next up previous notation contents
Next: 3.2.17 Examples with a Partial Up: 3.2 Constant Interval Arithmetic Previous: 3.2.15 Periodic Functions

3.2.16 Partial Functions

We have considered implementing a model tex2html_wrap_inline31397 , given tex2html_wrap_inline32577 . We now consider implementing tex2html_wrap_inline34927 . The property tex2html_wrap_inline33463 is of interest; let tex2html_wrap_inline34931   denote the domain of g, defined in terms of tex2html_wrap_inline33463 :

math13897

The function tex2html_wrap_inline34937 ,

math13901

when given an interval j and a set tex2html_wrap_inline31241 of extended real numbers, produces a valid description of the relationship between j and tex2html_wrap_inline31241 :

math13907

The relationship between j and tex2html_wrap_inline31241 is that of containment, formally defined as follows:

math13911

For the function tex2html_wrap_inline34165 , an evaluation of the model tex2html_wrap_inline34927 proceeds as follows:

math13917

The resulting domain description d', tex2html_wrap_inline34957 , is determined using d, tex2html_wrap_inline34961 , and tex2html_wrap_inline34937 :

math13926

The resulting value v', tex2html_wrap_inline34967 , depends on d'. If tex2html_wrap_inline34971 , the resulting value is given by the methods outlined earlier:

math13932

If tex2html_wrap_inline34973 , the resulting value is arbitrary:

math13937

as tex2html_wrap_inline34973 implies that tex2html_wrap_inline34977 for all tex2html_wrap_inline34979 .


next up previous notation contents
Next: 3.2.17 Examples with a Partial Up: 3.2 Constant Interval Arithmetic Previous: 3.2.15 Periodic Functions
Jeff TupperMarch 1996