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Abstract

In this paper we present a novel illumination model that takes into account multiple anisotropic
scattering in a layer bounded by two rough surfaces. We compute the model by a discrete-ordinate
solution of the equation of radiative transfer. This approach is orders of magnitude faster than a
Monte Carlo simulation and does not suffer from any noisy artifacts. By fitting low order splines to
our results we are able to build analytical shaders. This is highly desirable since animators typically
want to texture map the parameters of such a shader for higher realism. We apply our model to the
important problem of rendering human skin. Our model does not seem to have appeared before in
the optics literature. Most previous models did not handle rough surfaces at the skin’s boundary.
Also we introduce a novel analytical bidirectional transmittance distribution function (BTDF) for
an isotropic rough surface by generalizing the Cook-Torrance model. We believe our work to be
both of practical and theoretical importance.
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1 Introduction

The work described in this paper was motivated by the desire to model the appearance of human
skin under various lighting conditions. A good model for the reflection of light from skin has many
obvious applications in the entertainment industry, where there is a keen interest in making virtual
actors appear more life-like. However, despite the importance of this problem there are very few
analytical models that convincingly model the appearance of skin. This is probably because the
interaction of light with human skin is a very complicated physical phenomenon. Skin appearance
depends not only on the skin’s surface but also on the layer directly below it: incoming light is
not only reflected specularly (as in oily shiny skin) but is also scattered diffusely within the flesh.
This explains why traditional Phong-like surface-based reflection models fail to capture the subtle
appearance of skin. Most traditional models approximate the contributions due to the subsurface
layer inadequately using a Lambertian cosine term. A good model for subsurface scattering is also
important to model substances other than human skin such as paints and tissues. An effective skin
reflection model should ideally depend analytically on a set of meaningful parameters, such as the
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skin’s surface roughness and amount of melanin. Animators typically want to texture map these
parameters to add visual detail, such as freckles, pores or a shiny forehead.

In this paper we propose a new model for subsurface reflections based on linear transport the-
ory. This theory has matured well and has been applied to a wide range of disciplines, including
nuclear physics, the atmospheric sciences, astrophysics and computer graphics. It seems that the
only transport theoretical model for subsurface scattering in computer graphics is the one proposed
by Hanrahan and Krueger [5]. They introduce an analytical model for layers that only scatter
weakly using the single-scattering approximation. In addition, they assume a perfectly smooth
reflecting and refracting surface at the top of the layers. These approximations are, however, ill
suited for skin, since the skin’s surface is rarely perfectly smooth and multiple scattering is very
important. To address the latter problem, Hanrahan and Krueger ran a Monte Carlo simulation to
precompute reflection maps for different configurations of sub-layers. Unfortunately, the Monte
Carlo method converges very slowly, so handling a wide range of interesting skin parameters re-
quires huge amounts of data to be computed. Because the model of Hanrahan and Krueger did not
satisfy our needs, we decided to derive our own model in a more general setting.

We first turned to the abundant literature on the subject from other fields. Most relevant to our
problem is the literature in the medical sciences studying the optics of skin for such applications
as non-invasive surgery. We first consulted the review articles [23] and [24]. The latter article
discusses an approximation which is too coarse for our purposes. The first reference from a Rus-
sian journal only mentions Monte Carlo methods and the so-called adding-doubling method. We
have already drawn attention to the drawbacks of the Monte Carlo approach. The adding-doubling
technique was used by Prahl and co-workers to extract parameters from skin measurement [18]
and is based on earlier work in astronomy [6]. This technique, however, is iterative in nature and
does not handle rough surface boundaries. At this point we turned to the atmospheric sciences.
The problem addressed there is how to compute the global interchange of radiation between the
atmosphere and the ocean. The ocean is very much like skin since it has a rough boundary and
light is scattered below it. We found a very attractive model based on the discrete-ordinate ap-
proximation of radiative transfer [3]. In particular, Stamnes and co-workers developed a general
solution framework for the atmosphere-ocean radiative problem [8, 21]. Unfortunately their model
does not handle rough surfaces. It seems that the “state of the art” model in this area resorts to a
Monte Carlo simulation to determine the effect of a rough surface [14].

