and admit more efficient algorithms, it is surprising how many “simpler”-looking problems are

still complex. For example, even the game of Sokoban, which consists of moving solid tiles across a

partially populated grid-like maze, has been shown to be PSPACE-hard[DZ99], and later PSPACE-

complete[Cul99]. This PSPACE-completeness is very troublesome because many motion planning

problems result in search spaces with surprisingly many dimensions.

One approach to overcoming this poor scalability is to partially abandon optimality. This

mirrors similar strategies applied to solving other NP-hard problems, such as the Traveling Salesman

Problem. Typically in such cases heuristics are used to instead arrive at approximate, near-optimal

solutions. For example, near-optimal motion planners have been developed for kinematic points

[CL93], curvature-bounded problems [JC89], and for acceleration bounded point robots [RW97].

Surveys of heuristic methods in motion planning can be found in [HA92b, FLS05, Eld01]. However,

in general most such heuristic-based methods are of limited use as they are typically specific to a

particular agent or agent class.
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Worse still, for many problems (e.g., kinodynamic) it is even challenging to find a single feasible

solution, let alone an optimal one. A pivotal point in motion planning research was therefore

the advent of methods which traded-off completeness for improved scalability. By weakening the

completeness guarantee, these methods were then able to solve far more complex problems. One

example of this are the sampling-based algorithms, such as RRT, which ensure only probabilistic

completeness. A planner is probabilistically complete when the probability of finding a solution

approaches 1 as runtime approaches infinity. Other algorithms, on the other hand, ones which

rely on some discretization of the search space (e.g., cell decomposition methods), instead provide

resolution completeness, meaning that they are guaranteed to find a solution if one exists within

the discretized image of the problem. Such approaches have the nice property that they allow

the planner to first search for coarse solutions, before falling back to finer-granularity (but slower)

searches. Although resolution completeness generally pertains to discretized, deterministic methods

while probabilistic completeness is typically associated with stochastic sampling methods, it is

worth noting that the two notions are closely related: a resolution complete method is usually also

probabilistically complete since as runtime approaches infinity, ever-higher discretizations of the

problem are used, in the limit arriving at the undiscretized problem, at which point they would

necessarily find the solution due to the resolution completeness guarantee. Furthermore, the two

classes also share the trait that they are unable to reliably detect when a problem simply does not

have a solution, and will keep on searching indefinitely4. Implicit in their design is the assumption

that a solution could always be “hiding around the next corner”, whether at a higher resolution or

down a path not yet trodden.

Since the RRT algorithm plays a central role in this thesis, it is worthwhile to summarize its

completeness results here. The basic RRT algorithm is shown to be probabilistically complete for

kinematic systems in [KL00]. The crux of the proof lies in showing that as time progresses, the

distribution of nodes in the RRT search tree approaches the distribution of the xtgt states used

to drive the tree growth; the latter are typically distributed uniformly over the free-space, hence

this demonstrates that in the limit the search tree can explore any area with arbitrary density.

Systems with differential constraints are more problematic. These constraints limit how the tree

may grow, and thus in the general case the tree cannot match the distribution of xtgt points.

Instead, [CL02], [CL] and [Che05] extend the notion of resolution completeness to search-tree

methods, with resolution pertaining here to discretizations in X , U , and time, and it is shown that

the RRT algorithm can be made resolution complete with only minor alterations. The proof hinges

on showing that, in the limit, the RRT search tree approaches the reachability graph (from xinit),

within given tolerance parameters.

4Many implementations put in an artificial bound on runtime though, and instead err on the side of incorrectly
reporting that a solution is impossible.



26 Chapter 2. Previous Work

In defence of incomplete planners

Motion planning literature attaches much value to completeness guarantees of its algorithms, even

when the guarantees are weak (e.g., probabilistic completeness). Clearly an algorithm that is

guaranteed to be complete, even if in infinite time, is preferable to one without any guarantees

whatsoever. However, from a practical standpoint, these affirmations are not as useful as one would

hope. In particular, a guarantee of completeness does not say anything about the algorithm’s speed

or rate of convergence to a solution, while many applications are time constrained, and for them

there is little difference between taking a very long time (e.g., a year) to find a solution, and not

finding one at all. Hence a completeness guarantee has limited practical value in such cases.

In light of this, the pursuit of novel incomplete planners should not be disregarded out of

hand. In fact, such planners can provide additional inroads in the battle against the inherent

complexity of motion planning. Of particular value are motion planners that are incomplete but

significantly faster than their complete counterparts. Any such planner can be made complete,

or probabilistically complete, in a trivial manner: the incomplete planner should simply be run

in parallel with a planner that supports the desired completeness guarantee. In cases where the

incomplete planner would fail to terminate, the answer will be provided by the complete planner,

while if the former does terminate, a solution will be typically available much faster. Clearly the

combined planner will adhere to the desired completeness guarantee, and if the incomplete sub-

planner terminates in a substantial portion of the runs, the average runtime will be significantly

faster than that of the complete sub-planner alone.

In essence, this trivial “fix” mimics human behaviour, in that one often tries a number of simple

or historically-proven potential solutions first, before resorting to more laborious, brute force meth-

ods. Also, in a way the fix embodies the canonical programming and hardware implementation

principle of handling “the most common case first” (e.g., ordering within “if” and “switch” state-

ments, virtual memory, caches, speculative execution, etc.) Finally, from a practical standpoint,

this dual-planner approach is further supported by the current trend toward multi-core CPUs,

which suggests such computing resources may soon be commonly available in embedded hardware

and other physical implementation frameworks.

In light of this, limited effort has been made to make the methods presented in this thesis

complete. Completeness guarantees could be obtained with further modifications, however it is

likely that such changes would diminish the speed and power of said planners, while the above trivial

“completeness fix” achieves an equivalent result. It bears pointing out though that, although this

thesis takes a somewhat indifferent view of completeness, the pursuit of faster complete planners

remains an important endeavour. Even in the above trivial “fix” a faster complete planner would

result in material gains, in cases where the incomplete sub-planner fails to terminate. In essence,



2.1. Motion planning 27

the two classes (“complete” and “incomplete”) complement each other, and the pursuit of each

holds promise of improved motion planning.

Dimensionality of problems

A side-effect of the complexity of the general motion planning problem is that the dimensionality

of the problems attempted in most literature may seem surprisingly low, at least when compared to

the degrees of freedom (DOFs) typically encountered in Computer Graphics. This section provides

a brief summary of the difficulty of problems attempted in the field.

In general, the majority of literature considers problems of at most 6D or 7D. For example,

[LK00] considers holonomic motion of a piano, a Puma robotic arm, and the arm and hand of a

virtual chess player, which respectively give rise to 3D, 6D, and 7D search-spaces. Nonholonomic

agents included a car (3D) and car with 3 trailers (7D). The original PRM [OS95] works with

planar articular robots (i.e., kinematic chains) in 7D configuration space, while subsequent work

often focuses on kinematic motion for Puma arms (i.e., 6 DOFs). [HKLR00] addresses motion

planning among moving obstacles for two joined nonholonomic carts (6+1D; last dimension is

time), and for an air-cushioned disc (4+1D).

Occasionally the search-spaces reach 10D or 12D, but these usually involve fairly simple envi-

ronments (i.e., sparse obstacles), and take much longer, typically in the range of 10–20 minutes.

The kinodynamic subjects in [LK00] include a satellite docking amid a relatively sparse 3D field

of medium-sized rectangular obstacles, yielding a 12D search-space, and solutions that required

on the average over 8 minutes. [CL01b], on the other hand, considers lane-changing manoeuvres

for a car with shock absorbers (i.e., model incorporates lateral car roll) as well as flying an under-

actuated, rectangular, spacecraft-like agent out of a birdcage, yielding search-spaces of 9D and 12D,

respectively, and average runtimes of 16.6 and 12 minutes.

Finally, a very few works consider even larger search-spaces. [KNK+01] and [JJKKN+02] look

at motion planning for humanoid robots with 33 DOFs. This work takes a decoupled approach,

common in kinodynamic methods prior to the seminal work [DXCR93], whereby the first stage

works out a purely kinematic solution and a second stage then tries to implement it within the

velocity constraints and dynamics of the robot. Although the obstacles in these problems were

fairly trivial, typically consisting of two to three household furniture items, the runtimes varied in

the range between 30 seconds to 11 minutes (on an SGI O2 / R12000), which is quite remarkable

considering the 33D search-space. [SL01] on the other hand considers motion planning of 6 Puma

arms in an car assembly setting, yielding a combined 36D search-space. Although this is a prodigious

number of dimensions (for motion planning), the arms were used for spot welding and thus had

minimal interaction with the car. The environment does not feature any other obstacles (i.e., only

arm-car and arm-arm collisions had to be considered).
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Boundary value problem

Many motion planning algorithms rely on the assumption that it is relatively easy to find motions

for an agent—or the underlying control inputs, if the agent is actuated—that bring it to a particular,

exact state or configuration. For example, the PRM algorithm assumes that its local sub-planner

can work out a suitable trajectory to connect any two milestones (while ignoring the presence

of obstacles, of course). Unfortunately for many agents, especially kinodynamic ones, solving

this Boundary Value Problem (BVP) is quite difficult. This thus limits the applicability of these

methods.

Under certain conditions (e.g., actuated agents with discrete controls), the BVP also surfaces in

sampling-based planners. In single tree variants, the final branch of the tree must hit xgoal exactly.

Since in most problems the neighbourhood around xgoal is an equally acceptable stopping point,

the goal is often defined using a region of the search space. In fact, motion planning is typically

stopped once a branch of the tree comes to within some tolerance of xgoal , which thus implicitly

defines the region. In dual tree variants the BVP lies in connecting the two trees. The trees must

meet in order for a solution to be found, yet in the case of many agents it is rare (or takes a very long

time) for a node of one tree to coincide exactly with a node of the other. To remedy this, motion

planning is again typically stopped once the trees approach each other to within some tolerance.

If the remaining gap is small and the problem sufficiently forgiving (e.g., we are only interested in

the rough shape of the solution because, for example, it is to be refined by a further stage), the

gap can be ignored. Otherwise it must be eliminated. There has been some recent interest in such

trajectory deformation, for example in [LFV04, CFL03].

The planners of Chapters 3 and 4 do contend with the BVP. In this work we ignore the gap

between the two trees, making sure first that the connection tolerance is chosen small enough to

be amenable to any trajectory deformation tools, should they be available, and so that the visual

discontinuity of the solution is tolerable. It is worth noting that these planners could also be

regressed into a single-tree variant form, in which case the typical “goal region” solution would be

equally effective.

2.2 Viability

The concept of viability pervades this thesis. In plain terms, viability describes whether a dynamical

system’s operation is sustainable from a given starting point, whether the system can be kept from

failure. In the context of controllable processes, a viable system state is guaranteed to have at

least one corresponding sequence of control actions which, when applied from said state, will avert

failure (i.e., “there is a way out”, an “evasive action” exists). Conversely, a nonviable state is one in

which the system has gone “past the point of no return”, where failure is no longer avoidable (but
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(a) (b)

Figure 2.9: Toy problem for viability; (a) The Apollo Lunar Module; (b) the 1970s arcade game “Lunar Lander”

perhaps postponable for some finite time). It is important to note that viability merely indicates

the existence of such sequences, but makes no claim as to their number—there could always be

only one in any given case—nor does it help in discerning what the sequence is.

Reachability is a concept closely related to viability. Reachability plays an important role in

safety analysis and similar fields, where safety guarantees are arrived at by showing that it is

impossible for the dynamical system to reach a particular dangerous state. Pursuit-evasion games

are a classical problem in reachability (e.g., the “homicidal chauffeur” problem). A thorough

treatment of reachability is provided, for example, by [Mit02]. Since reachability plays a minor role

in the thesis, only a minimal introduction is given here. We will refer to states as reachable if they

can be reached from some canonical initial state, usually xinit , the starting point of a query. In the

more formal terminology of the field, these reachable states comprise the forward reachable set of

xinit .

These concepts can be best illustrated with a simple toy example. “Lunar lander” is the name

of a popular video arcade game from the late 1970s (see Figure 2.9), a simple, 2D simulation of

landing an Apollo Lunar Module craft on the moon. In this example we further simplify things by

making the lunar surface an infinite plane, and by eliminating craft rotation and lateral motion,

thus limiting the craft to one-dimensional displacement along the vertical axis. The object of this

exercise then is to softly land on the moon surface; that is, to reach the state (z, ż) = (0, 0) while

ensuring that at all times z ≥ 0, where z is the altitude, and subject to the additional constraint

that the thruster, and thus the agent’s acceleration, is bounded.

This last constraint has two important consequences: 1) if the lander’s downward velocity grows

too large, the limited amount of thrust will be unable to sufficiently decelerate the agent before it

reaches the surface, leading to a crash; and 2) the lander cannot reach a substantial set of states
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Figure 2.10: The viable and reachable regions of the lunar lander’s state-space. The “crash unavoidable” region is
nonviable since the downward velocity exceeds the braking power of the lander’s (bounded) thrust. The “impossible”
region is unreachable since the upward velocity exceeds what can be physically achieved, even if maximal thrust is
applied from altitude z = 0.

since its limited thrust puts an upper bound on the achievable upward velocities for a given altitude

(and the agent cannot descend below z = 0 to “wind up”). These two observations pertain to the

concepts of viability and reachability. Figure 2.10 illustrates the lunar lander’s state-space and its

partitioning by these classifications.

It is worth pointing out that the work in this thesis does not make any use of theorems or

results obtained in viability theory or reachability, other than the rudimentary term definitions,

but merely makes heavy use of the concepts which they study. It is possible though that the theory

could come into greater play in future work.

2.2.1 Formal description

In its most general form, viability theory makes statements about evolutionary systems, which

are essentially nondeterministic dynamical systems resembling Markov processes, in that for each

system state there exist a number of possible transitions, to be decided among through stochastic

or simply unspecified means. The latter provision merely makes the theory more general; it is also

applicable to systems where the transition policy may be deterministic (but perhaps hidden), or

where the transitions are decided by an unpredictable agent (e.g., a human). In particular, the

theory is applicable to controllable or actuated systems since they too permit multiple evolutions

out of any particular system state, with the control variable u(t) determining which one is taken.

Viability can only be assessed relative to some constraint. One generally defines a set K ⊂ X

of admissible states, called the viability constraint set. These are the states the system is allowed

to assume. In motion planning and user-control problems, the most obvious choice is to set K to

the agent’s free-space; that is, K = Cfree (kinematic problem) or K = Xfree (kinodynamic problem).

For example, for the kinodynamic bike K would be the set of states in which the bike is not in
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collision with any obstacles, and has not fallen over.

Viability can be formalized as follows. Let the dynamical system be modeled by

ẋ(t) = F
(
x(t), u(t)

)
, (2.2)

u(t) ∈ U(t) where U(t) = g
(
x(t)

)
. (2.3)

Here, x(t) is the system state at time t, u(t) is the control action applied, and U(t) is the set of

allowable control actions. In the general case the set of allowable actions depends on the agent’s

state x, but in this thesis U is fixed for each agent. In this framework, a state is viable if there

exists a sequence of control actions that allows the system to stay forever within the admissible

region K. That is, x0 is a viable state if

x(0) = x0, and (2.4)

∃u(t) such that ∀t≥0 x(t) ∈ K. (2.5)

The viability kernel, denoted by Viab(K), is then the set of all viable states under the constraint K:

Viab(K) =
{
x0 | x(0) = x0 ∧ ∃u(t) such that ∀t≥0 x(t) ∈ K} (2.6)

Thus Viab(K) ⊆ K ⊂ X.

The above definition can be easily reworked for discrete-time dynamical systems, in which

xk+1 = F (xk, uk), (2.7)

uk ∈ Uk where Uk = g(xk). (2.8)

The variables xk, uk, and Uk are the corresponding system state, control action applied, and the

set of allowable actions at the kth time-step, respectively. The viability kernel then becomes

Viab(K) =
{
x0 | ∃{u0, u1, u2, . . . } such that ∀k∈N xk ∈ K

}
. (2.9)

2.2.2 Goal-viability

When discussing viability in the context of a motion planning problem, we have found it is often

useful to use a slightly wider definition. In particular, we pronounce a state x to be goal-viable

if x is viable by the standard definition, or if xgoal can be reached from x before the agent fails

(this implies xgoal lies in nonviable space). Effectively, this concept allows us to cleanly separate

those agent states which could lead to a solution, and those that surely will not. In the remainder

of this thesis,“viable” and related terms will refer to this wider definition, unless explicitly noted

otherwise.
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2.2.3 Ambiguity of symbol x

We note an ambiguity of notation due to two traditional meanings for the symbol x; on the one

hand it is the canonical variable for measuring distance along the x-axis, but also it is the traditional

symbol used for agent state in literature, especially that of motion planning. Thus whenever the two

meanings are used together, such as in Section 2.2.5, the agent state is written in vector notation

(~x), while the distance along x-axis is written in plain scalar form (x); otherwise, the intended

meaning of x should be clear from context, and almost always refers to the agent’s state.

2.2.4 Related viability work

The above presents only the basic definitions. The most thorough and authoritative source on

Viability Theory is the book[Aub91] by Jean-Pierre Aubin, while more concise and introductory

overviews can be found in [Aub90, ASP04, Aub02b, Aub02a]. Viability theory goes on to prove a

number of notable results. For example, it shows that all interesting features such as equilibria,

trajectories of periodic solutions, limit sets and attractors, if any, are all contained in the viability

kernel.

Alas, the theory does not, in general, provide explicit ways to compute the viability kernels, a

matter of most immediate interest and import to the research presented here, although a number of

other works have investigated this topic. Saint-Pierre[SP94] approaches the problem by discretizing

the state-space X and control-space U , and then in an iterative manner akin to cellular automata

solving a maze, refines the discrete approximation by discarding states for which all the control

actions in the discrete set lead to known nonviable space, until a steady-state is reached. The

method naturally suffers from the curse of dimensionality, with exponential growth in samples as

the dimensionality of X or U grows. [CD06], on the other hand, attempts to model the viability

kernel with Support Vector Machines (SVMs). Roughly, this method learns a (continuous-space)

SVM model in parallel with each iteration of the Saint-Pierre’s algorithm, and then performs some

additional refinements. The goal of this approach is to get an analytical approximation of the

kernel, which can mitigate at least the curse of dimensionality in the control space U . Another

recent approach[BMMZ04] models the viability kernel using a value function of an optimal control

problem, and proposes the use of Ultra-Bee scheme to mitigate the approximation’s numerical

diffusion due to the discontinuities of the function. Although the work shows good empirical

results, Ultra-Bee scheme currently has no convergence proofs, and is currently limited only to 2D

state-spaces.

2.2.5 Inevitable Collision States (ICS)

Recent motion planning literature has seen the introduction of the concept of Inevitable Collision

States (ICS)[FA04]. An inevitable collision state for an actuated agent, as the name suggests, is
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one where all possible future control action sequences (termed “control inputs” in [FA04]) lead to

collision. Clearly this concept is strongly related to viability; in fact, a comparison of definitions

shows that an ICS is equivalent to a nonviable state. That is,

x ∈ ICS iff x 6∈ Viab(Xfree).

[FA04] introduces the ICS concept, provides the basic definitions, and outlines a number of

properties of ICS useful in its construction. [PF05] provides an extended ICS case study in the

context of a velocity-controlled nonholonomic car, in addition to introducing the concept of Partial

Motion Planning (PMP). The ICS computation is further extended in [PF07] to also support mobile

obstacles through the use of “imitating maneuvers” (IM). The details of computing the ICS using

IMs are further thoroughly detailed in a recent thesis [Par06]. [Fra07] argues for the superiority

of ICS method in ensuring agent safety, relative to other approaches currently used in physical

implementations. Finally, [BK07] combines a number of recent ideas and approaches, including

ICS, in order to demonstrate fast kinodynamic motion planning for a nonholonomic car in partially

observable terrains, although this implementation uses finite look-aheads and thus in the general

case cannot ensure safety.

In comparing the ICS work to ours it is important to first note the difference in end goals of both

approaches. The ICS approach was developed with real-world, physical implementations in mind,

where the agent is subject to (live) partial motion planning. As such, the safety of the agent (and

of the environment; e.g., human “obstacles”) is the primary concern, and in particular the need

to guarantee avoidance of situations which would lead to unavoidable collision. This necessitates

erring on the safe side, and hence leads to conservative models of ICS (i.e., model will yield ICS false

positives). The work in this thesis, on the other hand, does not need to abide by this constraint, and

can thus explore less rigourous approaches. In particular, the filtering of nonviable states during

motion planning, from Chapter 4, can safely generate false negatives since the collision-checking

routines in the planner will catch such errors, while the viability envelopes presented in Chapter 5,

although also attempting to guard the agent from unavoidable collision states, are intended rather

for observation of human control (i.e., virtual simulation) and general human-directed animation,

where error is not a grave concern either. Because of this divergence of goals, each method is most

suitable to and performs best in the application it was intended for, and their cross-application

would yield degraded performance.

Overall, the ICS approach hinges on deriving a conservative model of ICO(B), the Inevitable

Collision Obstacle for the given environment. This is a boolean function over the agent’s state-

space that computes the “cross product” of the obstacles B and the agent’s dynamics. That is,

it captures the nonviable region: a state ~x is an ICS if, and only if ~x ∈ ICO(B). The model

is captured exactly using geometric primitives. Deriving such exact representations in arbitrary
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spaces is generally expensive, hence a key step in the approach is the reduction of the problem to

a 2D slice of the space. Specifically, in [PF05, PF07, Par06], a car state ~x = (x, y, θ, v) is tested

for ICS by first deriving the explicit representation of the 2D ICO(B) slice that spans the agent’s

positional variables (x, y); the remaining state variables, orientation and velocity, are fixed at the

values they have in ~x. The slice is computed by first determining all possible ICO(Bi, φj), the

“cross products” of a particular obstacle and a particular evasive motion. These are then combined

to yield ICO(B). The ICS check itself consists then of simply checking the value of the ICO(B)

slice at (x, y). It is important to note that the shapes of all these Inevitable Collision Objects

are captured exactly using generalized polygons, and then combined together using set operations.

Such 2D polygon computation and manipulation (Minkowski Sums, unions, intersections) can be

done efficiently and quickly, thus allowing the method to run at speeds required by PMP.

There are however a number of limitations to this approach. One of the key questions is how well

this method will generalize. To date it has only been demonstrated with a car agent in relatively

spacious environments. How will it hold up in higher-dimensional spaces? Can the 2D slice problem

reduction technique always be applied? In particular, when migrating to a 3D workspace it would

seem that the slice would now have to be 3D, spanning (x, y, z), or is the choice of slice dimensions

arbitrary? Clearly computing exact ICO(B) representations in 3D would be vastly more expensive.

The ICS method is also currently constrained to mobile obstacles whose motion the agent can

fully imitate. In the demonstrations thus far the mobile obstacles were replicas of the agent itself;

holonomic “human” obstacles (especially “suicidal pedestrians”), for example, cannot be handled.

It seems doubtful that any future developments can amend the method to provide safety for fully

general obstacles. Another limitation is the assumption that the agent is capable of braking; the

method is currently unequipped to handle unstoppable agents, such as the fixed-velocity car and

bike used in this thesis. It is also not clear how close the ICO(B) model can be made to resemble the

true ICS region in general. Conservative models of nonviable space have significant repercussions

for motion planning in constrained spaces (i.e., critical bottlenecks can be misclassified and, as a

consequence, blocked). Finally, implementing this approach for a novel system seems involved and

potentially difficult. The derivation of the trajectories or control sequences for the evasive actions

could be significantly harder for more complex agents. Would the computation of ICO(Bi, φj) be

still manageable with the resultant more complex trajectories?

The approach does offer a number of key advantages though, the most important being a

guarantee of safety, provided the problem meets the prerequisites (i.e., agent can imitate motion of

obstacles). This is a crucial requirement of live PMP, one that the work in this thesis does not satisfy

(but also does not pursue). The ICS work is also capable of handling dynamic environments, or at

least a subclass of them, a problem the work in this thesis has not yet attempted to tackle. Finally,

another notable benefit of the approach is its ability to handle partially observable environments.



2.3. User-control 35

Although our work does not demonstrate this, the local viability models of Chapter 4 should be

capable of handling such cases too, with little or no modifications.

