next up previous notation contents
Next: 3.3.12 Lower Bounds Up: 3.3 Linear Interval Arithmetic Previous: 3.3.10 Concave Up Functions

3.3.11 Concave Down Functions

We will determine tex2html_wrap_inline35701 for any concave down function tex2html_wrap_inline34165 . Since g is concave down, tex2html_wrap_inline36151 . Let tex2html_wrap_inline36055 ; we assume that tex2html_wrap_inline36155 , so we may take tex2html_wrap_inline36157 . A simple proof by contradiction, which follows, shows that tex2html_wrap_inline34669 is an upper bound for g, excepting tex2html_wrap_inline36163 :

math18980

Assume that there is a point tex2html_wrap_inline34333 such that tex2html_wrap_inline34675 . Let tex2html_wrap_inline34677 , so tex2html_wrap_inline35585 . Furthermore, tex2html_wrap_inline34251 and tex2html_wrap_inline36053 imply that tex2html_wrap_inline35629 .

figure18986

A quick review of the tex2html_wrap_inline35653 chart reveals that this situation is impossible. There is no tex2html_wrap_inline34333 , tex2html_wrap_inline36199 such that tex2html_wrap_inline34675 since tex2html_wrap_inline34231 , tex2html_wrap_inline36157 . We may take tex2html_wrap_inline32461 to be infinitesimal for g differentiable at tex2html_wrap_inline36211 ; this corresponds to having tex2html_wrap_inline34669 match, at tex2html_wrap_inline36211 , both the value and the derivative of g. For discrete g we may take tex2html_wrap_inline36211 and tex2html_wrap_inline36223 to be neighbours. With such a choice of tex2html_wrap_inline32461 , tex2html_wrap_inline34669 is an upper bound for g since x may not be a member of tex2html_wrap_inline36233 .

The assumptions made do not overly restrict the applicability of the proof.

For differentiable g and constant tex2html_wrap_inline35695 , the bound is optimal when tex2html_wrap_inline36239 ; for other reasonable choices of tex2html_wrap_inline35695 , the optimal bound is similarly easy to determine. See section gif for details.


next up previous notation contents
Next: 3.3.12 Lower Bounds Up: 3.3 Linear Interval Arithmetic Previous: 3.3.10 Concave Up Functions
Jeff TupperMarch 1996