After this review, we decided to extend the discrete-ordinate approach of Jin and Stamnes
[8] to include rough surfaces. We first required a good analytical model for the Bidirectional
Transmittance Distribution Function (BTDF). We are aware of only one such model in computer
graphics based on the wave theory of light [7]. Unfortunately this model is fairly complex, so
we derive a simpler one in this paper for the first time. Our model is an extension of the BRDFs
of Cook-Torrance [4] and of van Ginneken et al. [25]. Extending a reflectance model to include
transmittance may seem straightforward at first, but we encountered some subtle issues. The first
contribution of this paper is to resolve these issues. The second contribution is a general discrete-
ordinate solution for a scattering layer bounded by rough surfaces. Our model is, therefore, of
interest to computer graphics and potentially to other fields. We show how to efficiently solve
the problem by a suitable “diagonalization” of the “transfer matrix.” We use the machinery of
Fourier transforms and eigenanalysis to perform this task. To build practical reflection models for
computer graphics, we fit low-order splines to our discretized functions. Our approach is orders
of magnitude faster than Monte Carlo methods, requires less memory, and does not suffer from
any noisy artifacts. The parameters of our model can also be texture mapped without the need for
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Figure 1: Definition of a direction w = (1, ¢).

any recomputations. It is therefore ideally suited for an implementation as a shader in a standard
rendering package.

We Dbriefly mention here that the discrete-ordinate method has been used before in a different
context in computer graphics. Both Max and Languenou et al. used this technique to compute the
scattering in non-constant densities such as clouds [11, 13]. Their methods, however, do not lead
to analytical reflection models since they consider arbitrary densities. They also do not address the
problem of rough surfaces refracting and reflecting light at the boundaries. The same comments
apply to the method of Kajiya and Von Herzen [9] and the radiosity-based approach of Rushmeier
et al. [20].

The rest of the paper is organized as follows. The next section details the physics involved
and introduces the equivalent discrete problem. In Section 3 we show how to solve the discrete
problem efficiently. Section 4 presents a derivation of our new BTDF. Section 5 clarifies many
implementation issues and discusses the corresponding “skin shader”. In Section 6 we present
some results and compare them to experimental data, while in Section 7 we conclude and discuss
future research. Material of a rather technical nature is addressed in the appendices.

1.1 Notational Preliminaries

Much of the material in this paper can be presented more elegantly using a “matrix operator ap-
proach” [17]. Many relations are expressed more compactly without indices in vector and matrix
form. In this paper all vectors are denoted by bold lowercase characters: v. The elements of v are
denoted by the corresponding italicized letter: v; is the i-th component of v. An element of a vec-
tor should not be confused with an indexed vector such as v;. A matrix is denoted by a bold upper
case character such as M and its elements are denoted by M, ;. The transpose of M is written M7



2 Discretizing the Physics

2.1 Physical parameters

The physical quantity corresponding to a visual stimulus is the radiance «. This quantity has units
of power per unit area per unit solid angle and gives the amount of radiant power flowing from a
particular position in a particular direction. Following Hanrahan and Krueger [5] we assume that
the skin depth is along the z-direction and that the skin’s properties are uniform in each zy-plane.
In this setting it is more convenient to use the dimensionless optical depth 7 rather than the depth
z, where

T=z/L

and L is the mean free path of a photon in the medium. Consequently, the radiance is a function
of optical depth and direction. We represent a direction by an ordered pair +w = (4 u, ¢) where
1 = cos @ is the cosine of the elevation angle 6 and ¢ is the azimuthal angle (see Figure 1). In the
following we always assume that the cosine 1 > 0. We therefore denote a downward direction by
—w = (—pu, ¢). The use of the minus sign is purely notational in this context.