2.3 User-control

Significant research has been devoted to studying computer-assistance for human control of agents,

with industry particularly focused on automotive applications. Today such assistance systems can

be found in many places, from control-correcting systems on highly unstable stealth planes such as

the B-2 bomber, down to anti-lock brake systems (ABS) in many modern cars. Perhaps the most

actively studied domain for such systems is that for driving cars semi-autonomously on highways

(e.g., lane-keeping, computer-assisted lane changing, “magic bumpers”). A predominant approach

involves building potential fields which then serve to push the vehicle away from danger (e.g., to

prevent leaving the roadway, avoid cars, and discourage driving astride multiple lanes). The ap-

proach was first introduced by [Kha86] and generalized by [Hog85] (under the term “impedance

control”). A typical example of automotive application is [Ros03]. This work also provides a com-

prehensive review of further previous work in this area, while [VE03] looks at recent developments

and trends in all facets of the general problem, including control strategies, human factors, and

legal issues.

It’s worth pointing out that such systems are generally agent- and task-specific. They also gen-

erally reduce to collision look-aheads. As seen in the earlier lunar lander example, such approaches

always run the risk of using a look-ahead that is too short to detect and avert all onsets of unavoid-

able collisions. Viability-based approaches on the other hand do not suffer from this problem; even

a single time-step into the future is sufficient to confirm and ensure agent safety. The only work

that attempts to solve the safety problem through viability, other than our own, is that of Collision

States (ICS)[FA04, PF05, PF07, Par06], which was discussed in Section 2.2.5.

Related safety boundary problems have also been investigated in [Mit02], where backward

reachable states for an arbitrary target set are computed using a time-dependent Hamilton-Jacobi-

Isaacs (HJI) partial differential equation (PDE). Such backward reachable sets are, for example,

used to find the “capture region”5 for two airplanes in the classical “game of two identical vehicles”,

where one is the evader and the other the pursuer. This has notable applications to real life: when

a real plane finds itself within the capture region of another plane, there exists a sequence of

control actions that the latter pilot could execute, potentially by error, that can lead to a collision,

regardless of what the first pilot does; thus safety can only be guaranteed if the airplanes stay out

of each other’s capture regions (assuming the pilots can find and execute the appropriate evasive

manoeuvres). Such capture regions thus play an important role in safety analysis.

5This is the set of states of the evader from which it can always be captured by the pursuer, regardless of what
evasive manoeuvres it executes.
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Chapter 3

RRT-Blossom: sustained,

non-redundant exploration

This chapter looks at ways of improving the Rapidly-exploring Random Trees (RRT) algorithm

for more complex agents. Of the current motion planners, RRT is the most promising motion

planning algorithm for kinodynamic systems and those with differential constraints in general,

because of its versatility and wide applicability. A comprehensive overview of RRT and its variants

was presented earlier in Section 2.1.4. The other currently popular alternative, the Probabilistic

Road-Maps (PRM) algorithm is not well suited to kinodynamic motion planning since it relies on

having a local planner available, which is usually not the case for more complex agents due to the

local planning problem being often no simpler than the global one.

RRT performance degrades rapidly as agent complexity increases, and especially when the envi-

ronment becomes more constrained. A concrete example of this is illustrated in Figures 3.1 and 3.2;

the first shows the progress made by the search trees of the RRT and RRT-CT (a particularly rel-

evant variant) algorithms after 20 minutes of computation, while the second plots typical histories

of edges creation for the same planners.1 The agent used was the kinodynamic bicycle with U
consisting of 5 control actions, sampled at regular intervals from the full range of possible steering

angles. As can be seen from the figures, RRT spends most of its time on fruitless iterations, while

RRT-CT, although prolific, does not take care to avoid redundancy.

In the following sections we analyze the reasons for this poor performance, and then undertake

to rectify them, in order to attain a more robust low-level planner. It is worth pointing out that

the scenario illustrated is not particularly special or contrived; the problems encountered here are

systemic and appear, in some shape or form, for most other more complex agents.

1Note: the histories shown in Figure 3.2 are not from the same planner runs as those used for Figure 3.1.
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RRT RRT-CT

Figure 3.1: An example query in which RRT and RRT-CT (an improved variant) perform poorly. The agent is
a kinodynamic bike (not shown) and it is to drive from point “1”(on left) to point “2”(on right). Plots illustrate
progress made after 20 minutes of planning time, which should have been more than sufficient to find a solution.

3.0.1 RRT

The feature that immediately grabs one’s eye in Figure 3.1 is RRT’s startling lack of progress,

despite the ample time allotted. To understand why this occurs one first needs to take note of a

peculiar property of bikes: in order to execute a turn one must first steer the bike away from the

intended direction of travel.2 This is necessary for bringing about a bike lean which will prevent it

from falling over during the desired turn, by balancing the centrifugal and gravity forces.

This steering behaviour is diametrically opposed to RRT’s edge instantiation criterion, which

favours edges that make immediate and direct progress toward the target. This results in search

trees where the majority of created edges place the bike in an unrecoverable fall (i.e., large portion

of the trees will be nonviable). Also, since RRT will never instantiate an edge that recedes from

the target, it is therefore unable to “intentionally” first generate the preparatory lean. The only

way for RRT to implement a “successful turn” is to have a radical switch in the desired direction of

travel (i.e., a serendipitous sequence of xtgt is needed) midway through a manoeuvre, thus turning

the undesirable away-swing of the first turn into the requisite lean of the second.

The problem is greatly compounded by another RRT weakness: lack of memory. In the course

of its planning, RRT encounters many potential edges that turn out to incur a collision or failure,

yet by the end of the iteration the planner completely forgets about them. It then makes additional

attempts on many of these edges in further iterations, each futile attempt incurring the full collision

check and other costs. Worse, RRT does not remember nodes whose children it has “exhausted”,

either by instantiating or finding their inadmissibility. This is particularly troublesome because

it quickly leads the search trees to develop a handful of prominent nonviable nodes which then

2This is the only way to execute a turn on a bike without a rider. When a rider is present, the lean required
for a turn may also be achieved by shifting one’s weight laterally. Even with a human rider, this counter-steering
behaviour is sometimes still required (e.g., larger motorbikes).
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Figure 3.2: Sample histories of edge creation for typical RRTExtExt and RRT-CT runs (only 10,000 iterations shown).
Red line indicates a moving average of edges created per iteration. The agent is a kinodynamic bike.

dominate the planner’s attention. Unlike viable prominent nodes which quickly acquire children

and lose their prominence, these nodes remain active for long durations, and by virtue of their

protruding into unexplored space, act like lightning rods for the planner’s nnear node selection

mechanism. In short, the bulk of RRT’s planning time is wasted on glaringly repetitive but futile

attempts of growing the search trees from a handful of prominent yet nonviable nodes.

It bears pointing out that a root cause of this difficulty is that the RRT algorithm assumes that

the distance metric used in its computations reflects the true “cost to go” from a particular state

to the target. Alas, such metrics are difficult to come by for more complex agents, and therefore it

is common practice to use the Euclidean distance (L2 metric) instead, as a rough approximation.

Figure 3.3, for example, shows an empirically derived approximation of the true “cost to go” for

a nonholonomic car. The plot of the corresponding L2 metric would naturally consist simply of

concentric circles. Although at larger distances the L2 metric makes a suitable approximation, at

a smaller scale it is a poor model, and therefore leads the planner into making incorrect decisions,

as seen above. With a proper metric, on the other hand, RRT would automatically implement the

required preparatory “steering away” since the anticipatory steering behaviour would be inherent

in the metric itself. Any such distance metric, after all, merely measures the distance of the

optimal trajectory from a particular state to a desired destination; if said optimal trajectory involves

a preparatory away-turn, as above, then this will be reflected in the gradient of the metric, as

subsequent points along the optimal trajectory need to have monotonically decreasing metric values.

3.0.2 RRT-CT and “receding edges”

The RRT-CT algorithm aims to directly address this sensitivity to distance metrics. Most notably it

remembers which attempted edges have been found to lead to failure. But as Figure 3.1 shows, RRT-

CT introduces a new problem: redundant exploration. The (original) RRT algorithm forestalls
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Figure 3.3: A cross-section of empirically-derived “true cost to go” metric for a nonholonomic Dubin’s car (i.e.,
without a “reverse” gear). The value/colour at (x, y) indicates the minimal distance the car would have to travel
to achieve its current orientation but at a relative displacement of (x, y). The square outlines and numbers are an
artifact of the metric derivation tool.

this problem by design: by first choosing nnear to be the node closest to the target, and then only

instantiating edges which approach the target further, absence of re-exploration is guaranteed—for

if a node were to already exist where the new edge extends to, that node would have been chosen

as nnear instead. But RRT-CT removes this important constraint3, thus allowing new branches to

regress into already explored space.

Yet such (target-)receding edges do not always result in re-exploration; just as often they may

strike out into unexplored space, yielding progress when otherwise there would be none, in iterations

where no suitable target-approaching edges exist. Figure 3.4 illustrates receding and regressing (i.e.,

re-exploring) edges, and their difference. We note that these edge types are not mutually exclusive:

a receding edge can be also regressing, while a regressing edge is almost always a receding one,

due to the way RRTs are constructed. The inclusion of receding edges is a major contributor to

RRT-CT’s improved performance since, on average, it is generally able to effect more progress per

iteration.

In short then, receding edges can either be productive and yield progress on iterations which

would otherwise be fruitless, or they can lead to re-exploration of known space and thus be wasteful.

Neither RRT, which rejects both types, nor RRT-CT, which allows both types, makes the necessary

distinction. Our proposed planner, outlined in the next section, does distinguish between good and

bad receding edges, and is thus able to derive maximum benefit from them.

3Specifically, it does so by setting dmin ←∞ rather than dmin ← ρ(q, qtgt)
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qnear

“already explored” space

qtgt

Figure 3.4: Receding edges; the diagram above shows a snapshot of an RRT iteration in heavily constrained environs.
The agent is capable of motion only in the four cardinal directions. In this scenario only two collision-free edges
are possible from qnear (dashed; leftward edge is offset downward to avoid superposition). The dotted circle passes
through qnear and marks the locus of points which are equally distant from qnear ; it demonstrates that both the above
edges are receding from the target point. The green (rightward) receding edge is useful since it explores fresh space;
the red (leftward) one is undesirable because it regresses into already explored space.

3.1 RRT-Blossom

3.1.1 Regression avoidance

The central novel feature of the proposed planner, which we call RRT-Blossom, is the inclusion

of receding edges, but only those which do not regress into already explored space. Filtering

is achieved in a direct manner: all potential new edges are simply tested to see if they intrude

upon already-explored space; any found to be regressing are eliminated from further consideration.

Implementing the regression test itself is problematic, however. Firstly, the problem is ill-defined:

there is no obvious criterion (or even one that is marginally better than any others) for deciding

the extent of the neighbourhood around the current search tree which one could consider to be

“explored” or occupied by the tree. Mathematically the edges occupy zero volume by virtue of

being lines. Also, even if this question were to be resolved, computing an explicit model of the

explored space would likely be prohibitive, and subject to the curse of dimensionality. Luckily

both these difficulties can be sidestepped by using an implicit approximation, one that captures

the desired spirit of the term and that has been very effective in trials. This approximation decrees

that an edge (xparent , xleaf ) is regressing when xleaf is closer to a tree node other than xparent . That

is, regression occurs when

∃x ∈ T | ρ(x, xleaf ) < ρ(xparent , xleaf ), (3.1)

where T is the search tree, and ρ is the distance metric (usually L2) used throughout the rest of

RRT. Figure 3.5 further illustrates the concept.
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Figure 3.5: The “regression” test for an agent capable of 8-way motion; left: potential offspring for a node are shown.
Edges in red (dashed) are regressing since the new endpoint lies closer to a node other than its parent (indicated
with loops). Only the single edge in green is suitable for instantiation. right: all possible “regression”-free edges
are shown in green, for the tree state shown. Naturally, instantiating any one of these edges will eliminate some of
their neighbouring candidates. In the long run only a partial subset of these edges will be added to the tree, with
the rest of the candidates discarded. The final structure of the tree will thus depend on the sequence and choice of
edges added.

3.1.2 Node “blossoming”

At the same time, the larger, overarching goal of the planner is to be more efficient, to simply “do

more per iteration”. To this end the proposed planner makes an additional novel change: rather

than creating only the single best edge out of nnear , it instantiates all such admissible edges. This

gives the appearance of nnear “blossoming” with a spray of new edges, thus prompting the “RRT-

Blossom” moniker. The key benefit of this alteration is better computational economy. Although

RRT-CT remembers which attempted edges incurred a collision, it does not track collision-free

edges which too have been attempted but remain uninstantiated (i.e., those that had a sibling

edge that approached xtgt closer, and was hence chosen instead). RRT-CT will unnecessarily

recompute the particulars (edge endpoint, collision check, etc.) of such nodes the next time they

are reconsidered. Instantiating all eligible edges thus avoids such re-computation, and has little

negative cost: in more difficult regions where the planner needs to expend more effort, most of

these edges would be eventually created anyhow, while expansive spaces are traversed quickly with

few iterations, thus incurring negligible overhead. Finally, this behaviour is more consistent with

RRTs “rapidly-exploring” spirit.

3.1.3 Bottleneck obstruction issue

For many simple agents the above two features, the regression avoidance and node blossoming, are

all that is needed to convert RRT into RRT-Blossom. Algorithm 4 gives the pseudocode for this

simplest variant.

Alas, with more complex agents this variant can run into trouble with narrow bottlenecks—

regions of state-space which may be traversed only with a very limited set of possible trajectories.

Such bottlenecks can be caused by corresponding choke-points in the environment itself, or by
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Algorithm 4 RRT-Blossom for simple agents

(inherits query() from dual-tree RRT, page 19)

1: function grow tree(τ, xtgt)
2: xnear ← nearest neighbour(τ, xtgt)
3: xnew ← node blossom(xnear , xtgt , τ)
4: return xnew

5: function node blossom(x, xtgt , τ)
6: for u ∈ U do
7: xnew ← sim(x, u)
8: if failure(x, u, xnew) then
9: next u

10: if regressionp(x, xnew , τ) then
11: next u
12: τ ← τ + new edge(x, u)

13: return the new node closest to xtgt

14: function regressionp(xparent , xnew , τ)
15: for node n ∈ τ do
16: if ρ(n, xnew ) < ρ(xparent , xnew ) then
17: return True
18: return False

general agent instability, leading to situations where only a very few control actions can maintain

system viability. The issue is that the no-regression constraint can inadvertently close such bottle-

necks off, which is particularly detrimental if the obstructed choke-point happens to be critical to

achieving a solution (e.g., the only bridge across a river) since the planner will then be unable to

solve the problem. See Figure 3.6, for an example.

Such obstruction occurs when the area around a bottleneck becomes populated with branches

that, for whatever reason, cannot directly traverse the choke-point (e.g., the agent is unfavourably

oriented and no application of its laws of motion can negotiate the narrow therefrom), yet at the

same time are collectively sufficient to completely mark off the area as “explored”, thus barring

any further branches from attempting passage, including ones that would otherwise succeed.

Ultimately, the planner’s operation proceeds by the repeated sampling of the search-space, and

the no-regression constraint merely attempts to put an upper bound on the resultant density of

samples. This in essence limits the method’s “resolution”, in that it will have trouble detecting

terrain features (e.g., bottlenecks) whose size is comparable to or smaller than the sampling den-

sity. Clearly increasing the resolution—by lowering the simulation time-step dt, which in turn will

decrease length of edges, and hence distance between nodes—would work, but this is to be avoided,

if possible, as it exponentially increases the size of the search trees. We thus focus on other ways

to treat the problem, mostly by conditional relaxing of the no-regression rule.

Obstruction can be caused by either viable or nonviable branches; we consider treatment for

the latter case first since the derived mechanism is a stepping stone toward addressing the former.
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regression
car

Figure 3.6: Interplay of viability and the no-regression constraint: the green (dashed) expansion is “blocked” by an
extant nonviable edge (i.e., instantiating the edge would constitute a regression). Since the blocked edge is essential,
the planner will not be able to find a solution.

Obstruction by nonviable branches

What is particularly vexing about this case is that critical edges are blocked by branches which, by

definition, cannot lead to a solution and are thus useless. Figure 3.6 illustrates an example of this.

This observation suggests one trivial fix: nonviable edges could be simply ignored when testing for

regression. That is, nonviable edges would no longer “occupy” or “explore” their neighbourhoods.

This effectively removes the sampling density restriction on the nonviable side of the state-space,

which is a double-edged sword: although this immediately corrects the problem of blockage by

nonviable branches, it also permits redundant exploration of nonviable space. In many motion

planning problems the nonviable space comprises a small percentage of the search-space, hence

the gains would still far outweigh this drawback. For more complex systems the drawback can

be corrected by restricting planner search to viable space only; this topic is explored in the next

chapter. Further fallout of this decision is discussed in Section 3.3.

Unfortunately the nonviability of edges is not known ahead of time, and must therefore be

discovered during planning, and then incorporated retroactively. The discovery mechanism is im-

plemented by annotating edges with a viability status, which is then updated as planning progresses.

More specifically, each edge, instantiated or potential, carries a viability status, one of: untried,

live, dormant, or dead. Edges that have not yet been considered are marked untried. Upon

instantiation they become live. If the edge is currently disallowed by the regression test, it is

marked dormant. Finally, edges that have been found to be nonviable are marked dead. Figure 3.7

shows the transitions in greater detail.

Since changing the status of an edge may precipitate a change in the parent (e.g., the last of the

children of an edge turns dead, suggesting that the parent edge itself is now dead), status updates

must be propagated up the tree. This is done by traveling up the parent hierarchy toward the root

node, re-evaluating the status of each edge passed. The process stops when root node is reached,

or when a re-evaluation results in no change of status.
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Figure 3.7: A Finite State Machine (FSM) used to track the viability status of nodes.

21

Figure 3.8: dormant deadlock: a viable branch may cutoff access to a critical passage without being able to explore
it itself. This limits the planner’s exploration to the “fenced off” area, and once this is exhausted, the remaining
non-dead branches are locked in a cycle, mutually blocking each other’s way.

Obstruction by viable branches

The analogous approach of unrestricting, or at least increasing the sampling density in the viable

part of the search-space is less appealing in this case. Rather than simply detecting whether an

edge is nonviable, one would instead have to ascertain whether one is near the border of viable

space, a nontrivial task complicated further by the ill-defined nature of “near”. We thus adopt a

different tack, especially since in tests this case appears to be relatively rare.

When a fragment of the planner’s search-space becomes isolated by blocked bottlenecks, it will

eventually be exhausted by the planner. That is, in time more and more edges will become dormant,

and this condition will slowly propagate up the tree until the root is reached. When the tree root

becomes dormant, the accessible fragment of the search-space has been exhausted, and the tree is

in “dormant deadlock”. Figure 3.8 illustrates this condition. A dormant deadlock can occur either

because all exits (i.e., bottlenecks) from the area have become blocked, or because xgoal is simply

not reachable from xinit , given the problem parameters and simulation time-step.

A trivial fix for dormant deadlock is to simply ignore the no-regression constraint for the very

next planner iteration. This is perhaps heavy-handed, inelegant, and not particularly efficient, but
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considering the observed rarity of dormant deadlocks, and the fact that the fix works sufficiently

well in tests, it would seem sufficient for most applications. Alas, this fix prevents the planner

from terminating in queries where a solution is impossible. Interestingly, this also acts as an

“escape valve” that allows any edge to be created in the long run, thereby restoring probabilistic

completeness to the planner. Finally it is worth noting that this approach has no impact on

queries for which dormant deadlock is not an issue, other than the single test per iteration to check

whether the root node is dormant or not. The resultant complete RRT-Blossom algorithm is shown

in Algorithm 5.

3.2 Experiments

3.2.1 Agents

Holonomic point

The simplest agent attempted is a kinematic point, capable of moving in 8 directions (i.e., ||U|| = 8),

as shown in Figure 3.9. Traditionally, when solving problems for kinematic agents using RRT, the

tree edges are grown directly toward the xtgt samples, without pretending the agent is actuated,

and without restring the agent’s motion to a discrete set of directions. We have cast the kinematic

point as an actuated agent as this is the class of problems we are interested in studying, and no

other actuated agent illustrates the planner’s operation as well, or gives as much insight into it.

The discretization is then a natural consequence of treating direction of travel as the system control

input.

Figure 3.9: The 8-way “holonomic point” agent.

The state vector for this agent is:

~x = [x y] (3.2)

Nonholonomic car

This first-order system is essentially a Dubin’s car [Dub57]—a car restricted to forward-only

motion—which is being modeled internally as having only one front and one back wheel, as shown
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Algorithm 5 viability-aware RRT-Blossom

(inherits query() from dual-tree RRT, page 19)

1: function grow tree(τ, xtgt)
2: xnear ← nearest neighbour(τ, xtgt)
3: xnew ← node blossom(xnear , xtgt , τ)
4: return xnew

5: function nearest neighbour(τ, xtgt)
6: dmin ←∞
7: for node n ∈ τ do
8: if n is dead then
9: next n

10: workable states ← {untried, live}
11: if deadlock then
12: workable states ← workable states, dormant
13: if n.edge status ∩ workable states = ∅ then
14: next n
15: d← ρ(n, xtgt)
16: if d < dmin then
17: dmin , nmin ← d, n

18: return nmin

19: function node blossom(n, xtgt , τ)
20: x← n.x
21: for u ∈ U do
22: xnew ← sim(x, u)
23: if failure(x, u, xnew) then
24: n.edge status[u] ← dead
25: next u
26: if not in deadlock then
27: nblk ← regressionp(x, xnew , τ)
28: if nblk then
29: n.edge status[u] ← dormant
30: nblk .blocked edges ← nblk .blocked edges +(n, u)
31: next u
32: τ ← τ + new edge(x, u)
33: n.edge status[u] ← live

34: propagate status(n)
35: return new node closest to xtgt

36: function regressionp(xparent , xnew , τ)
37: for node n ∈ τ do
38: if n.status = dead then
39: next n
40: if ρ(n, xnew ) < ρ(xparent , xnew ) then
41: return n
42: return ∅
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Algorithm 6 the function propagate status

1: function propagate status(n)
2: while n do
3: sn ← dead
4: for u ∈ U do
5: se ← n.edge status[u]
6: if se = live then
7: se ← n.children[u].status
8: if se ∈ {untried, live} then
9: sn ← live

10: if se = dormant then
11: sn ← dormant

12: if n.status = sn then
13: return
14: n.status ← sn

15: if sn = dead then
16: for (nb, u) ∈ n.blocked edges do
17: if nb.edge status[u] = dormant then
18: nb.edge status[u] ← untried
19: propagate status(nb)

20: n← n.parent

in Figure 3.10 (sometimes called the “bicycle model” for a car). This gives a very simple nonholo-

nomic model which, if needed, can later be retrofitted with the more common four wheels, provided

that their turning radii are adjusted appropriately (to give a more natural visual representation).

Furthermore, this car is assumed to move at a constant velocity and is restricted to a maximum

steering angle ψmax = π/6 radians, which yields a minimum turning radius that happens to be

equal to the car’s wheelbase, namely 1.275 metres.

The agent’s state is

~x = [x y θ] (3.3)

where (x, y) is again the agent’s position in the environment, while θ is the agent’s orientation

angle. The car has a fixed forward velocity, and control consists solely of steering, using one of

three steering angles:

U = {−ψmax , 0, ψmax} (3.4)

Kinodynamic bike

The bike, which is the most complex agent we have used, has a 5D state vector:

~x = [x y θ φ φ̇ ] (3.5)

where φ is the bike’s lateral lean, and the other variables are the same as for the car. Its control

input is the steering angle, while the forward velocity is again fixed. Due to the more unstable
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Figure 3.10: The “nonholonomic car” agent.

nature of bike control we found it necessary to use a finer discretization of the control action set:

U = {−ψmax , −1
2ψmax , 0, 1

2ψmax , ψmax} (3.6)

This steering angle is simultaneously used to maintain balance as well as effect progress. The

maximum wheel deflection ψmax was set to π/4 radians.

The maximum allowable lean was set to φmax = π/6 radians, and similarly the maximum lateral

velocity was set to φ̇max = π/6 radians per second. Any bike state which strayed beyond these

bounds was flagged as failed (i.e., considered to have “fallen over”).

