CSC418 Computer Graphics

BSP tree
Z-Buffer
A-buffer
Scanline

Binary Space Partition (BSP) Trees

Used in visibility calculations

Building the BSP tree (2D)
— Start with polygons and label all edges
— Deal with one edge at a time

— Extend each edge so that it splits the plane in two, it's normal
points in the “outside” direction

— Place first edge in tree as root

— Add subsequent edges based on whether they are inside or
outside of edges already in the tree. Inside edges go to the right,
outside to the left. (opposite of Hill)

— Edges that span the extension of an edge that is already in the
tree are split in two and both are added to the tree.

— An example should help....

BSP tree

Using BSP trees

Use BSP trees to draw faces in the right order
Building tree does not depend on eye location
Drawing depends on eye location

Algorithm intuition:

Consider any face F in the tree

— If eye is on outside of F, must draw faces inside of F first,
then F, then outside faces. Why?

o Want F to only obscure faces it is in front of

— If eye is on the inside of F, must draw faces outside of F
first, then F (if we draw it), than inside edges

This forms a recursive algorithm

DrawTree(BSPtree)
{

if (eye is in front of root)

{

DrawTree(BSPtree->behind)
DrawPoly(BSPtree->root)

BSP Drawing Algorithm

DrawTree(BSPtree->front)

Scanline

}else {
DrawTree(BSPtree->front) A
DrawPoly(BSPtree->root) f" \
DrawTree(BSPtree->behind) JB\ cg\
) c, D E
}
Visibility Problem
Z-Buffer

Z-Buffer

= Scanline algorithm

= Z-buffer algorithm:
1. Store background colour in buffer
2. For each polygon, scan convert and ...
3. For each pixel

- Determine if z-value (depth) is less than stored z-
value

- If so, swap the new colour with the stored colour

Calculating Z

= Start with the equation of a line
0=Ax+By+Cz+D
= Solve for Z
Z=(-Ax-By-D)/C
Moving along a scanline, so want z at next value of x
Z=(-A(x+1l)-by-D)/C
Z=z-AlC

Calculating Z

« For moving betweenscanlines, know
X'=x+1/m

« The new left edge of the polygon is (x+1/m, y+1), giving
Z=z-(A/m+B)/C

= - I
" paz-aC|

<A

-\._H|
’=2z-8/m+B
C

Z-Buffer Pros and Cons

= Needs large memory to keep Z values

= Can be implemented in hardware

= Can do infinite number of primitives.

= Handles cyclic and penetrating polygons.

= Handles polygon stream in any order throwing away polygons
once processed

A-Buffer

A-buffer

A-Buffer

= Z-Buffer with anti-aliasing
— (much more on anti-aliasing later in the course)
= Anti-aliased, area averaged accumulation buffer
= Discrete approximation to a box filter
= Basically, an efficient approach to super sampling

= For each pixel, build a pixel mask (say an 8x8 grid) to
represent all the fragments that intersect with that pixel

= Determine which polygon fragments are visible in the mask

= Average colour based on visible area and store result as pixel
colour

= Efficient because it uses logical bitwise operators

A-Buffer: Building Pixel Mask

Build a mask for each polygon fragment that lies below the pixel
Store 1's to the right of fragment edge
Use XOR to combine edges to make mask

¢ljojofofofojofo0 0jojofofojojo0jo 0ojojojojofojo0jo

0 0 /1 1(1]|1]1 0010 (\ 0o (o]0 ofo0 01010
XOR \ =

0 0 l/l 1(1]1f1 0jofo |0 \1 1|11 ofo 0]0(0

0]0 / 1j1rf{r|1]1 ojojo|o 1111 0|0 0(0|0

A-Buffer: Building Final Mask

Once all the masks have been built, must build a composite mask
that indicates which portion of each fragment is visible

Start with an empty mask, add closest fragment to mask
Traverse fragments in z-order from close to far

With each fragment, fill areas of the mask that contain the
fragment and have not been filled by closer fragments

Continue until mask is full or all fragments have been used
Calculate pixel colour from mask:

Can be implemented using efficient bit-wise operations
Can be used for transparency as well

lHlumination

Coming soon!

[llumination