The optical properties of the skin are modeled by two parameters that describe how light scat-
ters at each point. They are the albedo €2 and the anisotropy factor g. The albedo gives the fraction
of light that is scattered versus absorbed and is typically close to one for skin. The distribution of
scattered light is defined by a phase function p. This function gives the probability that a photon
travelling in a direction w’ is scattered in another direction w. We rely on the Henyey-Greenstein
phase function, a useful model frequently seen in the optics literature:

1—g°
(1+ g% — 2gcosy)*/?

p(w'w) =

Here ~ is the angle between the directions w’ and w. The anisotropy factor g € [0, 1] models how
much light is scattered forward. For ¢ = 0 the medium scatters isotropically, while for ¢ = 1 the
scattering is in the forward direction only. Scattering in skin is typically highly anisotropic with
values of ¢ in the range [0.7,0.95]. Both the albedo and the anisotropy factor of skin depend on
depth and wavelength. It is interesting that the popularity of the Henyey-Greenstein phase function
stems from the fact that it has a very simple expansion in terms of the associated Legendre functions
(see Appendix C). This is rarely mentioned in the computer graphics literature. The expansion
coefficients are the powers of g. The higher the anisotropy, the more terms are required in the
expansion. We associate with the phase function a linear scattering functional:

S{u}(r,w) = % [Mp(w',w)u(ﬂ W' do', (1)

where the integration is over all possible directions.

The reflection and refraction at the skin’s boundaries are modeled as isotropic rough surfaces.
In our model we assume that the skin has a uniform index of refraction n, and is bounded above
and below by media having indices equal to n; and n3, respectively. To model the reflection,
we use a variant of the Cook-Torrance model [4] proposed by van Ginneken et al. [25]. For the
transmission we derive a new model in Section 4 since we could not find a satisfactory one in the
optics literature. Both the transmission and reflection models depend on a roughness parameter o.
The BRDF and BTDF are denoted by r;;(w, w') and t;;(w, w'), respectively, for light coming from
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medium 1 (air)

medium 2 (skin)

o3

medium 3 (air/bone)

t23
Figure 2: Nomenclature for the BRDFs and BTDFs.

material 7 € 1, 2, 3 arriving at material j € 1, 2, 3, where, for example, 15 models the reflection off
of the top surface. This nomenclature is clarified in Figure 2. We associate with these distributions
linear reflection and transmission operators:

Ry{uy(rtw) = [y 2o)u(r o) do @
Tiilu}(r, tw) = /Qtij(iw',iw)u(ﬂiw’)u' dw’, (3)

where the integration is over the positive hemisphere and the signs depend on the BRDF or BTDF
considered, e.g., 712 has opposite signs from r,; as is evident from Figure 2.

2.2 Equation of Transfer

An equation for the radiance within the skin is obtained by considering its variation in an infinites-
imal cylinder aligned with the direction w. The change is equal to the amount of light scattered
into this direction minus the light absorbed and scattered out of this direction:

St = —u+ S{ul, @

where S is the scattering operator defined in Equation 1. To completely specify the problem, this
equation requires boundary conditions at the top and the bottom of the skin layer. At the skin’s
surface (r = 0) the downwelling radiance is equal to the transmitted radiance plus the internal
reflections of the radiance coming from the internal layer:

u(0, —w) = ta(—wo, —w) + Ra1{u}(0, —w). (5)

Similarly, if we assume there are no sources below the skin, the upwelling radiance at the bottom
of the layer (7 = 7,) is given by

(T, w) = Rog{u}(m, w). (6)

Once Equation 4 is solved using these boundary conditions, the BRDF and the BTDF due to
scattering in the skin’s layer are equal to

rs(—wo,w) = Tor{u}(0,w) /e and ts(—wp, —w) = Taz{u} (1, —w)/ 0,

5



respectively. In addition, the reflection due to an ambient light source of radiance is modeled by
integrating the skin’s BRDF over all incident directions —wy:

ra() = [ ri(=w0.w) 1o dpo

The total amount of light reflected off the skin is the sum of the part directly reflected by the
surface, the ambient term and the radiance leaving the subsurface layer:

Tot (W) = T12(—wo, w) + 7o (w) + 75(—wo, w).

In Section 4 we provide a model for 1, (and the other r;; and ¢,;) while the next section describes
a method of solution for r, and ¢,.