The equations of motion for this second-order system were taken from [vdP94], and are based

on modeling the bike as an inverted pendulum ([vdP94] provides a derivation). In summary:

φ̈ =
lm(g sinφ− k)

Iφ + l2m
(3.7)

where l is the “pendulum length”, the (shortest) distance from centre of mass to the ground along

the bike’s plane, m is the mass of the bike, g is the gravitational constant, Iφ is the moment of

inertia about the main axis of the bike, and

k =
CfVcm

2 cosφ
1− Cf l sinφ (3.8)

Here Vcm is the forward velocity of the bike, implemented as 2 m/s, and Cf is the trajectory curvature

resulting from the current steering control action, computed here as the reciprocal of the average

turning radius of the two wheels:

Cf =
2

w tan(π2 − φ) + w
cos(π

2
−φ)

(3.9)
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where w is the wheelbase of the bike, the distance between the wheel axles. Figure 3.11 illustrates

the parameters.

Figure 3.11: The “kinodynamic bike” agent.

3.2.2 Environments

Figure 3.12 illustrate the problem environments used with the holonomic point. Nearly identical

versions were used for the other agents, with a few minor alterations to allow for the reduced

manoeuvrability, speed, and turning radius of the agents. In particular the “jambs” were removed

from the doorways in “rooms”, while “tunnel” was widened to accommodate the turning radii of

the subjects. The problem environments were chosen to present deep local minima (“T”), to be

highly constrained (“tunnel”), as well as mixes of these qualities (“complex” and “rooms”)

For each environment the maximal query was used, one whose endpoints have been placed as far

apart as the environment allows; the points labeled “1” and “2” mark xinit and xgoal , respectively.

The orientation of the car and bike agents at both endpoints was specified to be “facing right, along

the x-axis”, and in the case of the bike, the lean angle φ and its velocity φ̇ were required to be zero.

3.2.3 Test platform

All algorithms were written in Python 2.3, running on Linux (Debian “sid”, kernel 2.6), using

Psyco (a JIT-like optimization for Python), on a Pentium IV 2.4 GHz machine. The algorithm

implementations share the same component functions where feasible.



3.2. Experiments 51

(a) “T” (b) “complex” (c) “rooms” (d) “tunnel”

Figure 3.12: Environments used in tests (kinematic agent variants shown).

3.2.4 Results

The obtained results are presented below in four forms: numerical tables, boxplots, a visual com-

parison of evolved tree structures, and a history plot of node production. The algorithms used are

RRTExtCon for “RRT”, RRTExtExt with Collision Tendency for “RRT-CT”, and “RRT-Blossom”

was based on RRTExtExt as well.

Tables 3.1–3.3 give the runtimes and other relevant statistics. The columns in the tables give,

in order: algorithm runtimes, number of collision checks, number of nearest neighbour checks, and

number of nodes created. These values are averages over the indicated number of runs. Further-

more, the planner runs were time-limited; the last column gives the number of runs which failed to

find a solution within that period. Rows shown in italics indicate planning problems for which a

significant portion (> 10%) of the runs did not find a solution within the specified time limit; values

in these rows will thus underestimate the true cost of solving the given problem. It should also be

noted that data in the “NN” columns does not include the NN queries used in the no-regression

constraint since the latter is computed using a different, cheaper method. Finally, Table 3.3 lacks

data for “RRT” since the algorithm was unable to make significant progress (see Figure 3.14) in

the allotted time (over 20 minutes).

Figure 3.13 provides a more visual and thorough representation of the runtimes, additionally

depicting the variance in the samples. The figure is divided first into three plots, one for each

agent; these are then subdivided by environment, and then once more by algorithm. In each of

these boxplots (also known as “box-and-whisker” plots) the box extends from the first to the third

quartile, with a vertical line dividing it at the median sample, while the small square represents

the average. The “whiskers” extend from the box to the 10th and 90th percentiles; samples outside

that range are marked with circles and are considered outliers. Finally, the minimal and maximal

samples are marked with triangles. The boxplots for the bike have been plotted on a logarithmic

scale to better show the variance of RRT-Blossom runtimes.

Figure 3.14 shows examples of evolved tree structures for the three algorithms. It should be

noted that the pictures for RRT and RRT-CT in the bottom row portray incomplete trees (i.e.,
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Table 3.1: agent: holonomic point; values averaged over 100 runs, max time = 20s

environment algorithm time failure() NN nodes time-outs

RRT 3.45 21,100 2628 410 —
T RRT-CT 19.06 13,250 2870 2870 97

RRT-Blossom 0.90 2246 280 316 —

RRT 2.75 10,048 1247 281 —
complex RRT-CT 10.90 8858 1889 1889 6

RRT-Blossom 0.85 1767 221 266 —

RRT 13.10 39,398 4911 621 48
rooms RRT-CT N/A N/A N/A N/A 100

RRT-Blossom 2.25 3276 409 499 —

RRT 3.68 22,080 2754 122 1
tunnel RRT-CT N/A N/A N/A N/A 100

RRT-Blossom 0.21 944 118 118 —

Table 3.2: agent: nonholonomic car; values averaged over 100 runs, max time = 60s

environment algorithm time failure() NN nodes time-outs

RRT 9.39 13,317 4407 486 —
T RRT-CT 35.13 8890 3848 3585 8

RRT-Blossom 1.36 1343 451 448 —

RRT 23.62 13,656 4542 294 9
complex RRT-CT 11.42 4049 1677 1465 —

RRT-Blossom 1.39 811 295 267 —

RRT 32.62 27,119 9014 724 42
rooms RRT-CT 9.59 4071 1717 1507 —

RRT-Blossom 3.53 1967 644 649 —

RRT 51.27 24,917 8281 408 77
tunnel RRT-CT N/A N/A N/A N/A 100

RRT-Blossom 1.43 806 277 266 —

Table 3.3: agent: kinodynamic bike; values averaged over 40 runs for RRT-Blossom, and over
3 runs for RRT-CT.

environment algorithm time failure() NN nodes time-outs

T RRT-CT 1666.81 139,488 37,032 25556 —
RRT-Blossom 103.02 34,054 8538 5808 —

complex RRT-CT 1215.39 128,572 33,894 22,424 —
RRT-Blossom 67.49 27,368 7088 4675 —

rooms RRT-CT 345.85 64,570 17,034 11493 —
RRT-Blossom 154.90 43,822 11,049 7461 —

tunnel RRT-CT 1536.77 182,082 47,973 29,879 —
RRT-Blossom 62.65 28,744 7476 4903 —
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Figure 3.13: Algorithm runtimes, in seconds: (a) holonomic point (100 samples per boxplot); (b) nonholonomic car
(100 samples per boxplot); (c) kinodynamic bike (40 samples per boxplot).
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solution has not yet been found in those cases). The RRT-CT trees in particular would be much

more profuse at time of solution discovery, but the resultant mass of edges would obliterate the

visible detail of the trees, hence this premature stage has been illustrated instead. The RRT

diagram is also incomplete because a solution could not be found with that algorithm in a feasible

amount of time.

Finally, Figure 3.15 compares typical edge creation histories for the three algorithms. The

queries from which these histories were derived were performed using the car agent in the “complex”

environment. Similar patterns were observed with the holonomic point agent. The earlier Figure 3.2

shows histories for the bike.

3.3 Discussion

3.3.1 Benefits

Performance improvement

RRT-Blossom outperforms both RRT and RRT-CT in all of these scenarios, often by an order of

magnitude, or more. It is interesting to note that it also generally tends to have a much smaller

runtime variance, which is highly desirable[IMT03]. Some of the particularly poor showings by the

other algorithms warrant an analysis.

In the holonomic point case RRT-CT’s poor performance stems from the ease with which self-

negating edge pairs are created (U often contains complementary pairs of control inputs, where one

undoes the displacement of the other). Since it lacks regression-prevention, RRT-CT succumbs to

a back-and-forth chase around local minima, and only a rare xtgt choice can break this behaviour.

In the nonholonomic car tests, the deep local minima of “T” are again a problem for RRT-

CT for similar reasons, but otherwise RRT-CT outperforms RRT as expected. “Tunnel” proves

particularly difficult for RRT and RRT-CT due to the random target xtgt distributions that are

often directionally-biased4.

The bike queries are effectively impossible for RRT, since it tends to quickly evolve prominent

nonviable nodes, as discussed earlier, and these occupy the bulk of the planner’s attention. Since

not a single RRT query made any significant headway, we have not included it in the results table.

RRT-CT fares better, but it still carries an exorbitant cost in time and number of nodes required,

again due to redundant exploration.

In the comparison of the evolved tree structures it is interesting to note how RRT-Blossom’s

structure is strikingly regular in the kinematic case (i.e., holonomic point), which is a direct mani-

festation of its regression-less nature (although RRT generally does not have redundant exploration,

4xtgt is chosen uniformly from the state-space, but for off-centre nnear nodes, especially ones closer to the edges of
the terrain, this translates to a skewed distribution of growth directions, from the node’s point of view.
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RRT RRT-CT RRT-Blossom

Figure 3.14: Comparison of evolved tree structure for various agents (rows) and algorithms (columns) in the “complex”
environment; top row: holonomic point; middle row: nonholonomic car; bottom row: kinodynamic bike.
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Figure 3.15: Comparison of typical edge creation histories for car agent.
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it does allow edges which would be rejected by RRT-Blossom’s regression test). In the car scenario,

the RRT and RRT-Blossom trees are indistinguishable; the only difference lies in the time required

to obtain the trees. In the bike scenario RRT makes clearly little progress in the allotted time

(20 minutes), while RRT-CT is overwhelmed by massive redundant re-exploration. This RRT-CT

behaviour is clearly visible in the previous scenarios as well, but to a lesser extent.

Problem difficulty vs. degree of environment constraint

In general, highly constrained environments should lead to simpler problems, given that adding

constraints reduces the search-space. After all, in the extreme, an environment which supports

only a single trajectory should be trivial as there is little choice in how to proceed. The most

difficult motion planning problems should be the ones that are neither highly constrained nor

underconstrained, but rather somewhere in the middle of these two extremes. A loose parallel can

be drawn with observations about the satisfiability (SAT) problem and other NP-hard problems,

where many such problems can be summarized by at least one order parameter, and that the hard

problems occur at a critical value of such a parameter[CKT91, SML96], resulting in an “easy-hard-

easy” progression of difficulty as a function of the number of constraints.

The runtime of current planners does not exhibit this behaviour; in fact, runtime generally

increases monotonically as the amount of environmental constraint increases. Correcting this be-

haviour was one of the motivating goals of the RRT-Blossom design. The results seem to indicate

moderate success in this regard. Clearly the “tunnel” is near the extreme case of constraint where

very few possible trajectories remain, and indeed this turns out to be the easiest problem for RRT-

Blossom, while being one of the toughest for RRT and RRT-CT. The amount of constraint in the

“rooms” environment is probably the one closest to the critical value, and this too is reflected in

runtimes, with this scenario taking the longest. One might expect “T” to be near the undercon-

strained extreme, but it is actually somewhat difficult due to the need to find the entrances to the

upper corridor. A much better comparison for the underconstrained case would be an obstacle-free

environment, or one with at most a handful of small obstacle “islands”; in those cases the run-

times are significantly shorter, with RRT-Blossom as with any of the other planners. Finally, the

“complex” environment is a bit surprising as one would expect its behaviour to reflect more that

of “rooms”, to be closer to the critical value of constraint, yet it seems to perform much faster.

One possible explanation for this is that the environment is still relatively underconstrained, and

furthermore does not contain difficult-to-traverse portals, such as those found in “T” or “rooms”.

Potential source of viability data

As a byproduct of its operation, RRT-Blossom can accumulate a wealth of reachability and viability

information. Clearly any state reached by the search trees is reachable, and more importantly, any
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node which attains dead status represents a nonviable state, at least when subject to the problem

parameters used (i.e., the particular discretization of control space and the simulation time-step

used). Such data can be exploited to “learn” further planner improvements; the work in the next

chapter illustrates one example of this.

3.3.2 How improved operation is achieved

RRT-Blossom’s improved performance comes from allowing creation of receding edges, and to a

lesser extent, also from “blossoming”. In more abstract terms, it comes from pressing on with tree

growth in iterations where the regular RRT algorithm would falter. Although exactly accurate,

neither of these descriptions is particularly enlightening. A more intuitively satisfying picture can

be painted by first noting parallels between the operation of RRT and a potential field planner, and

then using this analogy to convey the behaviour of the algorithm in more macroscopic and abstract

terms.

The planner similarity is best seen in the case of the single-tree RRT algorithm, with xgoal bias.

The iterations where the tree is grown toward xgoal amounts to a descent down a potential field,

which in this case is the trivial ρ(x, xgoal ) metric, the distance to goal. In the remaining iterations,

on the other hand, the tree growth toward random targets xtgt is reminiscent of random walks that

potential field planners employ to escape local minima. The analogy is clearly imperfect though.

In RRT the random walks are not really individual paths, but rather trees, or families of random

walks that have been grown in a disjointed and desultory fashion. This is further obscured by the

fact that the two types of iterations are multiplexed and tightly intertwined, so it is unusual to find

substantial parts of the trees which represent either a continuous random walk, or a continuous

descent (except when using RRT-Connect).

The potential field planner analogy can also be made in the case of a dual-tree RRT case. The

growth of the first tree toward random targets again resembles (a tree of) random walks, while the

growth of the first tree toward the second once again resembles gradient descent, although in this

case the potential is some approximate measure of distance to the first tree. Figure 3.16 illustrates

the parallel. Specifically, in Algorithm 2, lines 4–5 make up the EXPLORE mode, which behaves

like an escape mechanism, while line 7 constitutes the SEEK mode, which corresponds to gradient

descent.5

What makes RRT-CT and RRT-Blossom interesting in this light is that the minor concession

of allowing receding edges essentially provides an additional strategy for escaping local minima,

namely that of flood-filling. RRT typically gets stuck when its trees grow a number of prominent

but “stunted” branches. These branches either probe dead-ends, or regions of the environment

5These two modes bear a strong resemblance to the EXPLORE and SEARCH components of the “Ariadne’s clew”
path planning algorithm[BATM93].
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Figure 3.16: Dual-tree RRT as a simple Finite State Machine (FSM) which resembles the operation of a potential
field planner.

where growth is only possible in unfavourable directions (e.g., away from xgoal , the other tree, or

the central regions of the environment in general), and consequently they offer limited prospects for

advancing the search. Yet their prominent nature—locally unrivaled jutting out into unexplored

space—causes them to be repeatedly selected in the nnear selection step of most iterations. The

confluence of these two traits results in the observed lack of progress. When receding edges are

allowed, as in RRT-CT or RRT-Blossom, these problematic iterations are no longer wasted, but

instead generate tree growth around said prominent branches. RRT-Blossom differs from RRT-CT

in that it avoids redundant exploration, thereby making it possible to exhaust the local search space

around the prominent branches, either finding an “escape route” that enables rapid further growth,

or marking the whole area as a dead-end, and thus signaling to the planner to apply its efforts

elsewhere. This flood-filling behaviour thus inexorably leads to a point where RRT gets “unstuck”.

Thus, in short, RRT-Blossom’s improved performance comes from: 1) maintaining tree growth in

iterations that RRT would otherwise waste; 2) in highly constrained neighbourhoods flood-filling

tends to be a more effective strategy than a random walk for escaping local minima, and RRT’s

“random walks” are not even truly random—they are directionally biased by the distribution of

xtgt samples.

3.3.3 Drawbacks

Regression in nonviable space

The primary goal of RRT-Blossom is to maintain efficient and rapid rate of exploration, despite the

difficulties presented by kinodynamic systems, but it only partially achieves this goal. Although

it largely prevents re-exploration in the live and dormant parts of the tree, it fails to do so

for the dead branches. In particularly difficult environments it is common for RRT-Blossom to

explore and re-explore prominent nonviable regions with numerous (dead) branches. This is a

direct consequence of the design decision to ignore dead branches when determining regression: as

each attempt at exploration of such nonviable regions is blind to, and unhindered by the multitude

of dead branches present, it proceeds along expected lines, and when shortly discovered to be dead
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itself, it adds to the pile, to be likewise ignored by the next re-exploration attempt.

A number of stochastic remedies for this weakness are possible, but none of these provides a

solid and conclusive solution, one that does not introduce further problems of its own. A foolproof

solution would be to directly recognize the nonviable regions of state-space and then avoid exploring

them, thus side-stepping the issue. This type of approach is the subject of the research presented

in the following chapter.

Degeneration into depth-first search

RRT-Blossom is also sensitive to the distance metric used, like RRT, but in a different fashion.

The difficulty crops up when the agent’s dynamics result in sibling edges of a particular state being

clumped close together, at least in the eyes of the metric. In such cases, when the first such edge

is created out of a node, it automatically bars its siblings from being instantiated by virtue of

the small inter-sibling distance triggering regression rule. If such clumping occurs throughout the

whole of state-space then, in the extreme, RRT-Blossom will degenerate into a depth-first search,

with each tree growing a single winding shoot. When the latter hits an obstacle or otherwise incurs

failure, the tip of the shoot is terminated and another one springs forth a small distance back.

The culprit once again is the common L2 metric, which misrepresents the true “cost to go”:

even though the clumped sibling edges are “close together”, the cost to travel from one sibling

endpoint to that of the other is actually quite large, and hence does not warrant being flagged as

a regression. For example, even though two sibling edges might end up in very similar states, as

would be common for a bike or car with limited steering, the actual “cost to go” between them is

large because it will require the bike to first circle around.

It is worth noting that this does not necessarily lead to planner failure; in fact, solutions are still

found, but it simply takes longer sometimes, and the solutions can be unnecessarily convoluted,

because the single growing shoot is constantly tugged in random directions (i.e., by xtgt). Since

every other tree growth attempt comes about due to the SEEK stage of the planner, which pulls

the shoot tips together, there is a natural tendency for them to converge, which eventually ensures

a solution. No suitable resolutions to this issue present themselves at this time, other than using a

more appropriate distance metric in the regression test.

3.3.4 Receding edge inclusion versus blossoming

RRT-Blossom consists of two key modifications to the RRT algorithm: 1) the blossoming operation,

and 2) the inclusion of xtgt -receding edges, combined with a mechanism to avoid tree regression.

One might naturally wonder at this point whether these mechanisms are orthogonal, and what

portion of the algorithm’s gains is each of these features responsible for.
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Blossoming can be made an orthogonal feature through a slight modification to its definition:6

blossoming would be orthogonal if it instantiated only those edges (all of them) which reduce the

distance to xtgt , rather than instantiating any collision-free edges, as done currently. This variant

could function independently of receding edge inclusion and regression filtering, but clearly such

blossoming would instantiate fewer edges, making it less powerful. Considering the already minor

role of blossoming to begin with (see discussion below), it seems this would be a feature of little

value. On the other hand, the latter feature of receding edge inclusion and regression filtering could

easily exist without blossoming, without any additional modifications.

The bulk of RRT-Blossom’s gains actually come from the latter mechanism, the inclusion of

receding edges, rather than from blossoming, despite the name of the algorithm7. It is difficult to

quantitatively characterize the relative contributions as these are highly dependent on the agent

and the environment. However, for many problems, such as the specific experiments shown in this

chapter, the effect of blossoming is likely very minor (i.e., less than 5% of gains). Since blossoming

essentially aids in “consuming” unexplored space quicker, its largest gains are seen in problems

where finding a solution typically hinges on exhaustive exploration of large volumes of free-space.

Put another way, blossoming essentially speeds up the “flood-fill” rate, thus it expedites planning

most when there are deep, difficult to traverse “local minima” in the environment. For example,

the inclusion of blossoming was observed to reduce runtimes for a single-tree planner (with receding

edges and regression filtering) in the tunnel environment for the kinematic point agent by 25%.

Since this feature occasionally produces such useful gains, without incurring a time penalty the rest

of the time, it has thus been retained in the algorithm.

3.3.5 Control considerations

Discretization of U

The blossoming operation as well as the inclusion of xtgt -receding edges in RRT-Blossom both

require the discretization of the control space U8. The algorithm is thus naturally not applicable

to systems where this is not feasible. Furthermore, the discretization can be problematic due to

resolution issues. If U is poorly sampled, whether due to sparseness or poor distribution of the

samples, it may be impossible for RRT-Blossom to find a solution, even though one exists. This is

the fault and consequence of a poor choice for the discretization rather than a deficiency specific to

6Since the very definition of blossoming in this chapter mandates the presence of the second mechanism.
7One may thus wonder why the algorithm is named after the less powerful mechanism. This is due to historical

accident: blossoming (albeit with receding edges) was the first idea to be explored, and it was the rampant re-
exploration of the resultant trees that prompted the development of regression filtering. As the name has been
already used in a publication, before the relative significance of the mechanisms has been fully investigated, the name
became “frozen”.

8Technically, the latter could be implemented without discretization, by randomly choosing u ∈ U ; in many cases
u will result in a receding edge. Normally this strategy leads to gross re-exploration and poor progress, but the
regression filtering would avert this.
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the RRT-Blossom algorithm; in fact, any other planner, even a resolution complete one (cf. 2.1.6),

would have the same problem given the same discretization. For example, if we were to discretize

the kinematic point’s direction of travel to the four cardinal directions, it would be impossible to

solve problems which require the traversal of narrow curved corridors: there is no way for the agent

to span such a corridor using axis-aligned motions (assuming the corridor is too narrow relative to

the time-step to allow zig-zagging). The choosing of a sufficient yet not too fine a discretization,

which would be unnecessarily costly, is a common problem in such discretized algorithms, although

sometimes it is possible to sidestep the issue through adaptive means (e.g., [LL06]). Even the

regular RRT algorithm must contend with this issue to a degree, in the time dimension, since too

large a choice of time-step can make almost any problem unsolvable.

Scalability

The experiments in this chapter employed first-order (kinematic point, car) and second-order (bike)

systems. Each was controlled using a single steering input, with the kinematic agent using zero-

order (positional) control, and the car and bike using first-order (integral) control. The experiments

in the next chapter demonstrate RRT-Blossom results, in a baseline role, for an inertial point agent

which uses second-order (double integral) control. In general, higher-order control is expected to

lead to better results with RRT-Blossom since such control schemes tend to lead to more complex

and constrained search-spaces, where the planner’s “flood-filling” can play a larger role.

RRT-Blossom is unlikely to scale well to problems with many-dimensional control spaces. The

control inputs in this chapter have been one-dimensional: just steering control. Applying RRT-

Blossom to systems with higher-dimensional control inputs presents two problems: 1) the resolution

problem is exacerbated, making it even more important to get right the size and distribution of the

discrete control input set, lest the problem becomes unsolvable; 2) this in turn is likely to cause

the control set size to scale exponentially as dimensionality of U is increased, resulting in rapidly

degrading performance of RRT-Blossom since on each iteration all the discrete control actions must

be checked. It should be noted though that this behaviour is a consequence of discretization of U ,

and thus would be shared by any RRT planner which uses the same strategy for handling actuated

agents.

3.4 Conclusion and future work

The main contributions of this chapter are the introduction of a new RRT-based planner that

has significantly improved performance in highly constrained search-spaces (due to bottlenecks in

environment or state-space), and has planning times that decrease once the problem surpasses some

critical amount of constraint.
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One weakness of RRT-Blossom is how it handles critical bottlenecks in the environment that

have become blocked by extant search tree edges. If the block is due to a viable, dormant tree edge,

the planner will become aware of the problem only when the whole tree reaches dormant-deadlock.

Although this situation was rare in the tests performed, this is clearly a weak, ad hoc way to

handle the problem. Likewise, blocks due to nonviable edges are handled by simply ignoring all

nonviable edges during regression tests. This solves the immediate problem, but at the cost of losing

regression avoidance in nonviable space. Although the later addition of viability filtering largely

eliminates this problem, one cannot help but wonder if the overall problem cannot be handled in

a cleaner, more generic way, one that does not need to distinguish between viable and nonviable

blocking edges.

Another issue worth investigating is the degeneration of RRT-Blossom into a depth-first search.

This occurs when, for most states of the agent, all the possible trajectories out of a state are clumped

close together (e.g., those for a car with a very limited steering range) The problem clearly lies

with the distance metric used to test for regressions. Due to lack of better choices, one usually

uses the L2 distance metric (i.e., “Euler distance”), which leads to the above behaviour. A better

metric would give better results, but it is not clear where to draw the line between regression and

sufficiently separated siblings for such low-manoeuvrability systems, which in turn makes it difficult

to arrive at a better metric.

It is likely that the regression test itself could be sped up in a number of ways. The obvious

first step would be to employ kd-trees or a similar method to improve the Nearest Neighbour (NN)

lookup for a potential new node; the current implementation uses an O(n) naive linear search. A

more aggressive optimization is possible if the regression test is performed within the context of an

RRT iteration. According to the RRT-Blossom algorithm, the xnear node is chosen by performing

a Nearest Neighbour search for the xtgt state, and the regression test is typically applied to a

potential new edge from this node. The regression search can be expedited by limiting it to just

the set of nodes returned earlier, the nearest neighbours of xtgt . Since this information has been

computed earlier, there is no additional cost to simply retrieving it, and hence the regression check

would then be O(1).9 Although this is not guaranteed to always find a regression if it exists, it

should do so most of the time. This is because the set of NNs of xtgt will usually include most NNs

of xnear as well, by virtue of xnear being the node closest to xtgt . At the same time, the potential

new edge out of xnear is unlikely to stray far from xnear , hence the above set of nodes is likely

to also include most NNs of the new proposed endpoint, the one being tested for regression. The

approximation would break down if the NNs of xtgt are equidistant from it, and distributed equally

in all directions (e.g., consider the case where all k NNs are spread uniformly on a circle centred

at xtgt).

9It is assumed that the NN check always results in a constant, or nearly constant number k of nearest neighbours.
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It would also be interesting to attempt combining RRT-Blossom approach with traits from

other RRT variants. In particular, it should be possible to improve runtimes by including collision

tendency tracking from [CL01b], as well as incorporating“local” trees from [Str04], once it has been

properly extended to handle the directional nature of the trees in kinodynamic problems.

Finally, it might be desirable to work out more exactly the level of completeness of this algo-

rithm. In the kinematic case, the current implementation is probabilistically complete since upon

deadlock, when free-space has been exhausted under the regression prevention mechanism, the

method degenerates into plain RRT. For agents with differential constraints, it is not clear whether

RRT-Blossom could be made resolution complete, in the spirit of [CL].



Chapter 4

Motion planning with

local viability models

In general, current motion planners rely solely on collision detection for sensing the surrounding

environment, which leads to very tactile and myopic perception. As a result, such planners cannot

detect, learn, nor reason about commonly occurring patterns or scenarios, and instead end up

solving the same problem“from scratch” each time. For example, there is usually no substantial

difference between the first and the hundredth time that a typical planner tries to parallel park a

car. In contrast, the ideal motion planner would notice general patterns in the problem space, and

through observing its own solutions, it would learn corresponding general motion strategies which

could then be applied directly the next time a similar problem is encountered.

This chapter takes the first step toward this ideal. It proposes a simple way of exploiting prior

experience to expedite the motion planning process. The approach relies on first observing and

modeling of undesirable states, ones that have a low likelihood of leading to a solution. Since a key

goal of this learning process is that the gained knowledge should be applicable to a wider range

of problems (i.e., learned skills should be transferable), the models are parameterized using a local

“perceptual space”. The latter is achieved by equipping the agent with a bank of virtual sensors

which then describe the agent’s state in terms of its local context (i.e., obstacles). In this way we

thus endow the motion planner with “sight” and “intelligence” (in the sense of having the ability

to learn).

The idea itself is very general and can be exploited by many planners. Thus, although we

show results using RRT-Blossom, similar improvements should be obtainable, for example, using

RRT-CT; this remains an interesting direction for future work. It is also worth noting, however,

that a complete treatment of a general and widely applicable idea such as this would require a

more exhaustive study of the various facets and issues (e.g., alternate implementations and their

relative merits). Since this lies outside the scope of the thesis, this work is perhaps best seen as a

65
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feasibility study, demonstrating the workability of the approach and confirming its usefulness.

Our approach, then, consists of three key parts: 1) acquiring training examples of undesirable

situations; 2) deriving a model from this data; and 3) exploiting this model to expedite the planning

process by terminating search branches that stray outside the desirable space. These parts are

described further in Sections 4.3–4.5.

4.1 Filtering nonviable states

There are many ways to define the desirability of a particular agent state. In the present context

of expediting motion planning, it is useful to define a desirable state as one which has an attractive

likelihood of leading to a solution; conversely, an undesirable state would then be one with a low

likelihood of effecting such progress.

In this chapter we adopt a simpler but stronger definition that avoids probabilistic entangle-

ments: here, an undesirable state is one that has zero likelihood of leading to a solution. A

prominent set of states that fits this description is that which corresponds to nonviable1 space. A

nonviable state cannot lead to a viable one by definition (it would be viable if it did), hence if xgoal

lies in viable space, a nonviable state cannot possibly contribute to a solution. The special case of

a nonviable xgoal can be side-stepped, and is discussed in Section 4.8. In short then, we propose

expediting the planning process by avoiding exploration of nonviable regions of the search space.

4.2 Modeling viability

Viability can be modeled in a number of ways. The next chapter, Chapter 5, looks at modeling

viability globally, whereby the models are parameterized by the agent’s global state x, and are

therefore tightly bound to the environment on which they were trained. In this chapter we look

at local viability models, which are essentially parameterized by the local context of the agent.

Such local models are preferable since they are applicable to a wider range of similar-yet-different

environments, not just the original one used to train the model. Local models also often capture

the agent’s viability in a more efficient and compact form.

4.2.1 Combined system state

Traditionally motion planners treat the agent’s global state, x, and the state of the environment

e, as separate entities, and only bring them together during collision checks.2 But this split is

superfluous, and even an impediment to describing the local context of the agent, where x is

1We are referring here to the standard definition of viability, rather than goal-viability (see §2.2.2).
2We construe this state to contain enough information about the environment’s geometry that, together with x,

it is sufficient to perform a collision check. For dynamic environments e is time-varying.
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Figure 4.1: Virtual sensors for various agents. Lines indicate (virtual) agent-mounted range sensors used in planning
(dotted lines indicate sensors used with the xgoal tree). They are discussed in Section 4.7.

meaningless without e, and vice versa. This leads us to define

x+ = (x, e) and x+∈ X+, (4.1)

where x+ is the full system state, and X+ = X × E is the system state space resulting from the

Cartesian product of the agent and environment state spaces. The combined system state is also a

more useful representation for problems with dynamic environments.

4.2.2 Sensors

Any local description of the agent’s state must, in the end, somehow describe it “through the

agent’s eyes”, in terms relative to the surrounding environment and features. A planner can be

given such “sight” by fitting it with a number of virtual sensors that perceive the world relative to

the subject. As an example, Figure 4.1 shows the sensors that were used in our experiments. More

formally, a sensor σ is a function which maps the subject’s state and the environment geometry to

a scalar value:

σ(x+) : X+→ R. (4.2)

For a particular system state x+∈ X+, one can compute all the sensor values and concatenate

them into a single vector

s =
(
σ1(x+), σ2(x+), . . .

)
, (4.3)

which we refer to as the sensory state. The set of all possible sensory states forms the sensory

space S (also known as an information space), and thus s ∈ S. The sensory state is a much better

local descriptor of the agent’s state, but is insufficient by itself. Often one must also include a

number of elements from the state x, those that pertain to the agent’s internal configuration (e.g.,
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the lean angle for a bike), since these variables often have a profound effect on the importance of

the surrounding environment features, emphasizing some while marginalizing others.

4.2.3 Locally situated state

We thus define the locally situated state of the agent

λ = (s, x̂), where λ ∈ Λ (4.4)

The vector x̂, which is a subset of elements of ~x, consists of relevant state variables of the agent

that are otherwise not accounted for in the sensory state s, and Λ is the locally situated state space.

At most, x̂ is the position- and orientation-independent portion of the agent’s state ~x, but often

smaller.3

For example, in the kinodynamic bike system,

~x = (x, y, θ, φ, φ̇)

s = (σL, σF , σR)

λ = (σL, σF , σR, φ, φ̇)

(4.5)

where (x, y) is the bike’s position, θ is its orientation, and φ is its lean angle, while (σL, σF , σR) are

the three sensors.

It is worth noting that such localized perception of the system state has been explored in control

literature, yielding interesting and robust behaviour-based AI and control [Bra84, Bro86, Ark98].

4.2.4 Local viability

Our approach thus relies on constructing a model that, given a locally situated state λ, labels it as

either viable or nonviable. This localization of viability carries important consequences however.

The key side-effect is that the resultant model is only an approximation of true viability, because

viability is not locally decidable. That is, in the general case it is not possible to conclusively assess

the viability of a state based on limited, local knowledge of the environment. For example, consider

an airplane flying down a very long, narrow corridor which recedes into darkness (i.e., outside

sensing range), as shown in the rightmost case in Figure 4.2. It is not immediately known whether

the airplane is viable or not, since it all depends on how the corridor terminates: if it exits onto

a wide open area then the plane is viable; if it turns out to be a dead-end alley, then the plane is

nonviable (the corridor’s narrowness prevents the plane from turning around).

Theoretically, judging the viability of an agent’s state based solely on local information leads

3For some agents it is useful to post-process x̂, such that λ = (s, f(x̂)), in order to reduce its dimensionality or
make it more amenable to learning.
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(a) provably viable (b) provably nonviable (c) indeterminate

Figure 4.2: The three possible cases when judging viability using the local neighbourhood.

to one of three cases, as illustrated in Figure 4.2:

1. x is provable viable: x is viable since there exists a trajectory within visible range which

loops back to x without incurring a collision, thus allowing safe operation indefinitely.

2. x is provably nonviable: collision is unavoidable, with all subsequently reachable space

fully within visible scope.

3. indeterminate case: collision-free trajectories exist which take the agent outside of the

visible range; whether x is viable or not depends entirely on what happens to these trajectories

outside the visible scope.

Since the oracle is a binary valued function, it must therefore label each state as “viable” or

“nonviable”, even in the theoretically indeterminate case. In practice the oracle thus ends up

guessing at the true viability status of a state in such cases, based on prior experience. If the

training environments featured similar situations and the exit paths tended to lead into open areas,

then it will guess that the state is viable; conversely, if prior experience consists of many cases of

long blind alleys, it will guess that the state is nonviable.

Of course, in practice the oracle does not discern between these three cases; as a classifier, it

is only aware of feature vectors (i.e., the locally situated states) and the labels associated with

them. In addition, its knowledge of the local environment is usually far more sparse than the

ideal illustrated in Figure 4.2, typically consisting of only a handful of real values (i.e., the sensor

readings). Thus even in cases where the agent state is in theory provably viable or nonviable, the

oracle’s operation still amounts to guessing, due to the sparseness of its local knowledge of the

environment. The critical redeeming trait here is that, for most systems, the oracle’s adeptness at

guessing viability is often very good, assuming a well chosen set of sensors is used.



70 Chapter 4. Motion planning with local viability models

4.3 Acquiring training data

If an adequate external model of the agent’s viability is available, one can completely forgo the

collection and training stages, and use the model directly. Unfortunately most nontrivial dynamical

systems do not have easily obtainable analytic viability kernels, nor prior empirically derived ones.

Viability data can be collected from prior motion planner runs, or can be provided by an

external source. Specifically, we are interested in collecting samples of locally situated states λ

that have been annotated with their viability status. This status is often nontrivial to derive.

In order to prove a state is nonviable one must demonstrate that all progeny lead to collision or

failure, while to prove a state is viable one must show that at least one failure-free trajectory exists

out of the state. Both these tasks pose a challenge. The nonviable test requires an exhaustive

search through all progeny of a state, which can be very expensive for problems with nontrivial

Xric (“region of inevitable collision”, the nonviable subset of Xfree), and does not even terminate

if state being tested is viable. Likewise, the viable test is problematic since demonstrating an

infinite trajectory, whether viable or not, is generally not practical. Although in many cases one

theoretically could demonstrate a trajectory that loops or reaches another known viable state (thus

proving by inference that an infinite trajectory exists), in practice the equations of motion of most

agents make it difficult to find a sequence of control actions that will hit a specific predetermined

state exactly, or even a single state from some finite set of candidates. How best to resolve this

problem is dependent on the nature of the training data; Section 4.6.2 describes our approach.

4.4 Modeling

The collected training data is used to derive a model of agent’s local viability, the viability oracle

Ωv(λ) : Λ→ {viable, nonviable}. (4.6)

In dual- or multi-tree planners one of the trees is usually grown in reverse-time (i.e., using

reverse simulation; for example, xgoal tree). In such trees the agent generally moves backwards4,

so the sensory framework must likewise be flipped, since it is the obstacles behind the agent which

now determine its viability. These flipped sensors are shown using dotted lines in Figure 4.1.

Since a different set of sensors is used under reverse-time simulation, a corresponding second

viability model needs to be derived for filtering of such trees. In general, we thus train a second,

reverse-time oracle

Ωvrev (λrev ) : Λrev → {viable, nonviable}. (4.7)

This second model captures backward viability ; in contrast, Ωv captures forward viability. These

4For agents which can normally move forwards and backwards, these directions take on the opposite meaning.
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names were chosen to mirror similar terms in reachability, namely the forward and backward

reachable sets. Backward viability of an agent captures the general reachability of the state, rather

than predicting the avoidability of future collisions. An example of a state that is not backward

viable is an airplane in flight, with a building immediately behind it: although the airplane can

presumably maintain safe operation from this point onwards (i.e., forward viable), it is impossible

for it to have gotten to this state, since this would have involved first flying through the building.

It is the task of the backward-facing sensors to detect precisely such scenarios.

In summary then, the forward-simulated trees (e.g., xinit) thus use the standard oracle Ωv,

which is trained on λ derived from forward-facing sensors, while backward-simulated trees (e.g.,

xgoal ) use the alternate, backward-viability oracle Ωvrev , which is trained on λrev computed from

the backward-facing sensors.

In some special cases Ωv may be applied to reverse-time trees, thus obviating the need for a

second model. This is true, for example, for systems such as a Dubins car, where any valid agent

trajectory can be equally traversed in the opposite direction by merely switching which way the

agent faces. In kinodynamic systems a state vector’s velocity elements dictate the instantaneous

agent direction (and thus the direction of any valid trajectory passing through the state), but

usually some simple transformation of the viability model, such as an inversion along one of the

axes, will render it valid and usable for the reverse-time trees.

4.4.1 Reachability viewpoint

Reachability, a concept strongly related to viability, can be helpful in better understanding the

filtering process. In reachability terms, the basic RRT algorithm grows a tree from xinit , which

corresponds to the forward reachable set of xinit , as well as a tree from xgoal , using reverse-time

simulation, which corresponds to the backward reachable set of xgoal . The filtering provided by Ωv

and Ωvrev reduces the two trees to strict subsets of the corresponding initial sets.

In contrast to the above, the indirect goal of the proposed viability filtering is to ensure that all

the states in both trees are simultaneously in the forward-reachable set of xinit and the backward-

reachable set of xgoal . That is, the filtering intends to constrain the planner to only those states

which could feasibly lie on a solution trajectory, in that they are reachable from xinit , and can

themselves then reach xgoal . In some sense then, Ωv attempts to capture the backward reachable

set of xgoal , while Ωvrev attempts to capture the forward reachable set of xinit .

4.5 Exploiting viability

Given a trained viability oracle, it is trivial to instrument an arbitrary planner for viability filtering:

one merely replaces the default call to a collision or failure checking routine, named is collision()

here, with a call to is nonviable():
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1: function is nonviable(x+)
2: if is collision(x+) then
3: return True
4: s← σ1(x+), σ2(x+), . . .
5: x̂←extract internal state(x+)
6: λ← (s, x̂)
7: return ¬ Ωv(λ)

The above function queries is collision() because the viability model may not be perfect,

and thus could occasionally admit an in-collision state, if used unaided. In a dual-tree planner im-

plementations one would generally need a second, analogous routine, is nonviable backwards(),

that would be used with reverse-time trees (e.g., xgoal tree), and which would use the reversed

sensor set as well as the Ωvrev model.

4.6 Implementation details

4.6.1 Training trajectories

Collection of viability-annotated training samples can be done in a number of ways. Ideally the

planner should “bootstrap”, starting out with no viability knowledge and progressively building

it up by examining its own search trees and solutions for novel states and incorporating them

into the oracle. However, such online bootstrapping is problematic as we describe in Section 4.8.

Instead, we collect samples of viable states from very long random-walk trajectories. These are

created by applying a random control action at each time step and backtracking whenever the agent

encounters failure. Heuristic methods modulate the frequency and amount of backtracking since a

naive brute-force approach, one which exhausts all possible control combinations from a particular

state before backtracking, is often very inefficient.

4.6.2 Deciding a sample’s viability

As stated earlier, to prove a state is viable one generally would have to demonstrate in some way an

infinite collision-free trajectory emanating out of the state, which is usually not practical. We thus

adopt an approximation which identifies states which are very likely to be viable. Specifically, we

pronounce a state x as viable if we can demonstrate a finite failure-free trajectory emanating out of

x, of duration Th or longer. This effectively presupposes that the failure modes of the subject are

confined to durations shorter than the above time horizon Th (10 s in our implementation); that is,

we assume that Th exceeds the maximal “depth” of the region of inevitable collision Xric . Unless

Th is badly misjudged, any error introduced with this approximation (i.e., contamination of the

experience pool with nonviable states) is insignificant when compared to other sources of error in

our approach.
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Using this convention, any search tree or solution trajectory in the training datasets is readily

converted to a collection of sample viable states by simply discarding Th-worth of motion from their

tail ends. When collecting training samples for the reverse-time viability model, the trajectories

must be trimmed from their front end instead. In both cases the resultant collections of states

must then also be locally situated (i.e., mapped from x+ to λ) before being used to train the (local)

viability oracles.

4.6.3 Modeling

The random-walk trajectories described earlier offer little help in identifying nonviable states, but

can be used to identify viable ones, as outlined above. This means that a one-class classifier must

be used to derive the viability model since all the samples are of the same class (i.e., “viable”). We

use the one-class Support Vector Machine (SVM) classifier in the libSVM[CL01a] library.

The SVM learning process used is straight-forward. Prior to learning, the training samples

λ ∈ Λ are first column-standardized and then additionally scaled to emphasize certain feature

dimensions. That is, we preprocess each element λi of a training sample λ using

λi ← ci
λi − µi
σi

, (4.8)

where λi is the i’th feature in vector λ, ci is a scaling coefficient for said feature, while µi and σi are

the corresponding mean and standard deviation, respectively, taken over all values of the feature.

4.7 Experiments

4.7.1 Agents

We apply the viability filtering method to three agents. Only the forward-time sensors are described

here; for the reverse-time trees the obvious analogues are used. Both sensor sets are illustrated in

Figure 4.1.

Inertial point

The “inertial point” robot is a point-mass with inertia that has four constant-force thrusters

mounted in the four cardinal directions {N , E ,S,W}, as shown in Figure 4.3. The agent thus

has a fixed orientation and cannot rotate. During operation the agent is required to have at all

times one, and only one of its thrusters on. Alternatively one can envision the agent as being

equipped with only a single thruster that is always ‘on’, and which can be rotated to the four

cardinal directions in a discrete and instantaneous manner. The thrusters exert a constant force

which yields an acceleration of 0.5 m/s2.
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Figure 4.3: The “inertial point” agent: one, and only one of the four thrusters must be ‘on’ at all times.

The agent has upper and lower bounds on its velocity: 0.5 m/s ≤ ‖(ẋ, ẏ)‖ ≤ 5 m/s. A small

lower bound was found useful in expediting the planning process with all planners; without it the

planners spent a lot of time populating the free-space with very dense subtrees rife with near-zero

velocity nodes, a consequence of the ease with which antagonistic thruster pairs can cancel out each

other’s accelerations.

The subject’s state, control actions, sensory state, and locally situated state are:

~x = (x, y, ẋ, ẏ)

U = {N , E ,S,W}
s = σv

λ = (s, ‖(ẋ, ẏ)‖)

(4.9)

where sensor σv measures the distance from the agent to the nearest obstacle along the velocity

vector (ẋ, ẏ).

Nonholonomic car

The nonholonomic car used here is nearly identical to that of the previous chapter (see §4.7.1),

but less manoeuvrable, with a smaller maximum steering angle ψmax = sin−1(1.275/5), giving a

minimum turning radius of exactly 2.5 metres. The relevant parameters are:

~x = (x, y, θ)

U = {−ψmax , 0, ψmax}
s = (σLwh

, σF , σRwh
)

λ = s

(4.10)

where θ is the car’s orientation, σF is a forward-facing rangefinder, while σLwh
and σRwh

are the left

and right “whiskers”. A whisker returns the distance to the environment along a particular path.

It can be useful to consider curved whisker-paths for robots when this reflects the nature of their

motion. In practice, we approximate such curved paths using a small set (n = 8) of straight line



4.7. Experiments 75

complex Y rooms-IKEA

Figure 4.4: Example problem environments tested. In each case the agent is asked to navigate from the left ‘X’ to
the one on the right.

segments for computational efficiency. The car’s whiskers correspond to the two extremal steering

actions applied for the duration of a 180◦ turn, as shown in Figure 4.1.

Kinodynamic bike

The least trivial agent used is the kinodynamic bike from the previous chapter (see §4.7.1), which

has the following parametrization:

~x = (x, y, θ, φ, φ̇)

U = {−ψmax , −1
2ψmax , 0, 1

2ψmax , ψmax}
s = (σL, σF , σR)

λ = (s, φ, φ̇)

(4.11)

where θ is the bike’s orientation, φ its lean angle, σF is again the forward-facing rangefinder, while

σL and σR are rangefinders deflected by 30◦ left and right, respectively.

4.7.2 Environments

Figure 4.4 depicts the environments used in the experiments. They all measure 30 m by 30 m. The

“complex” environment was included to provide a common ground between these results and those

of the previous chapter. They “Y” environment provides more twists and turns, but has very similar

characteristics to “complex”, especially its winding corridor nature and the general amount of room

to move. Finally “rooms-IKEA” provides a more constrained and difficult environment, with some

novel features not found in “complex”, such as narrow doorways and small detached obstacles in

the middle of the rooms. These novel features provide a greater challenge to the viability models

which were trained only on the “complex” environment.
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4.7.3 Implementation details

The implementation was done using a test platform written in Python 2.4, on an Intel Core 2

Duo E6600 (each core is a Pentium IV 2.4 GHz); although two cores were available, only one core

was used when measuring runtimes. The operating system was Windows XP (SP2). We chose

RRT-Blossom as the base algorithm to which viability filtering was applied. To partially offset the

slower speed of an interpreted language a number of optimized modules were used: “psyco”, the

C-implemented libSVM library (through the accompanying Python bindings), “scipy”, and other

C-implemented modules of mathematical nature. Collision checking was done using a naive Python

implementation.

4.7.4 Learned models

This section describes and discusses the derived models.

Inertial point

Figure 4.5 on page 77 illustrates training data and the derived model. The training data consists

of a single random-walk in the “complex” environment. Its duration is 100,000 seconds, using a
1/2s time-step, yielding a little less than 200,000 samples (due to Th-trimming). The SVM learning

parameters are: kernel = RBF, γ = 1, ν = 0.005, c = (1, 1).

There are two general trends in the training data: 1) the hard lower bound that increases as

velocity (x-axis) goes up, is an expected trend, indicating that the larger the velocity, the larger

the forward clearance that is usually needed to decelerate if no other escape avenues are open; 2)

the much softer upper bound which decreases with speed is a fictitious bound resulting from the

general lack of large open straightaways in the environment, which limits the agent’s ability to

build up higher speeds.

The distribution of λ in Figure 4.5(b) appears striated. This is due to velocity being limited to

a relatively small set of discrete values, a consequence of the discrete nature of allowable control

actions and the velocity bounds imposed.

Car

Figure 4.6 on page 78 illustrates the training data and the derived model. The training data consists

of a single random-walk in the “complex” environment. Its duration is 100,000 seconds, using a
1/2s time-step, thus yielding a little less than 200,000 samples (due to Th-trimming). The SVM

learning parameters are: kernel = RBF, γ = 1, ν = 0.01, c = (2, 1, 2).