2.3 Angular Discretization

We discretize the angular part of Equation 4 in two steps. Because we assume that the surface
roughness is isotropic and that the skin is horizontally uniform, we can decompose the azimuthal
dependence of the radiance into a cosine series:

N
u(r,w) = up(T, p) cos k(¢ — ¢o). (7)
k=0
Next we discretize the cosines p into 20 discrete samples (see Appendix A for how they are
chosen):
J1s sy gy =R, — 2yt —HM- (8)
These values are also known as “ordinates,” hence the name “discrete-ordinates” to refer to this
type of discretization. The corresponding values of the discretized radiances are stored in a 2M
vector
ug (1) = (ug(r, 1), -+ -, ug(T, —,uM))T k=20,---,N.
As shown in Appendix A, the scattering operator in Equation 4 is discretized into a collection of
N + 1 matrices Sy (k = 0,---, N), each of size 2M x 2M. These discretizations convert the
transfer equation into N + 1 decoupled linear ordinary differential vector equations:

dllk (T)
-W
dr

where W is a diagonal matrix containing the samples of Equation 8. The last equation can be
written more compactly as

= —uk(’/') + Skuk(T),

duk (T)
dr
where M, = W1 (I — S;) and I is the identity matrix. Equation 9 is the main equation of this
paper. In the next section we show how to solve it efficiently.

= Myu(7), 9)

3 Direct Solution of the Discrete Problem

This section is inspired by the work of Jin and Stamnes [8]. However, our compact vector/matrix
notation greatly simplifies the presentation. Our approach is also more general, since we consider
surfaces of arbitrary roughness at the boundaries.
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3.1 Diagonalization

We assume that the skin is composed of a layer with constant optical properties sandwiched be-
tween two isotropic rough surfaces. In order to simplify the notation in this section, we will drop
the dependence of all quantities on the index “£”. This is justified because the equations for dif-
ferent terms in the cosine expansion are entirely decoupled. In the skin the radiance satisfies the
following equation:

du(r)

dr

Ignoring the boundary conditions for the moment, we see that this is a homogeneous vector or-
dinary differential equation. Such an equation is solved efficiently by putting the matrix M into
diagonal form. Indeed, in diagonal form the equations are decoupled and can be solved analyti-
cally. Diagonalizing M is equivalent to computing its eigenvalues and eigenvectors:

= Mu(r).

M =VAV L
Here A is a diagonal matrix containing the eigenvalues of M:
A= diag()\la"'a)‘Ma_)‘h"'a_)‘M)

where \; > 0fori=1,---, M (see Appendix E) and V contains the eigenvectors stored column-
wise. If we let w(7) be the transformed radiance w = V ~!u, then

dw (1)
dr

The exact solution to this differential equation is given by:

= Aw(1).

ATUU: (10)

w(T)=¢e

where the exponential is simply the diagonal matrix whose elements are the exponential of the
elements of A7. The vector u, in Equation 10 is to be determined from the boundary conditions.
The radiance in the layer is then obtained by inverting our earlier transformation:

u(7) = Vw(r) = Veru,. (11)

Our next step is to find a vector u, satisfying the boundary conditions.

3.2 Solving the Discrete Problem: Boundary conditions

We have just shown that the radiance in each layer can be solved for directly in terms of the
eigenvectors and eigenvalues of the transfer matrix. We can rewrite Equation 11 separating the
parts corresponding to upward and downward directions:

ut(r)\ (VT V- E(7)ug (12)
u(r) ] \\ V- V* E(—7)uy, )’
where each of the E matrices contains half of the exponentials:

E(t) =Mt
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The goal in this section is to compute the unknown vectors uj and u; given by Equations 5 and
6. First, let R;; and T;; denote the discrete versions of R;; and 7;; respectively. Since they are
defined only over the positive hemisphere they are of size M x M. The top and bottom boundary
conditions in terms of these matrices are

11_(0) = T12d0+R21u+(0) and (13)
11+(7'b) = R23u*(7b). (14)

The vector d represents the incident radiances, and for a directional light source is zero for each
entry except for the entry corresponding to — .o where it is equal to one. By substituting Equations
13 and 14 into Equation 12 and rearranging,

V- — R21V+ vVt — Ry V™ ug' - T12d0
(V+ — R23V7) E(Tb) (Vﬁ — R23V+) E(—Tb) 110_ N 0 '
This system, however, is ill-conditioned because the matrix E(7,) has entries that grow exponen-

tially with 7,. Fortunately, we can easily fix this problem by setting uy = E(—7,)uag and solving
for (g, u, ) instead [21]. The new system becomes:

(V_ — R21V+) E(—Tb) V+ — Rle_ ﬁg . T12d0 15
VT — Ry V™ (Vﬁ — R23V+) E(—Tb) u, N 0 ' ( )

This linear system is well behaved and can be solved using any standard linear solver. Once the
solution is obtained, the upward radiance at the top and the downward radiance at the bottom of
the layer are given by:

ut(0) = V'E(-n)af +V u, and
u (Tb) = V_fla— + V+E(—Tb)u0_,

respectively. These are the radiances just inside the rough surfaces of the skin layer. To compute
the radiances exiting the surface, we have to multiply these radiances by the transmission matrices
T, and T3, respectively:

u, = Tyyut(0) and wu; = Tozu (713). (16)

3.3 Summary

First we restore the subscript “£” to indicate that the radiances of Equation 16 correspond to a
single term in the cosine series. Consequently, the complete description of the radiances is given
by the following vectors

U0, -, U,y and W, -, wN.

These radiances are for a particular incoming direction —wo = (—pg,0). To get a discrete de-
scription of the BRDF r, of the skin layer we sample the incoming directions at the ordinates
11, -+, par- The discrete representation of the BRDF is, therefore, a collection of NV + 1 matrices
Ry of size M x M (k = 0,---,N). The i-th column of this matrix consists of the vector u, j
computed for the incident direction (—zx;,0), i = 1,---, M. In a similar fashion we build a set
of matrices T, for the BTDF ¢, of the skin layer (k = 0,---, N). A high level description of the
algorithm that computes these matrices is given in Figure 3.
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ComputeRT:
Fork=0,---,N do
Compute the scattering matrix M, (Appendix A)
Compute the reflection and transmission matrices R;; and T;; (Appendix D)
Compute eigenstructure of M, (see Appendix E)
Fori=1,---.M
Solve linear system for incoming direction p; (Equation 15)
Transmit radiances out of the layer (Equation 16)
Set the i-th columns of R, and T,
next
next

Figure 3: Summary of our algorithm.

parameter | num. of samples | samples

T 10 00 01 02 03 04 05 06 0.7 08 09
o 9 01 02 03 04 05 06 0.7 0.8 0.9

Q 7 0.1 05 075 08 0.9 0999 1.0

g 10 00 01 02 03 04 05 06 0.7 08 09

Table 1: Samples used for each of our parameters.

We have precomputed these matrices for different values of the parameters that model the skin
layer. These parameters are the transparency 7' = e~ ™, the albedo €2, the anisotropy factor g of
the phase function, and the roughness o of the surfaces bounding the skin layer. Each parameter
is dimensionless and takes on values between zero and one. The precomputations were done for
all possible combinations of the parameter values listed in Table 1. The ratio of the indices of
refraction is kept constant throughout: it is set to 1.4, roughly that of human skin. The number
of ordinates M was determined from the discretizations of the BRDF and the BTDF of the skin’s
surface (derived in the next section). For a roughness ¢ = 0.1 we neededed M = 30 ordinates
while for other values M = 24 was sufficient. The number of cosine series is always set to twice
the number of ordinates: N = 2M [8].

Because the scattering matrix depends only on €2 and g, we first computed the eigenstructures
for all 7 x 10 = 70 possible values of the parameters. We used the RG routine from EISPACK
[16] to compute the eigenvectors and eigenvalues. We encountered no numerical problems except
when the albedo was exactly one. An easy fix is simply to set the albedo to a value almost equal to
one, i.e., 2 = 0.999999. Once the eigenstructures were available we used them to precompute the
reflection r, and transmission ¢, of the skin layer for all possible combinations of the samples listed
in Table 1. We used the routine DGESL from LINPACK to solve the linear system of Equation 15.