It is interesting to note how certain areas admit little choice in navigation (e.g., the well defined

loops in various nooks), and how, unlike for the other agents, it covers the free-space sparsely and

unevenly. This suggests that the environment is surprisingly constraining for the agent, likely a
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(a) (b)

(c) (d)

Figure 4.5: Viability model for inertial point agent; (a): random walk trajectory used for training; (b): distribution
of resultant locally situated states λ; (c)–(d): learned viability model
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.6: Viability model for car agent; (a): random walk trajectories used for training; (b): distribution of
resultant locally situated states λ; (c)–(f): cross-sections of the λ distribution around various values of the left
whisker sensor (σLwh = {1, 2, 3, 4}, respectively). The cross-sections plot σF on the y-axis versus σRwh on the x-axis.
The whisker sensors can take on only integral values hence lateral jitter was applied for better clarity; (g)–(j):
equivalent cross-sections in learned model
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consequence of the limited choice of control actions, the relatively small maximum turning angle,

and the somewhat large discrete time-step used (1/2s).

The very discrete nature of the λ distributions in Figure 4.6(b) is expected since the two whisker

sensors are discrete, and can only take on values in {0, 1, 2, 3, 4, 5, 6, 7, 8}, due to their 8-segment

piecewise-linear construction.

Bike

Figure 4.7 on page 80 illustrates the training data and the derived model. The training data consists

of a single random-walk in the “complex” environment. Its duration is 100,000 seconds, using a
1/2s time-step, thus yielding a little less than 200,000 samples (due to Th-trimming). The SVM

learning parameters are: kernel = RBF, γ = 1, ν = 0.01, c = (2, 2, 1, 1, 1).

The scatter-plots of Figure 4.7(b) show many interesting trends. The diamond shape in the

φ̇ vs φ plot in particular stands out, and captures the expected dependence of maximum safe lean

angle on lean angle velocity. Whereas the scatter-plots show various projections of the full sample

set, Figure 4.7(d) shows a cross-section of the learned model for (σL, σF , σR) = (5 m, 3 m, 1/2 m).

It correctly indicates that the maximum safe lean angle can be achieved only when lean velocity is

zero (i.e., the right-most tip of the region), and how increasing lean velocity limits the allowable

lean angle. The viable space lies mostly in the right hand side of the diagram because a right lean

(represented by negative values of φ), and consequently a right turn, is dangerous since there are

obstacles to the right, as indicated by the sensor values. The viable space also lies mostly in the

upper half of the diagram because negative φ̇ values (i.e., rightward lean velocity) are likely to lead

to the dangerous right lean and turn. The model is nearly symmetrical (theoretically it should be

exactly so) and hence an analogous situation exists for when obstacles appear on the left.

4.7.5 Performance evaluation

Tables 4.1–4.3 summarize the numerical findings. The columns specify: number of runs attempted,

number of solutions found, average query time, median query time, median number of iterations

taken, median number of nodes created, and median number of failure/collision checks performed.

A discrepancy between number of runs attempted and solutions found indicates that some runs did

not find a solution within the allotted time (usually 30 minutes for easier problems, and 60 minutes

for more challenging ones). The average query time value was provided in addition to the median

value as a convenience; the median arguably provides a better performance index since it is less

susceptible to large-valued outliers and timeouts, and hence better represents a “typical” run.

Figures 4.8–4.10 give box-and-whisker5 plots of key quantities; these have the advantage over

5The dot indicates the median, while the box extends from the first to the third quartile. The “whiskers” extend
to the furthest sample at most 1.5 times the inter-quartile range from the box. Samples beyond this are marked with
empty circles and commonly considered “outliers”.
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(a) (b)

(c) (d)

Figure 4.7: Viability model for bike agent; (a): random walk trajectories used for training; (b): distribution of
resultant locally situated states λ; (c): cross-sections of learned viability model for (σL, σF , σR) = (5, 5, 5); (d): cross-
sections of learned viability model for (σL, σF , σR) = (5, 3, 0.5)
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the tables in that they illustrate the variance of the variables.

Overall the planner with viability filtering (“RRTBlossomVF”) performs very well, often im-

proving runtimes by an order of magnitude. It is worth noting that, for each agent, the same

“complex”-trained viability models were used in all three environments. This explains why the

speed gains are sometimes not as dramatic in the other environments, and especially in “rooms-

IKEA”. The diminished gains are in general due to the sensors’ perceptual limits which introduce

environment-specific artifacts into the learned models, and such artifacts are not generally transfer-

able (see §4.8.3). At the same time, it is encouraging to see how often the models are nonetheless

surprisingly effective in such cases.

Interestingly, the plain RRT-Blossom algorithm found some scenarios troublesome, such as

driving the car through “rooms-IKEA”, and especially the “complex” environment, to the point

of taking significantly longer than RRTCT. This is mostly due to the limited manoeuvrability of

the car, the resulting degeneration of RRT-Blossom into a depth-first search (see §4.8), and the

severely limiting nature of the environment, as apparent in the random-walk plot in Figure 4.6(b).

It is thus surprising that viability filtering was able to reduce the planning time as it did.

It is also worth noting how the reduction in planning time is often surpassed by the reduction in

the remaining columns, and the number of failure/collision checks in particular. The discrepancy

is a side-effect of the additional computation time needed to compute sensor readings and to query

the viability oracles. This suggests that optimized implementations of these two tasks could lead

to additional runtime improvements.

Finally, Figures 4.11 and 4.12 illustrate the effect that viability filtering has on tree structure.

The huge reduction in tree edges is clearly visible in the viability filtering variant. Also noteworthy is

the complete lack of probing of corners under viability filtering, which is often pronounced with the

other two planners. The other notable features are RRT-Blossom’s localized huge concentrations

of edges in various spots; this is a result of the lack of regression avoidance in nonviable regions of

the state space.

4.8 Discussion

4.8.1 Nonviable goal states

Viability filtering presents a problem for single-tree planners since they will be unable to find a

solution if xgoal is not generally viable (i.e., xgoal 6∈ Xviab), where reaching xgoal places the agent in

an unrecoverable position. The viability filtering mechanism will be actively deterring the planner

from completing the last leg of any solution.

The dual-tree approach sidesteps this problem. Filtering ceases to be an issue with two trees

since a solution now requires only a tree-tree connection, not a tree-node one. Let Tinit and Tgoal
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Table 4.1: Performance comparison for inertial point

environ. algorithm runs solns time(s)
median

time(s)
average

iters nodes
fail

checks

complex
(native)

RRTCT 10 10 473.8 469.7 22,306 19,711 71,969
RRTBlossom 40 40 38.9 81.3 5,290 5,139 26,754
RRTBlossomVF 40 40 6.3 7.9 868 1,188 5,287

Y
RRTCT 10 10 888.2 869.3 33,747 27,110 101,816
RRTBlossom 40 40 230.3 234.6 12,421 12,356 62,939
RRTBlossomVF 40 40 25.9 28.7 2,708 3,294 15,271

rooms-IKEA
RRTCT 10 10 706.0 745.7 34,026 23,760 96,806
RRTBlossom 10 10 311.0 380.7 14,083 13,712 71,177
RRTBlossomVF 40 40 57.2 83.8 3,727 4,304 20,192

Table 4.2: Performance comparison for car

environ. algorithm runs solns time(s)
median

time(s)
average

iters nodes
fail

checks

complex
(native)

RRTCT 40 40 74.5 75.2 8,414 8,696 25,862
RRTBlossom 10 9 281.7 574.8 18,583 19,074 73,347
RRTBlossomVF 40 40 5.3 6.1 669 967 3,223

Y
RRTCT 40 40 108.8 111.7 9,587 10,335 29,050
RRTBlossom 10 10 64.5 188.7 8,155 8,669 32,946
RRTBlossomVF 40 40 2.5 3.0 312 514 1,644

rooms-IKEA
RRTCT 10 10 350.5 315.4 21,025 19,418 60,130
RRTBlossom 10 10 365.2 384.3 19,942 20,355 78,442
RRTBlossomVF 40 37 121.3 269.3 5,567 7,756 25,803

Table 4.3: Performance comparison for bike

environ. algorithm runs solns time(s)
median

time(s)
average

iters nodes
fail

checks

complex
(native)

RRTCT 10 10 318.5 371.5 28,362 16,123 87,380
RRTBlossom 40 40 16.7 21.0 3,828 3,757 21,914
RRTBlossomVF 40 40 5.1 5.6 626 770 4,184

Y
RRTCT 10 10 202.8 209.9 23,782 12,838 70,601
RRTBlossom 40 40 10.5 13.5 2,945 2,850 16,624
RRTBlossomVF 40 40 3.5 3.6 440 554 3,008

rooms-IKEA
RRTCT 10 9 2866.1 2148.6 78,108 46,474 247,012
RRTBlossom 10 10 328.1 305.7 17,065 16,141 96,227
RRTBlossomVF 40 40 29.5 34.3 1,956 2,175 12,202
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(a)

(b)

(c)

Figure 4.8: Box-and-whisker plots of trial results for inertial point agent in various environments: (a) complex;
(b) Y; (c) rooms-IKEA. The x-axes are logarithmic to enlarge regions of detail; otherwise egregious outliers tend to
marginalize the area of interest.
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(a)

(b)

(c)

Figure 4.9: Box-and-whisker plots of trial results for car agent in various environments: (a) complex; (b) Y;
(c) rooms-IKEA. The x-axes are logarithmic to enlarge regions of detail; otherwise egregious outliers tend to marginal-
ize the area of interest.
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(a)

(b)

(c)

Figure 4.10: Box-and-whisker plots of trial results for bike agent in various environments: (a) complex; (b) Y;
(c) rooms-IKEA. The x-axes are logarithmic to enlarge regions of detail; otherwise egregious outliers tend to marginal-
ize the area of interest.
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RRTCT RRT-Blossom RRT-Blossom w/VF

Figure 4.11: Visual comparison of tree density and structure; top row: inertial point agent; middle row: car agent;
bottom row: bike agent.
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RRT-Blossom RRT-Blossom with VF

Figure 4.12: Magnified view of tree structures for the bike in a more difficult environment. The filtering planner (on
right) avoids probing the corners and consists almost exclusively of viable trajectories.

denote, respectively, the xinit and xgoal trees. In a single-tree approach Tinit must reach xgoal , which

could be nonviable. In contrast, in a dual-tree approach Tinit merely needs to reach one of the nodes

in Tgoal , some of which are going to be viable, and hence reachable under viability filtering.6 An

analogous situation exists for Tgoal , in that Tgoal need only reach any of the nodes in Tinit , rather

than xinit specifically, which too could be (backward) nonviable.

The only foreseeable consequence of nonviable xinit or xgoal is that the two trees may only

meet in space which is both, forward and backward viable. This usually does not have any note-

worthy impact on the resulting solutions, but it may delay solutions in particularly constrained

environments.

4.8.2 Choice of sensors

The speedup due to viability filtering is directly tied to the net balance of work saved (skipping

exploration of futile branches) minus extra work incurred (computing sensor values and consulting

the oracle). It is thus important to find sensors that are relatively cheap to compute, yet at the

same time particularly adept at capturing viability-relevant attributes of the situation. Excessive

concern for the computational cost can be misleading, however. For more difficult and failure-prone

dynamical systems the potential gains of filtering can be so high as to justify the use of moderately

expensive sensors. For example, it would be far cheaper to compute the sensory state of a car

using three linear rangefinders in lieu of the whiskers, but this produces significantly poorer results,

6If no forward-viable states are (backward) reachable by Tgoal , then the motion planning problem has no solution.
Likewise if no backward-viable states are (forward) reachable by Tinit .
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despite the lower overhead.

A related but orthogonal issue to the above is the number of sensors used, or more specifically

the number of dimensions in the sensory states, and ultimately the locally situated states. Clearly

lengthier sensory states require more effort to compute, but more importantly they have a large

negative impact on the accuracy of viability models. One may recall that the domain of the models

is the locally situated state space Λ. The more dimensions there are to a locally situated state λ

(which subsumes the sensory state), the larger the number of dimensions which the model must

span. This is an issue because the number of training samples required to achieve a comparable

level of model accuracy grows exponentially as the model dimensionality grows. Thus it is, again,

preferable to use more expensive sensors if this results in a more compact sensory state vector.

4.8.3 Oracle error

The oracle has two sources of prediction error: modeling error and limitations in the sensors’ ability

to disambiguate states. The first is a result of either insufficient training samples or a poor choice

in training procedure parameters, and is easily corrected. The second type of error is inherent in

the data collected itself, and is much harder to fix. The problem stems from the agent’s set of

sensors being unable to disambiguate between some pairs of system states, x+
1 and x+

2 , where one

is viable and the other nonviable, and as a result mapping them both to the same locally situated

state λ. Since the oracle will always return the same label for λ, whether it is computed from x+
1

or x+
2 , then one of these system states will always be misclassified.

It is also worth looking at how model error affects filtering efficacy. Modeling error in the

viability oracle can be either underinclusive (false negatives; viable states labeled as nonviable) or

overinclusive (false positives; nonviable states labeled as viable). An underinclusive model restricts

planner exploration more than it should. Although this results in a smaller search space, and

consequently shorter planning times, it is detrimental in highly constrained environments since

essential bottlenecks are easily made impassable when classified as nonviable. Overinclusive models,

on the other hand, diminish the amount of filtering applied to the search space, causing the planner

to gradually regress into the host planning algorithm (i.e., the algorithm to which viability filtering

is being applied) as this error increases. In general, the amount of viability filtering is thus a

function of model error, and spans a continuous spectrum as illustrated in Figure 4.13.

4.8.4 Oracle transferability

As the results show, a viability model can be effective in environments other than the one that was

used in training. How well a model transfers is dependent on the degree to which the environments

are similar in character and structure. For example, a model trained in wide open spaces will do

poorly in highly constrained environments (and vice versa) since the model is being asked to predict
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Figure 4.13: Amount of viability filtering as a function of model error

viability in an area it has little knowledge of; that is, the training samples used to derive the model

will mostly span regions of Λ with large sensor values, whereas the model is being applied to an

environment which generally constrains agent operation to the vicinity of Λ’s origin (i.e., all sensors

will tend to have low values). One obvious remedy to counter such oracle over-specialization is to

train them on samples obtained from a variety of dissimilar environments. Initial experiments in

such compositing of training data for the car have yielded good results.

Figure 4.14 shows when a model is applied in a excessively dissimilar environment. The left

diagram shows a motion planning attempt using a model trained on the “complex” environment.

Since that environment lacked large open areas (i.e., the model lacks knowledge of such open

scenarios), the planner mistakenly considers the centre of the large chamber nonviable, and hence

the agent prominently clings to the right wall, as this is at least partially within the realm of

the model’s learned experience. The right diagram, on the other hand, shows a motion planning

attempt using a model trained in a 30 m by 30 m environment devoid of obstacles, aside from the

bounding walls. Here the agent has no problem traveling through wide open spaces, but has a

visible problem entering the upper corridor, despite the fact that a number of edges were already

on the right track. This is a side effect of the model being unfamiliar with such tight passageways,

which thus get labeled as nonviable.

4.8.5 Scarcity of samples and bootstrapping

There are two key issues with “bootstrapping” of the viability model, that is, the learning from

scratch through self-observation by the planner. The primary issue is that viability filtering directly

prevents the discovery of novel viable samples. Any such sample would be necessarily misclassified

by the oracle, and thus barred from exploration. In short, a planner with viability filtering fully

applied cannot extend its viability model using self-observation. Secondly, even if this were not so,

the initial dearth of samples during bootstrapping would naturally result in heavily underinclusive

models, and thus excessive filtering; this would in turn lead to frequent inability to find solutions

to queries, thus jeopardizing the primary source of further training data.



90 Chapter 4. Motion planning with local viability models

Figure 4.14: Effect of excessive mismatch between training and test environments; left: using a viability model
trained on “complex” environment prevents traversing wide-open areas; right: using a viability model trained inside
an equivalent square environment without any obstacles other than the walls, bars entry into narrow corridors.

Both problems can be likely overcome by stochastically phasing-in the viability filtering. That

is, filtering could be applied only in iterations for which r > Φ, where r ∈ [0, 1] is a random variable,

and Φ ∈ [0, 1] is a “phase-in” parameter that increases as the viability model fills out. The model’s

“maturity” could perhaps be gauged by the inverse of the rate at which novel samples are encoun-

tered. The general problem is similar to that of exploration-exploitation tradeoffs encountered in

reinforcement learning.

It is hard to satisfactorily characterize the number of samples required to adequately capture

the viable region. In general, the model grows in proportion to the rate at which novel samples are

encountered, ones that lie outside current model bounds, and in proportion to the degree of their

novelty. A practical characterization might be to claim that an adequate model has been reached

when this rate of novel samples fall below some predetermined, sensible threshold.7

4.8.6 Expected reduction in planning effort

The viability filtering approach hinges on preventing the exploration of branches which are very

unlikely to lead to a solution, hence the reduction in planning effort is proportional to the prevalence

of such branches, which are usually the result of the interaction of system dynamics with imposed

constraints (e.g., environment geometry). Such branches will typically be more numerous when the

agent is generally unstable, has a very limited range of motion, or the environment is relatively

constraining. The speedup will further depend on how conservative a viability model the oracle

7This is still not very general since it assumes that the training samples are drawn uniformly from Λ; this is usually
not the case.
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derives from training data (as discussed in §4.8.3). Finally, results will deteriorate if the target

environment significantly differs in structure from those used in training, or when the sensors used

do not sufficiently capture the local context of the agent.

4.8.7 Completeness

In general, the use of viability filtering precludes any completeness guarantees. This is because

there is always the possibility that the planner, due to the imperfections of the viability models,

will be barred from exploring bottlenecks in the environment that are critical to any solution. That

is, error in the models, or the limitations of the sensor set, can always misclassify important states

as nonviable, and thus render them impassable.

This could be easily “fixed” by foregoing the viability filtering mechanism every so many it-

erations, or in other probabilistic ways (e.g., see §4.8.5), thereby allowing the resultant search

tree to match, in the limit, that of the underlying unfiltered algorithm. For example, in our im-

plementation this would render the planner probabilistically complete, like the underlying RRT

algorithm. Nonetheless, this is nothing more than a band-aid, petty and superficial, achieving

little beyond attaining the apposite completeness label in a very inefficient manner. A far more

preferable alternative is to run viability filtered planners in parallel with those that provide the

desired completeness guarantee, as discussed in 2.1.6.

4.9 Conclusion and future work

This chapter proposes the use of locally situated state information as a means to give motion

planners “sight”, which then aids in the detecting and learning nonviable scenarios. This learned

viability data can then be exploited to expedite planning by barring the planner from wasting its

effort on exploring nonviable regions of the search space. Results are shown for three types of

agents and demonstrate significant speedups, as well as generalization across environments.

4.9.1 Automation

The viability filtering approach described is nearly fully automatic. There are two aspects of it

which still involve manual intervention, and it would be useful if these too could be automated.

The first instance of this is the manual tweaking of the SVM learning parameters (i.e., γ, ν, and

c) to ensure that a faithful model is derived. This is mostly a result of a simple implementation

though; there are a number of cross-validation methods, such as “k-fold” and “leave-one-out”,

that should automatically achieve the desired goal. The other manually-designed aspect of the

approach is the selection and design of virtual sensors. This is a more difficult problem with no

obvious solution. The approach that currently appears to have the greatest chance of succeeding
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is one where sensors are auto-generated such that they measure the distance to obstruction along

agent trajectories corresponding to particular fixed control actions, similar to what was done with

the car. This leaves the question of which control actions should be chosen for these sensors; it is

reasonable to assume though that simple heuristics could provide adequate choices (e.g., controls

with extremal and median values). This would likely produce excessive number of sensors, hence

some form of automatic sensor evaluation and selection could be performed, whereby the utility in

capturing local context is measured for each sensor, and a handful of the best are picked out to be

used in the subsequent viability filtering.

4.9.2 Reinforcement Learning

An interesting and useful affinity exists between viability and Reinforcement Learning (RL). For

example, a popular toy problem in RL literature is the learning to avoid falling over when riding

a bike, which effectively amounts to finding the viable set of states. The common denominator

between the two topics is dynamic programming: the most direct way to compute viability kernel

in a discrete space is to use dynamic programming (e.g., [SP94]), while RL essentially consists of

using dynamic programming to propagate reward information throughout the whole domain.

Computing the viable space of a system can be easily reformulated as an RL problem. One

simply sets the reward (or, in this case, penalty) function to 1 for any state-action pair which

immediately causes a collision, and 0 otherwise. The resulting value function then encodes the

viability of the states: 0 indicates a viable state, while non-zero values indicate nonviability. In

addition, the magnitude of the value indicates the minimal period of penetration, or more simply,

how quickly the agent can recover from the collision. This latter value can be useful in many

contexts, such as recovery from nonviable states, as discussed in the next chapter.

An intriguing possibility would be to learn the requisite local viability models by applying RL

methods directly to the locally situated state space Λ, as opposed to doing so over X , like it was

done above. This would yield probabilistic models that, rather than classifying states as exclusively

“viable” or “nonviable”, would instead indicate the likelihood of viability. For example, using a

slightly modified penalty function, where we assign 1 to any state-action pair (st, a) if st is collision-

free and st+1 is not8, one would end up with a value function which reflects the proportion between

viable and nonviable agent states x which map to a particular locally situated state λ. Clearly

this greatly aid in compensating for suboptimal choice of sensors. How exactly to exploit such

probabilistic viability information, or for that matter, how best to implement RL within a motion

planner’s framework, remain open problems.

8That is, the penalty function is nonzero only for transitions which represent the initial instant of collision.
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4.9.3 λ histories

There are also some interesting extensions which would make viability filtering even more robust.

For one, the learned models could predict viability based on (λk−j , . . . , λk−2, λk−1, λk), the history

of locally situated states observed, rather than just on the most recent λk. This would likely yield

more accurate estimates of viability, especially when suboptimal virtual sensors are used (e.g.,

automatically generate ones). In many ways this resembles work in information spaces, where

histories also play an important role in planning.

4.9.4 Exploiting control action data

Another promising extension would be to use the training data to harvest not just the state trajec-

tories, but also the corresponding control action sequences that have been applied to generate the

former. This largely untapped source of information, especially when derived from observing the

control of the agent by human subjects, could be combined with the use of locally situated state

histories to provide the essential means to derive motion macro-primitives.

4.9.5 Extending applicability

Viability filtering could also be modified to extend its applicability. In particular, it would be

interesting to enable it to handle dynamic environments. Even if the motion of the obstacles is

fully known ahead of time, this presents a non-trivial problem. Partially observable environments

could also be explored. The current formulation of viability filtering requires very little to adapt

it to such problems, due to its highly local nature. In fact, the method should work without any

changes: by placing an upper bound on the possible values returned by the virtual sensors, the

planner is simply limited to operate within a more confined region of the viability model.

4.9.6 Other

Some loose ends also remain. It would be interesting to see whether viability filtering would produce

greater or lesser improvements with other planners, such as RRT-CT. Bootstrapping is currently

not possible since the method directly prevents the exploration of novel situations, but would be a

worthwhile goal, yielding a planner that gains experience through its own operation. Solutions to

this problem will likely involve some form of probabilistic relaxation of the regression constraint.

The building and use of models based on composite training data from a number of dissimilar

environments needs to be further tested. Although preliminary tests were very positive, it remains

to be seen whether this is always the case. This would also require working out some guidelines,

and related metrics, on how many different environments must be used, and how much do they

need to differ, in order to yield a sufficiently robust model. Finally, it might be worthwhile to

resolve the issue of a single-tree planner being unable to complete the last leg of a solution if xgoal



94 Chapter 4. Motion planning with local viability models

is nonviable. Although dual-tree planners are almost always used, there may be a few applications

where this is not possible (e.g., agents for which reverse-time simulation is not possible).



Chapter 5

Safety enforcement with

viability models

5.1 Introduction

For many user-controlled agents, such as cars, helicopters, and airplanes, collisions and system

failures can have particularly dire consequences, such as the loss of human life or large monetary

damages. It is thus often desirable to provide some form of automated protection against human

error in such systems. Even when consequences are not so dire, or the agent is purely virtual as

in computer animation, games, and prototyping, such automatic input correction can facilitate

user-control of more difficult subjects. This chapter presents work which aims to address this goal

by providing a simple general framework for arbitrary agents.

Automatic corrections on their own can be disorienting and confusing to the user when they

come, hence an additional desirable property of such systems is some form of feedback that would

allow the user to anticipate the adjustments. Haptic feedback (as opposed to visual, for example),

applied to the mechanism through which the user controls the subject, is particularly well suited to

this task because the haptic force can simultaneously fulfill both functions, hinting and correcting.

A simple haptic implementation is briefly presented and discussed in this chapter.

Figures 5.1 and 5.2 show an example of such a safety system for a car. In the depicted scenario a

“suicidal user” repeatedly attempts to steer the car off the track (see vk in Figure 5.2); their actions

are overridden—uk is the control action actually applied—when this would lead to unrecoverable

situations (i.e., nonviable states).

5.1.1 Collision checking vs. viability checking

Clearly any such safety enforcement system needs to rely on some form of look-ahead to determine

the threat presented to the agent by the user’s current control actions. A key idea of the proposed

95
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Figure 5.1: A car constrained to stay on the track; see Figure 5.2 for plot of corresponding control inputs.

system is that safety can be enforced more reliably and cheaper by keeping the agent from nonviable

states, rather than through directly attempting to avoid collision. This is because in any physical

implementation the look-ahead must be finite, yet most agents can encounter situations where

the “time to unavoidable collision” exceeds the chosen look-ahead duration, and this could lead to

system failure. For example, in the case of the lunar lander, however large we choose the look-ahead

Th, it is always possible to find a state for the agent where its downward velocity and insufficient

altitude exceed the braking capacity of the bounded thruster, leading to a crash at time t > Th.

The danger of these states is thus undetectable by the chosen look-ahead. In contrast, a finite time

horizon does not pose a problem for viability-based safety enforcement. In fact, theoretically even

a single time-step look-ahead should be sufficient to ensure total system safety. If within that single

time-step the user’s control action causes the agent to become nonviable, the system merely applies

a different control action, one that does not leave viable space. Such an action is guaranteed to

exist by the definition of a viable state.

In safety enforcement the decision boundary between viable and nonviable space is of particular

importance, while the remaining volume of the viability kernel Viab(K) is only of secondary interest.

We have thus found it convenient to coin and use the term viability envelope to denote this decision

surface. The term carries the useful connotations of common phrases such as the “flight envelope”

and “pushing the envelope”, with the latter being particularly poignant and appropriate in the

haptics context. It is sometimes also referred to as the “control envelope” since a “viable” state is

also known as “controllable”, in the terminology of the control field.
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Figure 5.2: Plot of user’s desired steering angle (vk; red, smooth), actual steering applied (uk; blue, discrete), and
the viability of steering angles through time (control actions which approach the envelope are shaded pale green) for
the simulation run shown in Figure 5.1.

5.1.2 Theoretical framework vs. sample implementation

In this chapter we present both, a theoretical framework for safety enforcement using viability

(§5.2), as well as a rudimentary sample implementation (§5.3). Although the theoretical framework

guarantees safety, the simplistic implementation violates a number of assumptions which void this

guarantee. Nonetheless, even with its flaws the implementation generally provides a level of safety

that is higher than that of typical approaches based on collision tests. Also, the main aim of the

sample implementation has been to demonstrate the feasibility of the general approach, as well

as to identify and explore any associated difficulties; robustness and application-readiness were of

secondary importance.

The framework itself is theoretically simple, but its implementation requires addressing a num-

ber of practical issues, to which the bulk of this chapter is devoted to. The core of the system

naturally focuses on detecting transitions into nonviable space, as well as strategies for averting

this. Since this requires frequent checking of agent’s viability—which may be expensive to compute

or even unknown ahead of time—the agent’s viability is therefore modeled with a fast machine

learning classifier. The use of an inexact model in turn requires additional adjustments for dealing

with classification error.

The guiding principle throughout the design of the system has been that of “least surprise”;

the system has a mandate to be minimally intrusive. Without this additional guideline the general

problem of nonviability avoidance is under-constrained as there are often many ways to respond to

and avert imminent transitions to nonviable agent states (e.g., a car driving toward a brick wall,

on the brink of getting too close, still has the choice of turning left or right). Since ultimately the

goal is to facilitate manual control of an agent, it makes sense then to optimize toward a more

effective and agreeable human-computer interface. In practical terms, this principle leads to such

design decisions as always choosing the mildest correction that diverges the least from the user’s

desired actions, or using haptic feedback to alert user of upcoming needed corrections.
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5.2 Framework

We first examine single-step containment, which is conceptually all that is needed to ensure safety.

We then motivate and examine a multi-step look-ahead approach, and its various issues.

5.2.1 Single-step containment

The simplest strategy for ensuring agent viability can be stated as follows: apply the user’s desired

control action for a single time-step unless this causes the agent to become nonviable, in which case

choose an alternate, safe control action. In theory, such a breach-free control action (i.e., one that

does not breach the viability envelope) must exist by definition, since otherwise the previous state

would not be viable to begin with. In practice, although this is usually the case, it is not guaranteed.

The viability of some states may rely on continuous, arbitrary variation of the control action applied,

whereas most physical implementations involve some form of control action discretization, whether

of time or the control action itself. For example, in our implementation control actions assume a

constant value over each time-step. Ultimately though, the effect of this issue is eclipsed by later

trade-offs and approximations.

In accordance with the guiding principle of least surprise and intrusiveness, the single-step con-

tainment strategy consists of overriding the user’s control action only if this presents a danger, and

the correction applied should be the mildest possible. Formally this yields the following strategy:

uk =


vk if F (xk, vk) ∈ Xviab ,

argmin
u∈Uv

‖u− vk‖ otherwise.
(5.1)

Here vk is the control action requested by the user at time-step k, uk is the control action actually

applied, xk ∈ X is the agent’s state, Xviab is the viable region of state-space, F is a function that

embodies the system dynamics in a discrete time setting (i.e., xk+1 = F (xk, uk)), and

Uv = {u | F (xk, u) ∈ Xviab} (5.2)

is the subset of control actions which maintain agent viability.

Discretization of U

Unfortunately it is often not feasible to construct the set Uv, nor to inspect all its members. If the

agent’s control action space U is continuous, Uv will usually be infinite also. Clearly it is impossible

to explicitly inspect all its elements, while analytical approaches often tend to be difficult and not

general. Even with a finite Uv it may often be too expensive to perform explicit inspections. This

presents a problem when attempting to find an alternate, safe control action.
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We resolve this difficulty by (sparsely) discretizing U , yielding the subset Û . That is, in case

of an envelope breach by vk, the search for an alternate safe control action is performed over the

elements of Û , or rather its viable subset

Ûv = {u | u ∈ Û ∧ F (xk, u) ∈ Xviab}. (5.3)

The size of Û is chosen to be as small as possible to reduce computational load, but large

enough so that it contains a viable control action for most situations. For simple systems (e.g.,

those amenable to bang-bang control) the discretization can be very sparse, since usually either

the minimal or maximal input is viable. On the other hand, for complex systems even very dense

discretizations can lack a viable control action in some situations, especially if this results in the

viable subset of U being small and inconveniently distributed. This is a fragment of the larger

issue touched on earlier, that viability in general assumes continuous time and control framework,

whereas most physical implementations need to be discrete in at least one of these dimensions. We

look at ways to mitigate the problem in the next section.

5.2.2 Multi-step containment

The single-step containment method, although very simple and easy to implement, has a number

of undesirable properties. In particular, it often leads to severe control corrections, leaves little

room for the errors which real-life implementations must always contend with, and does not allow

much potential nor time to provide haptic feedback to the user. Thus in many ways the single-step

approach fails to meet the earlier design principle of least surprise and intrusiveness.

Breach detection

A natural solution to the above short-comings is to extend the look-ahead period used in the single-

step scheme, thereby enlarging the system’s awareness of its surroundings. In particular, this allows

for milder corrections, as suggested by Figures 5.3 and 5.4. The extension of the look-ahead applies

to both, the checking of whether the user’s current control action vk is suitable, as well as to the

searching for alternate safe control actions when it does not. The duration of the new look-ahead

period, which we refer to as the time horizon, is denoted by Th, and is measured as an integral

number of time-steps1 in the discrete time case.

When gauging the threat posed by a given course of action u, the system assumes that the user

will maintain this control action fixed for the whole duration Th. Exhaustively mapping out the

full look-ahead tree of depth Th, where each (non-leaf) tree node has all | Û | children, is impractical

in most cases. The above assumption thus constitutes a “best guess” at the user’s future course

1This is more convenient in practice than measuring in seconds.
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T 1
h

T 2
h

Figure 5.3: A larger time horizon usually allows milder corrections. Above, the left car has more time and space to
manoeuvre and avoid the obstacle, and so is able to use a gentler turn. In general, using a larger time horizon does
not preclude the use of the shorter control strategy, hence it is guaranteed, at the very least, to do no worse.

single-step containment multi-step containment

Figure 5.4: Trajectory comparison between single-step and multi-step containment. Multi-step containment tends to
produce earlier and softer compliance with the viability envelope constraint.

of action, as discussed further in Section 5.5, and represents a compromise between predictive

accuracy and computational load.

The look-ahead process may thus be envisioned as initially projecting a single trajectory in X ,

starting at the agent’s current state, and predicting its path throughout the next Th time-steps.

When this trajectory breaches the viability envelope, a look-ahead tree is then constructed, a set

of | Û | trajectories joined at their starting point (e.g., Figure 5.5), each predicting the agent’s

trajectory for a different control action u ∈ Û through the next Th time-steps. This approach

degrades gracefully to the earlier single-step containment method when Th = 1.

Time to envelope breach

How best to respond when an envelope breach is detected depends on the threat presented by the

breach. A natural way to assess this threat is with the time to envelope breach,

Teb(xk, uk) =

{
min i | F i(xk, uk) 6∈ Xviab if i exists and i ≤ Th,

+∞ otherwise.
(5.4)
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xk

F Th(xk, u|Û |)

F Th(xk, u1)

Figure 5.5: Structure of the look-ahead tree in the agent’s state-space for the multi-step containment case. The
look-ahead tree shown is that of the lunar lander agent. The tree has depth Th.

F i(x, u) represents function iteration, the successive composition of F with itself i times:

F i(x, u) = F (F i−1(x, u), u)

F 1(x, u) = F (x, u)

F 0(x, u) = x

(5.5)

Simply put, Teb , which is an integer value like Th, is just the number of time-steps until a nonviable

state is encountered, provided the breach occurs within the time horizon. That is, 0 ≤ Teb ≤ Th.

If no envelope breach is detected within the time horizon, it is convenient to let Teb = +∞; this

is not strictly necessary, but it avoids leaving the value undefined in such cases, and it simplifies a

number of formal descriptions later.

The array of Teb values, one for each u ∈ Û , is how the agent perceives the environment.

Figure 5.6 illustrates some examples and notes how they may be interpreted. This strongly parallels

the use of virtual sensors in the previous chapter, but whereas earlier the sensor readings were used

to predict the viability of the current state, here they merely serve to assess the most desirable

course of action (based on projected departure from viable space).

Breach response

The time-to-envelope-breach metric is useful for assessing the severity of the threat to which the

agent is subject to. There are four distinct threat levels that the agent may be in, each with its
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Û Û
Th

Teb

(a) (b)

Th
Teb

Figure 5.6: Teb behaviour and viability of Û for a fixed-velocity car; the trajectories drawn correspond to breach-free
controls, which appear check-marked and green in the Teb vs. Û bar graphs underneath. Case (b) is particularly
noteworthy: although the car’s distance from the opposing roadside at first suggests some leeway, the car is in fact
nearly upon the point of no return (i.e., envelope), as hinted by the many Teb ≈ 0, and must immediately choose one
of the breach-free inputs.

own response strategy. The threat levels are:

L0 : Teb(xk, vk) > Th

L1 : Teb(xk, vk) ≤ Th ∧ ∃u Teb(xk, u) > Th

L2 : ∀û Teb(xk, û) ≤ Th ∧ xk ∈ Xviab

L3 : xk 6∈ Xviab

(5.6)

while the corresponding response strategies adopted by the system are:

uk =



vk if L0

argmin
u∈Uv

‖u− vk‖ if L1

argmax
û∈ Û

Teb(xk, û) if L2

— if L3

(5.7)

where Uv is again the subset of U consisting of all breach-free2 control actions at the given agent

state; that is,

Uv =
{
u | u ∈ Û ∧ ∀i∈{0, 1, . . . , Th} F i(xk, u) ∈ Xviab

}
. (5.8)

In brief, the four modes represent progressively more hazardous threat levels. L0 and L1

constitute normal operation, and are analogous to the handling of the single-step containment case,

2Here, as in the rest of the chapter, the expression “breach-free” always implicitly assumes “. . . within the time
horizon Th.”
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F i(xk, vk)
xk

xk

xk
xk

L3

F i(xk, ûj)

L2L1L0

Figure 5.7: Example scenarios for the four threat levels, as seen in the agent’s state-space X . The shaded area under
the curve indicates nonviable space. Dashed lines indicate envelope-breaching trajectories (i.e., where Teb < Th).

while L2 and L3 correspond to crisis handling modes. Figure 5.7 illustrates situations corresponding

to the four threat levels.

Specifically, L0 represents “no threat” condition since the user’s desired control action vk does

not incur an envelope breach within Th; the user’s control action is thus applied unaltered. In L1,

vk does lead to a breach, but other control actions in Û do not; a suitable alternate action is thus

chosen from among these.

In level L2 all control actions in Û incur a breach within the time horizon (when held fixed for the

duration Th). Since xk ∈ Xviab , the definitions dictate that a viable control action exists, although

it may lie outside Û , or require a finer discretization of time. Often though this condition simply

indicates that the control action must be altered at least once within Th. The system thus responds

to this threat level by choosing the control action with the largest Teb , with the expectation that

doing so presents the best chance of leading to a successful control sequence, and if not, that it

minimizes the egregiousness of any transgression.

Finally, in level L3, the agent has left viable space. Theoretically it should be impossible

to reach this threat level, but due to the discretization of U and time, as well as some further

approximations adopted later in this chapter, this not the case. It is not clear-cut or obvious way

how best to resolve such situations; we discuss our implementation further on.

5.3 Sample implementation

This section presents a rudimentary sample implementation of the above framework. It details

design decisions as well as implementation issues encountered.
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5.3.1 Modeling viability

Analytic descriptions of viability are usually not available for more complex kinodynamic agents,

and thus must be derived empirically or heuristically. Even if external viability models do exist,

consulting them frequently may still be too expensive; the full look-ahead tree requires roughly

Th×|Û | checks per simulation time-step, and twice that during search for re-entry into viable space

in L3, all to be performed at interactive rates (e.g., 30 Hz), and in addition to other computational

costs of the system. Finally, even if a fast model does exist, it may be not amenable to some queries

the system needs to perform, such as measuring the distance from an arbitrary state to the decision

surface.

It is thus convenient to model the viability information using a fast classifier. In our imple-

mentation viability is assessed using empirical tests and heuristics (discussed in §5.4), and then

captured using a Nearest Neighbour (NN) classifier

NN (x) =


viable if min

z∈X̂in

‖x− z‖ ≤ min
z∈X̂out

‖x− z‖,

nonviable otherwise.
(5.9)

X̂in and X̂out are sets of samples which have been classified by the oracle to be viable and nonvi-

able, respectively. These sets are obtained in a trivial off-line pre-computation step, described in

Algorithm 7. It is worth noting that a sampling approach such as this will produce viable state

samples which are not necessarily reachable, thus giving a larger envelope than one might expect;

this does not diminish the effectiveness of the resultant envelope though.

Algorithm 7 Computing X̂in , X̂out sample sets for NN classifier
X̂in , X̂out ← {∅}
for i = 1 to n do

~x← rand uniform(X )
if oracle(~x) = viable then
X̂in ← X̂in + ~x

else
X̂out ← X̂out + ~x

X̂in , X̂out ← scale samples(X̂in , X̂out)
X̂in , X̂out ← dump redundant(X̂in , X̂out)

As with most learning methods, it is necessary to normalize or scale the training data prior to

use, especially given that the NN classifier uses an L2 norm distance metric in the agent’s state-

space. At present we select appropriate scaling factors manually, based on some understanding of

the shape of the controllable region. The parameters are chosen so that the salient features of the

envelope surface (i.e., important bumps, valleys, etc.) are not trivialized by classifier error and

noise in other dimensions.
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z

uk

vk

dz
dt

Xviab

Xnon-viab

xk

Figure 5.8: The lunar lander’s 2D NN envelope; the set of trajectories emanating out of xk shows the look-ahead
tree, with Tgr = 1. The user’s zero-thrust input (leftmost, labeled “vk”) is being overridden by the one labeled uk.
Also shown are the band of samples adjoining the envelope, and the resultant Voronoi tessellation.

A final measure taken to reduce unnecessary computational load is to discard redundant sam-

ples, ones which do not contribute to the NN decision surface, and thus whose removal leaves it

unaltered. Although a number of methods exist to do this[P.E68, Cha74, Das91], we employ a sim-

pler technique: since the samples are uniformly distributed, we compute the average inter-sample

distance δs and then discard all samples which are further than kδs from the decision surface3.

Progressively larger values for k are used (e.g.,{5, 10, 20}) until one is found that leads to a re-

vised model that correctly classifies all the training samples. This yields a well-structured band of

samples around the decision surface.

Figure 5.8 shows an example of a section of a viability envelope that was derived for the lunar

lander agent.

5.3.2 Grace period

Finally, we employ a grace period when identifying envelope crossings, primarily to combat the

noisy nature of NN envelopes. We define Tgr , the grace period, as the maximum number of time-

steps that a trajectory may stray into the opposite side of the envelope without being officially

labeled as a transition; conversely, a transition is only pronounced if the trajectory excursion into

3We approximate this by instead measuring the distance to the nearest NN sample of opposite class.
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Xviab

τ1
τ2

τ3

Xnon-viab

Figure 5.9: Using a grace period to combat envelope (approximation) noise; for Tgr = 2, τ1 forms a definite breach,
τ2 a definite re-entry, and τ3 merely a “brushing” of the envelope. That is, τ1 and τ2 are decreed as transitions, while
τ3 is not.

the opposing region lasts longer than Tgr . The rationale for this is that, as trajectories τ1 and

τ2 of Figure 5.9 suggest, the longer a trajectory stays within the latter region of the model, the

more certain one can be that the perceived transition reflects reality, and is not merely an artifact

of error in the envelope model. A trajectory such as τ3 in Figure 5.9 thus does not qualify as a

transition according to this criterion.

5.3.3 Threat level response

L3 threat level

This most detrimental threat level occurs when the agent has left viable space, at least according

to the viability model. Since avoidance is no longer an option, the next best strategy is to minimize

impact of the transgression. We do this by choosing the “least detrimental” control action. The

most direct method would be to either minimize depth of obstacle penetration or the duration

of such a failure. In our implementation we adopt the second approach, by selecting trajectories

which are the quickest in making the agent viable again. Alas, in many systems even a shallow

transgression can result in arbitrarily long times prior to re-entry into viable space, whereas any

physical implementation needs to have finite (and short) look-aheads. We thus increase the look-

ahead period but limit it to up to twice the time horizon value Th. If none of the look-ahead

trajectories re-enters viable space within that period, we resort to approximation by selecting the

control action that comes the closest.

The response to the L3 threat level can thus be formalized as

L3 : uk =


argmin

û
min i | F i(xk, û) ∈ Xviab , i ≤ Tmax if it exists,

argmin
û

ρv
(
F Tmax (xk, û)

)
otherwise.

(5.10)

Tmax is the upper bound on re-entry look-ahead (Tmax = 2Th in our implementation), while ρv(x)

is a measure of how far the state x lies from viable space. We approximate this by averaging the

distance from x to its k nearest neighbours in X̂in (k = 3 in our implementation).
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A complementary measure one may take is to use a conservative envelope, one which errs on

the side of safety when placing the boundary. We have not yet explored any methods for doing

this, but a straightforward one would be to shrink the original envelope by a small percentage. The

benefit of this is that any shallow breach of this envelope, such as given by the least-detrimental

criterion above, will likely not incur a breach of the true envelope, thereby maintaining system

safety.

L1 threat level

The response strategy presented earlier for threat level L1 is the most conservative approach pos-

sible, but not necessarily the best. A more lenient approach would be to “ease-in” the corrections,

based on immediacy of a breach. That is, the L1 response in Equation (5.7) could be instead set to

α vk + (1− α) argmin
u∈Uv

‖u− vk‖, (5.11)

where α measures immediacy of a breach using

α =
Teb(xk, vk)− 1

Th
. (5.12)

This allows the user more freedom at longer lead times, but generally requires longer time horizons

to be effective; this is not always feasible or desirable.

5.4 Experiments

Three agents were used in testing: the lunar lander, a bike, and a car. The lunar lander provides

the simplest possible example, with a 2D viability envelope, and is useful for illustrating the basics

of the approach, as well as the effect of various parameters. The bike provides a more complex, 3D

envelope, and tests performance in the presence of more complex dynamics. Finally the car agent

applies the method amid static obstacles.

Table 5.4 summarizes the relevant parameters of the tests: number4 of NN samples (i.e., ||X̂in ∪
X̂out ||), discretization of control space, time horizon, and grace period. The last two are expressed

in terms of the number of simulation time-steps, which measured 1/30 s. It is worth pointing out that

these parameters do not represent minimal or optimal values, but merely reflect some reasonable

initial choices. In fact, many of these scenarios could run adequately with much smaller sample

counts and control discretizations. Similarly, larger time horizons could be used without sacrificing

4The NN sample count listed is that after dump redundant() has been called; initially the envelopes start with
a million uniformly distributed samples. In general, prior to removal of redundant samples, the ratio of viable to
nonviable samples reflects the ratio of viable to nonviable volume. After the samples are filtered, they are roughly
of equal proportion, with the total number of samples being roughly proportional to the surface area of the decision
surface.
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Figure 5.10: The lunar lander agent, modeled as a toy rocket constrained to the vertical axis. z is the rocket’s
altitude.

interactive rates; the values shown were chosen for reasons of obstacle approachability, as discussed

later.

Table 5.1: Summary of relevant scenario parameters

scenario # samples | Û | Th Tgr ∆t
lunar lander 1,870 9 30 1 1/30 s
bike 80,794 5×5 10 1 1/30 s
car @ track 126,467 9 10 1 1/30 s
car @ circles 224,772 9 10 1 1/30 s
car @ triangles 272,713 9 10 1 1/30 s

5.4.1 Testing platform

The implementation was tested on a 2.4 GHz Pentium IV machine, with simulation and safety

checks being applied at a frequency of 30 Hz.

5.4.2 Lunar lander

The lunar lander, as introduced earlier, is a simple one dimensional motion system, in which a toy

rocket is constrained to fly along a single vertical axis z. It has a bounded force thruster at the

bottom, and it must avoid altitudes below z < 0, as this represents a collision with the ground. It

is illustrated in Figure 5.10.

The rocket is subject to Earth’s gravitational pull g, has a mass m = 1 kg, and has a maximum
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Figure 5.11: The derived lunar lander envelope. Plots show the agent’s state-space, with altitude on y-axis, and
vertical velocity on x-axis. The right subfigure shows a magnified view of the envelope near the origin (i.e., the part
most relevant to a soft landing). See also Figure 5.8.

upward thrust Fmax = 20 N. Motion is computed using rudimentary physics, namely

z̈ =
m

F
(5.13)

z = ż∆t+
1
2
z̈∆t2 (5.14)

with ∆t = 1/30 s.

To derive the NN envelope, the agent’s state-space was sampled in the range−20 m < z < 200 m,

−100 m/s < ż < 100 m/s using 100,000 uniformly distributed states. The viability of these states

was derived analytically5. The samples were than normalized so that each dimension spanned the

interval [0, 1], and then filtered for redundancy, leaving 1870 samples, 935 of which were viable, and

another 935 which were nonviable. Figure 5.11 shows the resulting envelope.

Figure 5.12 shows the resulting, safety constrained motion of the lunar lander using Th = 30

(i.e., 1 second). In all trials Û was obtained by uniformly sampling the allowable range of thrust

(i.e., [0 N, 20 N]). The curve represents the rocket’s altitude through time (age increases to the

right). In this trial the user applied bang-bang control, initially requesting maximum thrust for a

short duration, and then cutting it off completely. The deceleration and bringing to a hover of the

agent is thus the result of the safety enforcement mechanism. The larger look-ahead duration (at

least compared to values used later) results in a milder deceleration, evident by the milder slope of

the left half of the curve.

The simplicity of the lunar lander envelope allows for clear illustrations of the effect of various

parameters. For example, Figure 5.13 shows the effect of varying the time horizon Th. It is worth

noting that the case Th = 1 corresponds to the single-step look-ahead discussed near the beginning

of the chapter, and how poorly it handles the noisy envelope: in the corresponding plot the agent

5A number of additional tests bypassed NN modeling of the envelope and used the analytic test directly, yielding
superior performance. But since the key purpose of this scenario here is to demonstrate the general approach, we
follow through with all the steps.
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Figure 5.12: Lunar lander trajectory; the curve represents a plot of the agent’s altitude over time (time advances to
the left). In this trial the user applies maximum thrust from rest, and shortly cuts it (at the right inflection point);
the safety-enforcement is soon triggered and turns on soon after the peak of the curve. Time-horizon Th was set to
30 time-steps, which equates to 1 second.

Th = 30 Th = 15 Th = 5 Th = 1

Figure 5.13: The effect of Th on lunar lander trajectory. Plots show the agent’s state-space, with altitude on y-axis,
and vertical velocity on x-axis. In all cases | Û | = 9.

has left viable space and is unable to re-enter it, culminating in a collision (z < 0).

Figure 5.14 on the other hand illustrates the effect of the size of | Û | on the agent trajectory.

The main effect, as one would expect, is that it leads to trajectories of a more discrete nature.

The case of | Û | = 2, where either full thrust or zero thrust is applied, is noticeably distinct, in

that once the agent reaches higher elevations, it no longer can come arbitrarily close to the ground.

This is a side-effect of the highly conservative response strategy to the L1 threat level, where the

control action chosen is the one which does not incur an envelope breach within Th: in the case

of | Û | = 2, since “zero thrust” leads to a breach within Th at sufficiently low altitudes, the “full

thrust” control action must be applied. This hovering altitude is thus a direct function of Th, with

lower values yielding a lower hover height. Increasing the discretization of | Û | makes the effect

quickly disappear (it is barely noticeable in the | Û | = 3 case).
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| Û | = 21 | Û | = 5 | Û | = 3 | Û | = 2

Figure 5.14: The effect of | Û | on lunar lander trajectory. Plots show the agent’s state-space, with altitude on y-axis,
and vertical velocity on x-axis. In all cases Th = 30.

5.4.3 Bike

This experiment was intended to gauge system responsiveness with a more complex kinodynamic

system. Here the bike is in an obstacle-free environment, and the safety enforcement system must

ensure that the bike’s lean does not exceed a safe limit (to prevent falling). The maximum lean

angle is set to φmax = π/3 rad, as measured from the vertical.

The bike agent used in these experiments is a slightly modified version of the agent used in the

previous two chapters. The main difference is that the bike’s state is extended to include forward

speed, yielding

~x = (x, y, θ, φ, φ̇, V ), (5.15)

where V is the forward speed of the bike, and it is bounded such that 0 m/s ≤ V ≤ 10 m/s. The user

controls were correspondingly extended to include the bike’s acceleration, giving

u = (ψ, V̇ ). (5.16)

The user can directly specify an acceleration in the interval −0.5 m/s2 ≤ V̇ ≤ 0.5 m/s2, while the

steering angle must lie in −π/4 rad ≤ ψ ≤ π/4 rad. The simulation and safety enforcement run at

30 Hz.

There are a number of ways to approach the discretization of a multi-dimensional U . For the

bike we simply discretize U into a uniform 5-by-5 grid, yielding | Û | = 25. Thus the system may

enforce safety by correcting steering angle and/or linear acceleration of the bike.

The bike envelope was constructed by first obtaining one million6 sample states, uniformly

6This large value was chosen to yield a detailed visual representation, and ensure that no minor features were
hiding in the envelope noise. Equivalent performance can be obtained by starting with only 20,000 samples.
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distributed over the region of state-space defined by the following intervals7:

−1.5 rad ≤ φ ≤ 1.5 rad

−15 rad/s ≤ φ̇ ≤ 15 rad/s

0 m/s ≤ V ≤ 10 m/s

(5.17)

The viability of the resulting samples was estimated using a simple routine which checks whether

either maximum turn, u = (−ψmax , 0) or u = (ψmax , 0), can halt the lateral fall of the bike before

it falls over. That is, the routine simulates agent dynamics for both control actions until either

the bike falls over (|φ| > π/3 rad), or recovers (reaches state with φ̇ = 0). If both extremal control

actions lead to failure, the state is considered nonviable; if either control actions recovers the bike,

the state is deemed viable.

The sample values were then normalized in each dimension, and then scaled in (φ̇, V ) by

scale factors (10, 3). Finally, redundant samples were filtered out to yield 80,794 training sam-

ples (39,085 viable and 41,709 nonviable). Figure 5.15 shows the resultant envelope.

Figure 5.16 shows a trial run of the bike under the safety constraint system. The user controls

the bike with a mouse, with left-right motion directly controlling the steering angle φ, and up-

down motion directly controlling the bike’s acceleration. The mouse is presumed to operate within

a rectangular area whose boundaries are mapped to the extremal values for ψ and V̇ , with in-

between values computed using linear interpolation.

The envelope successfully maintains bike balance through steering, and through accelerating

when speed falls too low. Since the shape of the viability kernel is simple, nearly equivalent

performance can be obtained with much smaller sample sets; for example, relatively equivalent

performance was achieved with envelope of 2570 viable samples and 2922 nonviable samples.

Such drive-by-wire control of the bike turns out to be very difficult, primarily due to lack of

proprioception, and the fact that in such a rider-less system there is no way to laterally shift the

agent’s centre of mass, which is an important additional means of bike control in the real world

(i.e., slight lateral leaning with hips and torso). Safety enforcement thus helps to compensate for

this shortage and maintain system viability, although it can result in counter-intuitive behaviour.

With sufficient speed, the centrifugal force tends to throw the bike into the opposite lean, where it

is “caught” by the viability containment mechanism, thus establishing the opposite turn from that

which the user desired. It is extremely difficult to get just the right manual combination of steering

angle and velocity such that the centrifugal force is neatly balanced by gravity, especially when one

aims to first establish a particular turning radius or direction of travel. Interestingly, with some

practice a simple and effective strategy emerges for driving the bike under such a system: one first

7Since there are no obstacles in the environment, x, y, and θ are irrelevant, and thus the envelope spans the 3D
subspace defined by (φ, φ̇, V ).
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V vs. φ̇ V vs. φ

φ vs. φ̇

Figure 5.15: The derived bike envelope. The surface colour indicates direction of viable volume (green side faces
viable space, red side faces nonviable space). The labels for the plots, “y vs. x”, indicate what variable was plotted
on each axis. The axes are shown only for orientation, and do not reflect true values (scaling and offsets were applied
to the space).

Figure 5.16: An example of a bike ride with safety enforcement engaged.
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steers in the direction opposite to the desired one, applies acceleration (thus causing the bike to

flip to the desired direction), and then modulates the turning radius through subsequent control

of the agent’s linear velocity. Driving exactly forward is extremely difficult, but can be emulated

easily by snake-like motion through rapid weaving left and right.

5.4.4 Car

The purpose of this last set of experiments, using a simple car for an agent, was to assess per-

formance of the system with arbitrary obstacles. The car used in these experiments is a slightly

modified version of the agent used in the previous two chapters in that, in addition to steering

angle, the user can also directly control the linear velocity of the car. That is,

u = (ψ, V ), (5.18)

where V is the forward speed of the car, which is constrained to lie in the range

−30 m/s ≤ V ≤ 30 m/s, (5.19)

while the steering angle must lie in

−π/4 rad ≤ ψ ≤ π/4 rad. (5.20)

The simulation and safety enforcement run at 30 Hz.

Similar to the bike, U for the car is also two-dimensional. Here though we employ a different

strategy for discretizing the control space: rather than discretizing along both dimensions, we only

discretize the steering angle, while agent velocity in all the look-ahead trajectories is set to the one

currently selected by the user. That is, in the look-ahead tree for a state xk, there are n trajectories,

each of which is derived using a control action in the set

Û = { (ψ1, Vk), (ψ2, Vk), . . . , (ψn, Vk) }, (5.21)

where Vk is agent velocity at time-step k, and set to the second element of uk. Thus | Û | = n, and

{ψ1, ψ2, . . . , ψn} are the steering angles uniformly sampled from the allowable range. The benefit

of this approach is that, for the same amount of computational effort, a much finer discretization

of steering angles is possible, compared to discretization across both dimensions. This works well

for the car agent because it is not a kinodynamic system; modulating the agent’s velocity merely

alters the rate at which the trajectory is traversed. In contrast, altering the bike’s velocity in this

fashion would have had a very large effect on its balance, and thus the final trajectory achieved.

In all the car scenarios a simple test procedure is used as the viability oracle: a state is pro-
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nounced viable if the car can complete a collision-free circle using either the maximal left or maximal

right steering angle. This is fast and works well with the tested environments, but will break down

in more constrained environments, such as corridors where the car cannot turn around but can

maintain viability by following the corridor.

In constructing the envelopes, the samples are first normalized in each of their dimensions, then

scaled along (x, y, θ) by (4, 4, 1), and finally filtered with dump redundant().

Environment: track

Figure 5.1 shows a trial run of safety enforcement for a car on a rectangular track with rounded

corners. The dimensions of the environment are provided in Figure 5.17. The user is able to

interactively steer the car at will but is prevented by the system from leaving the track. Figure 5.2

shows how the safety constraints project onto the control action space for this problem. The user

input vk consists of a sequence of left and right turns of the steering wheel, as represented by

the continuous curve in the graph. The shaded regions correspond to control actions which make

the agent approach the envelope (i.e., ones for which Teb ≤ Th). The applied control input uk is

computed as given by Equation (5.7) and is represented by the blue, discrete curve (an artifact of

the discretization of U). The labels ‘a’ through ‘j’ indicate contemporary time-points in the two

plots. The inter-label spacing varies between the plots since the car was moving at various speeds,

which has a direct effect only on the world-space plot.

Figure 5.17: The “track” environment.
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The envelope was derived by first uniformly sampling one million states in the volume8

−25 m ≤ x ≤ 45 m

−15 m ≤ y ≤ 45 m

−π rad ≤ θ ≤ π rad

(5.22)

The viability status was computed for this set, and then filtered for redundancy, leaving an

envelope model with 126,467 samples (64,515 viable, 61,952 nonviable). Figure 5.18 illustrates the

resultant model.

As one might expect, the envelope mirrors the shape of the track. The main interesting feature

is a sharp ridge that winds around both, the inner and outer surfaces, and shifts along the θ axis

whenever the direction of the roadway changes. The ridge originates in the fact that viability places

limits on how close the car can safely approach a wall or boundary, as a function of their mutual

orientation. This function is strongly correlated to the trajectory of an evasive manoeuvre being

applied at the last possible instant. As Figure 5.19 illustrates, the cusp occurs when the agent is

directly perpendicular to the roadside, since this requires the most anticipation and the longest

evasive manoeuvre.

Figure 5.19: How close a car can safely approach a boundary depends on their mutual orientation, with the extremal
value occurring when the agent is perpendicular to the wall. As the car’s orientation is varied, the “minimum safe
distance” curve traces out the observed notch pattern seen in the envelopes.

This ridge shifts up and down along the θ-axis when the track turns because the ridge’s position

in the envelope depends on the car’s orientation relative to the roadway, whereas θ measures the

car’s absolute orientation angle (i.e., with respect to x-axis).

Careful examination of the envelope surface shows additional but minor variation along the θ-

axis, over orientations in which the car faces away from the environment boundary. These variations

are a consequence of the car’s rectangular geometry; they would be absent if the car were circular

or a point. They indicate that at some angles (relative to a wall) the car’s rear corners protrude

more, thus requiring the car to be offset correspondingly to avoid environment penetration.

8Note: the environment’s origin lies in the centre of the staring line.
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(a) (b)

(c)

(d)

(e)

Figure 5.18: The derived envelope for car on track. (a) perspective view of the envelope (z axis corresponds to
car’s orientation); (b) view from the starting line; (c) view of one of the “corners” in the envelope from nonviable
space; (d) orthogonal-projection view from nonviable space of one of the long stretches of the track; (e) orthogonal-
projection view from nonviable space of one of the shorter stretches of the track.
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Environment: circles

This environment, as shown in Figure 5.20, features four circles arranged in a square pattern, and

is intended to check how the system responds to smaller, island-like obstacles.

Figure 5.20: The “circles” environment.

The envelope was derived by first uniformly sampling one million states in the volume

−25 m ≤ x ≤ 25 m

−25 m ≤ y ≤ 25 m

−π rad ≤ θ ≤ π rad

(5.23)

The viability status was computed for this set, and then filtered for redundancy, leaving an

envelope model with 224,772 samples (116,012 viable, 108,760 nonviable). Figure 5.21 illustrates

the resultant model, as well as examples of safety enforcement with this model.

The most notable feature of this envelope is the “corkscrew” threading on the extruded circular

obstacles in the state-space. This is simply a different manifestation of the ridge noted in the

previous environment (see Figure 5.19). It may appear novel here because it winds continuously

and at a constant rate; this is due to the circular obstacle boundary behaving similarly, changing

orientation in a continuous and constant rate fashion.

Environment: triangles

This final environment, as shown in Figure 5.22, was meant as a (mild) stress test. It did not

result in a particularly difficult challenge, suggesting that the approach could be applied to larger

and more complex environments, especially considering how additional tests in these environment
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: The “circles” environment. (a) perspective view of the envelope (z axis corresponds to car’s orientation);
(b) the “corkscrew” effect due to circular nature of obstacle; (c) the corkscrew from the nonviable side; (d) the
intertwining of corkscrew threads; (e) car driving at moderate speed, hugging all obstacles as much as the envelope
and Th will permit; (f) car driving at various speeds, including backwards, with random to “suicidal” steering
decisions.
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resulted in comparable performance with much sparser envelope sample sets.

Figure 5.22: The “triangles” environment.

The envelope was derived by first uniformly sampling one million states in the volume

−45 m ≤ x ≤ 45 m

−25 m ≤ y ≤ 25 m

−π rad ≤ θ ≤ π rad

(5.24)

The viability status was computed for this set, and then filtered for redundancy, leaving an

envelope model with 272,713 samples (136,661 viable, 136,052 nonviable). Figure 5.23 illustrates

the resultant model, as well as examples of safety enforcement with this model.

The surfaces in this model display the same ridges as encountered earlier. The main new

topological feature is the appearance of “holes” that connect nonviable areas together. These

holes embody the fact that in narrow corridors some car orientations are impossible to recover

from, because it is impossible to achieve a safe distance from both walls simultaneously (for that

particular car orientation). For example, there is no safe way to safely place the car inside and

perpendicular to the narrow corridors in this environment since the car’s limited steering ability is

insufficient to allow a turn that will avoid the wall being faced.

5.4.5 Haptic feedback experiments

Finally, some simple haptic experiments were performed using the car agent on the “track” en-

vironment. A “PHANToM” haptic device was used to both, control the car and provide haptic

feedback. The user controlled steering using the horizontal axis of the PHANToM’s end effector,

and velocity with the vertical axis. Since the car’s envelope containment mechanism implements

corrections through the steering angle only, force feedback was thus present only on the horizontal
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.23: The “triangles” environment. (a) perspective view of the envelope (z axis corresponds to car’s orien-
tation); (b,c) “holes” form in the envelope where corridors are too narrow to allow the car to reach perpendicular
orientations; (d) corkscrew-like threading seen on edges of triangles; (e) car driving at moderate speed, hugging all
obstacles as much as the envelope and Th will permit; (f) “stuck steering wheel” motion, where the user keeps vk
constant, set to a mild right turn at medium velocity; (g) car driving at various speeds, including backwards, with
random to “suicidal” steering decisions.
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axis. The horizontal force was computed using a spring-and-damper system:

ψerr = ψsafe − ψv (5.25)

Fx = Kp ψerr −Kd ṗx (5.26)

ψv is the user-selected steering angle, ψsafe is the one deemed safe by the system, and px is the

position of the PHANToM’s end effector along x-axis. These three variables are first normalized to

the range [−1, 1] prior to use. The constants Kp and Kd are the usual proportional and derivative

coefficients; various values were tested, but the ideal settings are very subjective and, furthermore,

dependent on the PHANToM device being used.

The linear nature of the above haptic strategy proved to be problematic. Considering the rela-

tively short time horizon used for look-aheads with the car (to allow closer approach to roadsides),

a fair amount of minimum “stiffness” was desirable, whereas the linear model above tended to

result in either excessively weak corrections for small ψerr , or excessively aggressive corrections for

larger ψerr , depending on the value of Kp . Further experimentation showed that

Fx = K 3
√
ψerr (5.27)

provides a more natural feel. This model could likewise be extended with a damping term (i.e.,

Kd ṗx), but such velocity control did not prove necessary in the tests performed.

5.5 Discussion

5.5.1 Computational load and complexity

The amount of extra effort required to enforce viability depends on a number of factors: the

frequency of safety checks (i.e., the assessment of threat level and the application of corresponding

control law), the size of Û , the magnitude of the time horizon, and the cost of querying the viability

model. Ideally one would perform safety checks as often as possible, but acceptable performance

can be obtained by applying them at reasonable intervals (e.g., 1/30 s). If the oracle’s method

of divining the viability of samples operates in a discrete fashion, it is generally advisable to at

least match its time-step and set of control actions, when applying the derived model. Consider,

for example, an oracle which determines viability of an agent state by demonstrating a viable

trajectory out of the state. If a larger time-step or a more limited control set is used when applying

the subsequent model, these viable trajectories might no longer be reproducible under the more

restrictive parameters, causing the model to be misleading. It is also worth noting that the oracle’s

use of discrete methods results in a more conservative viability model, with larger granularities in

time and control discretization leading to larger safety margins.
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viable nonviable

Figure 5.24: Minor obstacle motion can easily alter topology, with drastic impact to viability. In the left diagram the
path through the tunnel is viable; in contrast, in the right diagram the minor obstacle translation renders the tunnel
nonviable since a collision-free exit is no longer possible.

The cost of a single safety check consists mostly of the computation of the look-ahead. In threat

level L0 the worst case cost is that of the full look-ahead trajectory for the user’s selected control

action vk, namely O(Th c), where c is the cost of a single viability model check.9 In L1 and L2 the

worst case involves additionally computing the full look-ahead tree, at cost O(| Û |Th c), since there

are | Û |Th nodes in the full tree of depth Th, aside from the starting root node. Although in L3

the search for re-entries extends the look-ahead to 2Th, this merely doubles the cost, leading to the

same time complexity as for L1 and L2. Thus the overall time-complexity of the method is linear

in all the relevant factors.

5.5.2 Viability model

Static environment assumption

The current approach to modeling viability assumes that the environment is static. Even very minor

variations in obstacle placement can alter the topology of traversable space, and thus have drastic

impact to the viable landscape, as demonstrated in Figure 5.24. Such changes occur suddenly and

discretely, regardless of the speed of obstacle motion or the number of obstacles involved.

In order to obtain a valid viability model for a dynamic environment one would have to compute

it over the “space-time” X × t, the extension of the agent’s state-space X with a time dimension,

where obstacles extrude along the time axis, and obstacle motion modulates the path of extrusion.

That is, the computation of the model would have to take into account space and time. However,

doing so, and by extension working out an exact viability model for a dynamic environment, is

not practical for a number of reasons. One key problem is that this requires full knowledge of

future obstacle motion, from now to eternity. Furthermore, the above considers only the online

computation of the viability model, for a particular future motion of the obstacles; if a precomputed

model is desired, which is essential to interactive safety enforcement, it would have to be further

9Technically, c is a constant multiplier and can thus be omitted in big-O notation; we leave it in for the sake of
clarity.
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parameterized by obstacle motion. In the general case this is completely intractable due to the

number of dimensions to such a model, as well as the amount of pre-computation effort required,

since viability would essentially have to be computed for each possible “future history” of obstacle

motion.

Since exact models of viability for dynamic environments are generally not practical, a more

feasible approach would be to approximate them instead, using much cheaper methods. “Local

viability”, the sensor-based locally parameterized approximate model of viability from the previous

chapter, is a promising candidate for this. As pointed out earlier, model error would be mostly

confined to the indeterminate cases, where all potentially viable trajectories travel beyond the

sensing range (e.g., highly constrained sections of the environment). The impact of such error

can be partially mitigated by increasing the Th look-ahead time: adding states to the tail of a

look-ahead in effect boosts its combined sensing range, much like adding to a string of street lights

extends the lit area during the night, and allows one to search further for obstructions on the road.

Representation

One prominent issue with the current viability envelope models is that the Nearest Neighbour (NN)

technique induces a very noisy and jagged envelope. This proves troublesome for the containment

mechanism, thus necessitating extra measures to mitigate this artifact, namely the “grace period”

provision. A more direct solution to this issue would be to switch to a “smoother” classifier.

In particular, with only minor adjustments the envelope could be modeled with k-NN. Initial

experiments in this direction did not show sufficient improvements—such as reduced incidence of

higher threat levels, or reduced reliance on grace period—to outweigh the increased computational

demands of the classifier though.

A more pressing problem is that NN methods are generally not very scalable, thus limiting the

dimensionality of models that we can encode with it. To some degree this is the reason why the

test environments for the car were relatively small. The car’s envelopes were three-dimensional,

the highest attempted. It is feasible that NN could be yet applied to 4 and perhaps even 5

dimensional spaces, but beyond that it is almost certain that the number of viability samples needed

to adequately capture the envelope would be excessive, leading to impractical space requirements

and classifier query time.

The Support Vector Machine (SVM) classifiers are known to scale well to higher dimensions,

although using them is not as trivial nor transparent as using NN classifiers. SVMs would largely

address the scalability problem, but it remains to be seen whether the derived models would interact

well with our framework, or whether they would introduce new artifacts, which would need to be

mitigated in additional ways. We note that others have considered using SVMs to model viability

kernels, [CD06] in particular, but the experiments there were also low-dimensional (2D), and did
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not involve application in an interactive setting, or one that involves the human control of the

subjects. Our initial tests with SVMs did not produce immediate improvements nor noteworthy

results, but this may be the result of insufficient testing.

A better solution to the problem might be to employ localized models of viability, as used in the

previous chapter. Such models have more modest scaling behaviour, each model is applicable to a

whole class of terrains, and the models work with partially (locally) observable environments. In

particular, although the number of dimensions to the model is likely to be the same or comparable,

the number of training samples and the information content of the model are significantly smaller,

unaffected by the extents of the environment. Switching to localized viability models has several

drawbacks though. The main issue is the discovery of a robust set of virtual sensors with which to

localize the agent’s state, a problem shared with the work of the previous chapter. Also, even if a

fairly good set of sensors were to be found, the viability model is still likely to be imperfect and

can thus inject some error into the threat assessment mechanism; in a safety enforcement context

this carries grave consequences, and is far more undesirable here than in the previous chapter.

5.5.3 “Constant u across Th” assumption

When gauging the threat exposure resulting from a particular control action, the system assumes

that the control is going to be held fixed throughout the time horizon Th. This is primarily

a concession made to maintain the computational feasibility of look-ahead. Ideally, one would

determine the viability of a control action uk from state xk by considering the complete progeny

tree rooted at the resultant xk+1, the whole family of trajectories resulting from the application

of all possible control action sequences within the time horizon Th. This is clearly impractical for

non-trivial time horizons, due to the exponential growth in the number of tree nodes. By assuming

that the control action is going to be held fixed throughout the time horizon we thus get linear

scaling in Th, which is more acceptable.

In a way then, when the system gauges the viability of the control actions from a particular

agent state xk, it limits itself to a single exploratory trajectory for each possible uk ∈ Û . This is not

an unreasonable concession; the assumption of the same control action for all subsequent time-steps

constitutes choosing the control sequence with the highest probability. That is, it is the best guess

as to what the user is going to do next. In most applications the user is likely to be “coasting” most

of the time (i.e., control input held in a fixed, neutral position). Also, course alterations may entail

a fixed, non-neutral control action (e.g., executing a fixed-radius turn in a car involves maintaining

a particular deflection of the steering wheel), and even when the control action varies it may often

appear as nearly constant over the span of the time horizon, due to human aesthetics and tendency

to prefer smooth and minimal control.

The fixed control action approach also makes sense when haptic feedback is considered. Since
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the purpose of such feedback is to alert the user of future constraints on control actions, and since

human reaction time must be factored in along with other delays required to understand and process

the provided information, the feedback must relate to a larger time perspective. For example, it

would be pointless to convey to the user that a particular control action is safe and desirable if

this is contingent upon the control action being changed at the very next time-step, since the user

would not be able to comprehend and respond at this speed.

Finally, the constant-control assumption also mimics the “generalized inertia principle” em-

ployed in viability theory.

The assumption does entail several drawbacks. Primarily it increases the chance of inappropriate

breach detection and response. In particular, in many cases the agent might be truly viable but

the evasive action needed may rely on applying different control actions in succession (e.g., when

the agent finds itself in a serpentine corridor). The fixed-u look-ahead tree will thus not find the

required evasive action, causing the system to be pushed into level L2. This undesirable since the

response strategy for the latter level is not guaranteed to lead to the correct evasive action.

5.5.4 Envelope margin of safety

Considering the dire consequences of error, it may at first seem prudent and beneficial to use more

conservative envelopes, ones in which the decision surface has been displaced toward viable space

by some constant margin of safety (i.e., where the viable volume of the model has been uniformly

shrunk). In the multi-step look-ahead scheme this could serve to reduce the rate of incidence of the

more severe threat levels. In the single-step containment approach a more conservative envelope

model would likely lead to greater robustness and resilience to envelope breach.

There are a number of open problems associated with this idea though, and its desirability

must be weighed against user expectations. First, it is unclear how best to perform the envelope

contraction: should it be uniform or should it vary across the decision surface? If variable, then

how and where should it vary? In either case, how should the magnitude of the safety margin be

determined? An important drawback of using a contracted envelope is that it may lead to conflict

with user expectations and diminished aesthetic value: a contracted envelope will result in the

user being unable to approach environment boundaries as closely as they might expect or desire to,

sometimes by a significant amount. For some agents large safety margins may not be objectionable,

such as for airplanes avoiding buildings and other airplanes, but for others they are undesirable. In

our experiments even moderate safety margins for the lunar lander and the car were particularly

noticeable and irritating.
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5.5.5 Drawbacks and limitations

A key requirement for this system is the availability of a model of the agent’s dynamics, so that

its state may be predicted relatively accurately for some time into the future. Often one may only

have a simplified model of system dynamics, and additional error may be injected by physical world

limitations, such as inaccurate sensors and agent actuators. The system’s resilience to such error

has not been tested yet, and would likely necessitate incorporating a significant safety margin in

the viability envelope model, as discussed, or some similar measures.

The time horizons used in the experiments were relatively small, ranging between 1/3 s to 1/2 s.

Their choice was precipitated by the very cautious control strategy used for threat level L1, as laid

out in Equation (5.6), in which the agent steers away at the first hint of trouble (i.e., as soon as

Teb ≤ Th). This directly limits how close one can approach obstacles, and leads to very constrained

motion, especially under high speeds. In the car experiments this was particularly pronounced, and

further exacerbated by the relatively small test environments. Reducing the time horizon provided

greater freedom of motion, but sacrificed mildness of corrections and the haptic feedback lead time.

5.6 Future work

A key limitation of viability envelopes presented in this chapter is their tight binding to the environ-

ment in which they were constructed (i.e., lack of transferability to other environments). The most

obvious next step would be to employ localized viability models, like those derived in Chapter 4.

This would provide a far more versatile solution, and would automatically enable application to

partially observable environments.

It would be worthwhile to establish some assurances of safety, especially if the method were to be

applied to physical systems rather than simulation. Currently the models are not conservative and

contain significant noise, which makes them undesirable for real-world applications where safety is a

key concern. Although it seems unlikely that full guarantees of safety could be obtained, considering

that the approach relies on empirically collected data and models learned using machine learning

techniques, even partial guarantees can be useful sometimes, and once characterized it is probable

that some progress could be made to strengthen them.

Even the extant, global envelopes could be improved by using a more resilient learning method

that provides smoother boundary surfaces. As discussed in Section 5.5.2, Support Vector Machines

techniques need to be retested as it would seem this is the most promising alternative at the

moment.

Although the assumption of fixed-control inputs makes sense when the haptic component is

viewed as an “early warning system”, this sometimes presents challenges to maintaining the system

within viable space. In particular, in the L2 threat level the agent is viable but all the possi-
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ble evasive actions require application of non-constant control actions. The current, fixed-control

lookahead approach may therefore mistakenly lead the system astray. It would be worthwhile to

explore some more intelligent ways to handle such scenarios.

Finally, although some preliminary experiments with haptic feedback were performed, this

aspect of the work is still largely unexplored. Many questions remain, such as how best to moderate

the haptic feedback, or what is the optimal time horizon to use.
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Conclusion and future work

The work in this thesis has aimed at improving the efficiency of current motion planners, especially

for a particularly difficult class of agents. The concept of viability played a key role in this, and was

further exploited for safety enforcement. More specifically, the modifications to the RRT algorithm

presented in Chapter 3 have yielded a more robust planner for agents with differential constraints,

particularly in highly constrained environments. Chapter 4 introduced viability filtering as an

important tactic for avoiding wasted effort, namely the searching through regions of space unlikely

to lead to a solution, thus further improving planner runtimes. Finally, Chapter 5 introduced a

control-assistance mechanism for user-control of agents, virtual ones in particular, that forestalls

getting trapped in situations of unavoidable failure.

There are a number of potential directions for future work. In this chapter we look at a number

of the most prominent, larger scope ones.

6.1 Motion planning with macro-primitives

As discussed near the beginning of this thesis, current motion planning methods start to stumble

when the dimensionality or complexity of the problem exceeds some moderate limits. The research

direction that has the potential to make the greatest strides in overcoming this, namely making the

more complex problems tractable, is Motion Planning with Macro-Primitives (MPMP): the greatest

hope in transcending the curse of dimensionality lies in approaching the problem at a more abstract

level, by planning and deliberating using macro-primitives, building blocks of motion with semantic

value. In fact, there is evidence in neuroscience (e.g., [MIB00, MIS04]) that human motion, and

that of other biological organisms, relies on a similar mechanism, wherein motion is realized through

the sequencing and superposition of such primitives or control programs. This, in effect, acts as

a means to reduce the dimensionality of the input problem, allowing the organism to successfully

execute much more complex tasks.

129
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This idea has been successfully exploited in control systems and related fields, as in [Bro86,

Ark98, Tan03, MIS04, Fal02]. Efforts to migrate this idea to motion planning have been minimal

so far. The most relevant work is [KBM04], which presents a method for a trivial biped robot

to solve for and execute appropriate stepping motions that climb and traverse stair-like structures

in a 2D world. Although an interesting start, the greatest benefits of MPMP are to be reaped

with agents on the other end of the complexity spectrum, such as a 40 DOF kinodynamic human

figure, for example, which severely strain today’s planners. MPMP is thus still largely unexplored

and needs significant further research effort to resolve the many associated open problems. The

work in this thesis represents a precursor and a useful stepping stone toward that larger goal, with

Chapter 4 in particular providing some useful insights and hints on how key pieces of this approach

could be implemented.

The use of motion macro-primitives for motion planning presents some novel challenges that

are not present in the above control system contexts. In particular, motion planning problems

typically grapple with the presence of obstacles, whereas most control problems above assume a

barren environment. This ties into the larger, fundamental open problem, which is how best to

derive the motion macro-primitives, and then how best to employ them in the motion planning

process. A key component is bound to be context extraction, the identifying of which features of

the environment are relevant to a particular macro-primitive, and under what circumstances. It

would also be desirable for the planner to learn such things from self-observation, noting which

new strategies work, and then constructing appropriate new macro-primitives to embody them.

Presumably such a framework would initially be bootstrapped using trajectory data obtained from

other, lower-level planning algorithms, such as RRT. Further investigation is needed to determine

the best way to do this.

It is also not clear what is the best way to represent the motion macro-primitives themselves.

For example, they could be merely individual agent trajectories observed previously or, at the oppo-

site end of the spectrum, they could be highly abstract plans or motion recipes, describing general

control strategies with respect to important features in the environment. Or they could be an inter-

mediate form between these two extremes, for example families of agent trajectories, parameterized

by some meaningful attribute of the captured manoeuvre. Each of these alternatives has associated

open problems. At the least abstract end of the spectrum, the snippets of unparameterized motion

could be used to construct solutions by mere sequencing or tiling, but this would likely require some

fitting and alteration, and it remains to be seen how best to do this effectively and efficiently. When

the primitives are parameterized, presumably the families of trajectories can be obtained through

simple clustering of prior motion data, but how does one identify a meaningful parameter for the

family, and further, how should the planner choose a particular parameter value during planning?

Furthermore, ideally the motion planner’s framework should be sufficiently general that all of the

above macro-primitive formulations can be employed simultaneously, leading to greater flexibility
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and power. These would presumably be layered, arranged in a genealogical hierarchy where more

abstract primitives are derived from lesser ones. How to do this is a particularly interesting open

problem.

Another interesting possibility for such a planner would be automated “missing skill discovery”.

That is, how could the planner automatically identify weak areas in its “motion space” (i.e., in

the language expressible using the current set of motion macro-primitives)? Since the proposed

planner would be built up incrementally through experience, it is clear that at any point in time

there will be environment features or scenarios that it will not be equipped to handle. Analogous

analysis methods have been explore for motion graphs in [RP04]. It would thus be helpful if the

planner could itself identify such potential weak areas offline, and then automatically devise and

exercise appropriate training scenarios, so that it could acquire the missing “skills” on its own.

6.2 Exploiting human expertise

Thanks to their wealth of knowledge and expertise, humans still outstrip computers and machines in

terms of raw ability to perform certain tasks in some domains (e.g., understanding and translating

human languages). In such cases it is typically more beneficial to tap this expertise rather than

to assault the problem with algorithms alone. To some degree this idea also parallels the use of

lookup tables in stead of direct computation (e.g., sine tables), or even data-driven programming.

Such harnessing of human expertise has many precedents. For example, in computer animation

the difficult problem of realistically animating human figures is today typically handled by pre-

recording motion of a live human actor and then repurposing the resultant data to the goal virtual

character, a technique called “motion capture”. In recent years it has become popular to further

structure this data, by constructing the clips of motion trajectories into “motion graphs”[LCR+02,

AF02, KGP02]. This allows for arbitrarily long, continuous animation of the subject figure by

simply traversing the motion graph along appropriate branches.

The above is an example of offline application of human expertise; a related approach could

also be effective in motion planning. The following subsections look at other ways human expertise

could be employed, online and offline, and it identifies some of the corresponding open problems.

6.2.1 Interactive motion planning

An interesting premise suggested in the early chapters of this thesis is the inclusion of a human

agent in the motion planning process. There are a number of roles that the user could fulfil “on-

line”. One obvious user role would be to help the planner with difficult segments of the problem, in

particular those which cause the planner to stall or break down. For example, the user could point

out feasible sequences of milestones for PRM-style planners whenever narrow gaps are encountered.

Of course such user involvement does not make sense in a general motion planner—after all, one
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of the key motivations for computer planners is the need for automation—but there are specialized

applications where such leveraging of human intelligence and experience can be helpful and desir-

able. How best to incorporate such user-planner interaction remains an open problem that requires

further research; it is not obvious how best to canvass the user’s opinion, how to streamline the

interaction and ensure its effectiveness, and how best to apply user suggestions.

A related role for online human intervention is the selection of desired stylistic or topological

traits of solutions. This has many strong parallels with extant research in the computer animation

field, where the user directs automated methods for generating animation (e.g., [LCR+02]). Ulti-

mately even many computer games cover similar ground, at least those where the user directs the

motion (and thus less directly the animation) of a virtual avatar or vehicle, especially when these

are constructed using motion trees or other precomputed motion libraries. Although these latter

areas suggest some useful ideas, ultimately the motion planning process is different enough that

novel ways need to be derived to handle its unique features and characteristics (e.g., discovery and

exploration of trajectories being disjointed and non-continuous in time).

6.2.2 Harnessing motion capture data

There are many ways in which motion capture data—whether the subject’s own motion or that of

an object being manipulated by the human—can be used. For example, as noted earlier macro-

primitives could be extracted from the motion data by scouring the sample trajectories for recurring

patterns, since repeated patterns of motion generally hint at the presence of some larger, semantic

content or connotation. Such motion segmentation has already been explored in other works, such

as [BH00] or the motion graph literature in general [LCR+02, AF02, KGP02].

Another tack would be to use sample motion libraries for biasing the planning process, encour-

aging it to seek out trajectories that mimic those in the library, thus giving the solutions a more

“natural” look. This idea was recently explored in [YKH04], where realistic object manipulation

motions are obtained by first planning a (kinematic) path for the object, and then applying inverse

kinematics on the manipulating agent to compute a suitable corresponding motion. Since inverse

kinematics problems are typically under-constrained, the single “best” motion is selected through

minimization of an objective function; in this work the objective function rewards configurations

and motions which best mimic those in the sample set, thus leading to the desired bias. Unfortu-

nately this approach has limited applicability since the biasing is confined to the inverse kinematics

sub-component, which is absent in most planners. A more general approach would be to perform

the biasing directly in the motion planning loop. Furthermore, it would be useful if such planners

preserved some global properties of the sample motions. For example, in human locomotion it

would be useful to preserve the agent’s dynamic balance and the systematic left-right alteration of

foot-to-ground contacts.
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The most aggressive way to employ the motion data would be to use it as a filter. That is, the

motion planning process could be constrained (rather than biased) to only explore trajectories that

are present in the sample dataset, or in its immediate neighbourhood. By employing a significantly

more constrained motion space the resultant planning task should be correspondingly simpler, due

to the smaller search space. As long as the planning problem supports “natural” solutions–that

is, composed of elements in the sample dataset of observed motions–the additional constraints will

not be detrimental (i.e., prevent the finding of a solution).

In many respects this idea bears much resemblance to the viability filtering approach outlined in

Chapter 4, in that both methods aspire to limit the motion planner to only useful or relevant regions

of the search-space. Of the two, the latter, restricting motion to that which mirrors the provided

samples, is generally the more aggressive alternative since it typically will filter more: naturally

occurring motions are automatically viable1, while the converse is often not true. Additionally,

such datasets generally capture only a fraction of the agent’s allowable range of motion, thus

yielding an even more selective filter. Because of this, much greater care needs to be exercised to

avoid the pitfalls associated with excessive filtering, particularly the inadvertent blockage of critical

search-space bottlenecks.

Motion generation through the traversal of motion graphs is essentially an even more constrained

variant of the above idea. In fact, this is the simplest way to implement such filtering: the generated

motion is automatically constrained to the sample dataset (i.e., the motion graph). This approach

has been explored in [IAF05], where motion planning solutions are constructed through the judi-

cious traversal of the character’s motion graph. An approximate form of reinforcement learning is

used to derive a model of which branches of the graph are preferable in any particular situation,

given the location of the next waypoint, the local obstacles and their motion, and the presence of

enemies whose gaze must be avoided. Goal-seeking motions of the agent are generated by repeated

application of the learned model during motion graph traversal, while a simple kinematic path

planner provides the desired waypoints. Although some interesting results were obtained with this

approach, there is much to explore further, and there are a number of other potential ways in which

motion graphs could be exploited for motion planning, all of which warrants further investigation.

One drawback to employing motion graphs for motion planning is that they generally do not

encode or model the surrounding environment, meaning that collision avoidance must be enforced

manually, typically by “unrolling” and embedding the motion graph2 into the local environment at

the agent’s current state, and then culling away branches which intersect obstacles. The above work

[IAF05] is no different, since branch selection is based on the agent’s state after a branch has been

followed for 1 second; this thus amounts to a simple collision look-ahead. Since compliance with

environment geometry is a key factor in the difficulty of motion planning problems, this significantly

1It is assumed that the sample motion libraries include only collision-free trajectories.
2Motion graphs generally encode their motions relative to the agent’s current position and orientation.
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limits the usefulness of motion graphs in MP. An interesting direction of research would thus be to

find useful ways to annotate motion trajectories with local environment information, on a global

scale, and then making effective use of this data during planning.

The only motion graph work to incorporate environment information is that of [LCL06]. This

approach consists of first deriving a set of building blocks, called “motion patches”, each a small

motion graph corresponding to a prototypical fragment of environment geometry. When presented

with a new environment, a full motion graph is assembled by subdividing the environment into

fragments and then linking together the matching motion patches. In this way the motions in

the resultant graph, as in the motion patches themselves, automatically avoid collision thanks

to the direct modeling of the environment, making this approach compelling for use in motion

planning. Interestingly, this combination would fall under the umbrella of motion planning with

macro-primitives, since each motion patch can be thought of as a motion primitive describing all the

various ways of (safely) navigating a particular environment fragment or “feature constellation”.

This would be a particularly interesting tangent to research further.

6.3 Optimal planning

Popular motion planners, such as RRT or PRM, return solutions which are generally very non-

optimal, yet in many applications some degree of optimality is desirable. Currently there are very

few planning choices when optimal trajectories are needed. One option is to solve the problem using

a control policy approach, which typically employs dynamic programming to effectively compute

optimal solutions from every possible starting state. Naturally this is very slow and expensive.

Alternatively, if the agent is relatively simple, it is possible that an agent-specific optimal planner

exists. For example, when the agent is a simple car that can move forwards and backwards, one

can use Reeds-Shepp curves [RS90] to find optimal trajectories between any two car configurations.

Unfortunately such agent-specific optimal planners typically ignore environment constraints, and

thus are not directly applicable when obstacles are introduced. The ideal solution would thus be

to enhance the current crop of motion planners to yield more optimal solutions.

It is worth noting that in many applications strict optimality is not necessary, and that near-

optimal solutions are often sufficient. After all, strict optimality frequently cannot be met exactly

in real-world applications due to actuator error and noise, and often other requirements place

competing demands on the resultant motion (e.g., safety considerations).

The most direct and obvious way to address the optimality problem is to post-process the

solutions returned by such planners using trajectory deformation methods. These often rely on

repeated attempts to replace segments of the solution trajectory with shorter, more optimal alter-

natives. For example, for a simple, freely-moving kinematic agent it is common to iteratively try

to replace fragments of the solution path with straight lines, starting with the whole solution itself
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and progressing to smaller and smaller fragments. These methods are all relatively slow though

due to their brute force nature.

A more intelligent and effective approach would likely rely on “understanding” the environment,

being able to ascertain which parts of the solution are constrained by which features of the environ-

ment, and how best these may be optimized. Interestingly, motion planning with macro-primitives

could potentially fill this need. If the motion planner used parameterized macro-primitives, the

pursuit of optimality would simply translate to tuning of the parameter values for the primitives

involved in the solution. For example, it is likely that the parameterized primitives for a car

agent would include those that implement turns, with their parameter controlling the turn radius.

Since tweaking one parameter is bound to cause the need to adjust the parameters of subsequent

primitives, this presents interesting optimization problems where multiple parameters must be si-

multaneously tuned while preserving the continuity of the trajectory, and its connection to the

goal. This has striking similarities to the problem of inverse kinematics in computer graphics.

A related interesting problem is that of turning current planners, such as RRT and PRM, into

“anytime solvers”, in the sense that, after an initial solution is found, the planners would be required

to spend any additional time on improving it. The simplest naive approach would be to simply run

the planner repeatedly, each time from scratch, and to return the most optimal solution found so

far when requested. It is likely though that a more organic approach, one that builds upon work

so far rather than ignoring it, could lead to more efficient results.

6.4 Robust execution of offline plans

Much of the “theoretical” component of motion planning research assumes the general “AI model”

for solving real world problems, namely the modeling of the environment and agent, the offline

computation of a solution, and the subsequent execution of the derived plan. This approach has

often proven to be not very successful or robust in reality. Such open-loop execution is often

plagued by the unavoidable noise and error in actuators, sensors, inexactness of models, the non-

static nature of the world, and the general unpredictability of the future. This problem has already

received some attention, but none of the proposed solutions are adequately robust or satisfactory,

and thus the problem remains open.

Perhaps the first work to consider the imperfect execution of motion plans is that of the earliest

approaches to motion planning with kinodynamic agents. These approaches relied on first com-

puting a purely kinematic path, and then handed it to a dedicated agent controller which would

attempt to implement the path within the constraints and peculiarities of the agent’s kinodynamic

laws of motion. In effect, it was the controller’s job to compensate for any discrepancy which arose

between the planned and achieved paths. Alas, many of these controllers were fairly simple. They

often resulted in significant overshoot on turns and were generally clumsy in tracking the desired
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path, which could potentially lead to collisions, even though the kinematic path itself was collision-

free. One way to compensate for this was to reduce the speed with which the agent executed

the path, so that the tracking errors were less severe, but for many applications this is an overly

heavy-handed and objectionable workaround.

The most robust and globally optimal approach to the problem is the computation of control

policies, which encode the optimal control action for each potential agent state, one that propels

the agent toward the goal in an optimal fashion. The control policy thus effectively encapsulates

the full, optimal solution to xgoal from any arbitrary agent state. That is, by iteratively applying at

each time-step the control action specified by the control policy, the agent will have traced out the

optimal trajectory upon reaching the goal. The benefit of using the policy is that if noise or error

causes the agent to drift from this optimal trajectory, the control actions suggested by the policy at

the new states will still safely lead the agent to the goal, and in a near-optimal manner. With single-

trajectory solutions, such as those returned by RRT and PRM, further execution is impossible when

the agent leaves the proposed solution trajectory; with a control policy, in contrast, it is essentially

impossible to “leave the solution trajectory”, since it encodes a solution from every feasible agent

state. Although this is clearly a superior solution to the planning problem, control policies are

very expensive to compute, must be recomputed whenever xgoal changes, and are not transferable

across environments. It is worth pointing out that there has been some recent work [Sto06] which

attempts to create anytime solvers for control policies, where rough, suboptimal control policies are

quickly computed based on environment features, and then subsequently improved upon as time

permits.

The most naive workaround for agent drift in single-trajectory planners is to simply recompute

a fresh new solution when it is detected during execution that the agent has left the proposed

trajectory. A more intelligent approach though is to partially reuse some of the prior planning

effort; there has recently been some interest (e.g., [FKS06]) in re-using parts of prior RRT search-

trees when replanning is needed.

A more closed-loop approach is proposed by the work on Partial Motion Planning (PMP) in

[PF05]. Here the system discretizes time into slots, and within each such time slot it computes

the partial motion plan for the next time-slot, while executing that computed in the previous slot.

Although the feedback loop between planning and execution ensures that the agent is always “on

target”, this approach cannot, in general, be made optimal since globally optimal plans usually

require a global view of the problem.

6.5 Duality between motion planning and control

There are also some strong parallels between motion planning and control problems. Consider a

canonical control problem of a cart surmounted by an inverted pendulum, where the pendulum must



6.5. Duality between motion planning and control 137

be kept upright and balanced through only direct manipulation of lateral acceleration of the cart,

which is further constrained by two bounding walls (i.e., its position is limited to a modest interval).

Given a sufficiently accurate forward-model of the world and system dynamics, so that cart response

to control actions can be correctly predicted, the problem can be easily solved using typical motion

planning methods. Conversely, motion planning problems can often be solved through traditional

control theory methods, such as the use of a controller which encapsulates a pre-computed control

policy for the agent (i.e., the controller applies the control action dictated by the control policy for

the current agent state).

There are however some differences between the two fields. Specifically, control theory tends

to focus on the dynamics of the system being controlled, and generally assumes there are no addi-

tional constraints (e.g., no obstacles in the environment). Motion planning, at least the kinematic

subset which constitutes the large majority of the literature, tends to focus purely on the geometric

constraints of the environment while assuming that the agent’s dynamics are not relevant. Kin-

odynamic motion planning is, in a sense, the interesting superset of traditional motion planning

and control theory, in that both the environmental constraints and system dynamics play equally

important roles in determining solutions.

The parallels between these two fields suggest that there may be significant potential and

opportunity for cross-pollination of ideas and the mutual exploitation of methods developed in the

dual field. In fact, to some extent the proposed notion of motion planning with macro-primitives is

an example of this. It seems to parallel a similar idea that has been explored in control and computer

graphics. In [Fal02] the animation of a human figure is achieved using multiple controllers which

alternate in manipulating the figure, with each controller responsible for performing a particular

task or motion. Even in a case like this, where a potential parallel idea exists in the dual field,

studying its methods may be helpful in identifying potential future problems that one may encounter

(i.e., with motion macro-primitives), and may even suggest possible solutions to them.
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