The precomputation generates a huge data set. Our next task was to compress the data using
well chosen approximations. We first experimented with the elegant non-linear representation
of Lafortune et al. [10]. We did get some good matches using three cosine lobes. However,
in many cases the non-linear least square solver got stuck in local minima. For these reasons
we adopted a less efficient but more straightforward compression scheme. First, not all cosine
terms need to be included. For the reflection at the top of the layer we found that in general, 5
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Figure 4: Cross-sections of the reflection and transmission functions of the skin layer for different
values of the parameters.

terms (N = 4) were sufficient, while for the transmission at the bottom 15 (N = 14) terms were
required. These numbers were obtained by visually comparing the data to the approximation. We
further compressed the data by fitting a cubic Bezier surface to the data stored in the reflection
(resp. transmission) matrix R, (resp. Tj). We constrained the control vertices to respect the
symmetry of these matrices (Helmholtz reciprocity).

In Figure 4 we demonstrate the effect of our parameters on the reflection and transmission
functions. The simple shapes of the lobes first led us to believe that they might be modeled by
simple analytical expressions. The variation with each parameter is, however, quite subtle and
none of our analytical estimations could handle all variations at the same time. Analytical solutions
are rare when multiple scattering is included. Even the simplest case of a semi-infinite constant
medium with isotropic scattering does not admit an analytical solution [3]. The distributions are
clearly different from a simple constant Lambert term. The main difference is that the reflected
lobe is flatter and has a bias towards the forward direction. This is consistent with some of the
experimental data in [12]. Our distributions also vary from those of Hanrahan and Krueger [5].
Because they assumed a smooth surface, their distributions tend to zero for glancing angles. We
get the same behavior asymptotically when the surface roughness tends to zero (see Figure 4). The
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shape of their distributions corresponds to the plots with a low albedo in Figure 4.

To further validate our model we wrote a simple Monte Carlo simulator, compared the results
for a set of different parameters and found good agreement. Of course we could not verify this for
all possible values listed in Table 1 because of the inefficiency of the Monte Carlo technique.

4  Reflection and Refraction from Rough Surfaces

In this section we derive BRDF and BTDF models for an isotropic random rough surface. As in
van Ginneken et al. [25] we derive these models directly from a statistical model of the height field.
Indeed, our BRDF is essentially the same as theirs. Our main contribution is of course the new
BTDF model. To the best of our knowledge, a similar model has not appeared before in the optics
literature. We have chosen to derive the BRDF here as well for two reasons. First, it makes the
derivation easier to follow. Second, since we need an explicit expression for the BRDF, it makes
the paper self-contained.

We assume that our surface is an isotropic gaussian random height field [1]. The probability
that a normal w, lies within an infinitesimal solid angle dw, = (d(cos#,), d$,) is given by the
Beckmann function [1]:

1 2
P(w,) dw, = ——————exp <_tan 9a) dw,, a7

2102 cos? 0, 202

where o is the RMS slope of the surface. Let the surface be illuminated by a directional source
of irradiance E, of direction wy = (cos by, ¢o). For each direction w,, resp. wy, there is a unique
normal w, that will reflect (resp. refract) the incoming light in the direction w, (resp. w;). In the
case of reflection, this vector is simply the vector halfway between w, and w,. For refraction it
is the (normalized) vector equal to the sum of wy and nw;, where 7 is the ratio of the indices of
refraction above and below the surface. Notice that » can be smaller than 1 when computing #4,
for example. In cases where 1 > 1 it’s possible that no normal exists that refracts the incoming
light in the direction w,. This happens whenever w; lies outside of the cone of refraction. In this
case the BTDF is simply zero for that direction.

The incoming power at a surface element d A with normal w, is equal to the incoming irradiance
times the projected area:

Oy = Ey cos by dA,

where cos §; is the cosine of the angle between the normal and the incoming direction. The amount
of power that is reflected and refracted is determined by the Fresnel factor F'(cos 6, 1) [2]. Indeed,
a fraction I’ of the power is reflected while a portion (1 — F') is refracted. The radiance reflected is
by definition the power reflected per solid angle and foreshortened area. To get the total radiance
reflected into direction w,, we multiply the radiance reflected by a point of the surface with normal
w, by the Beckmann probability function defined in Equation 17:

_ F Ey cosby P(w,) dw,
N cos 0,dw, ’

Uy

The solid angles dw, and dw, are not independent. This can be understood intuitively: by varying
the normal in the cone dw, we get a corresponding variation around the reflected direction w,.. The
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size of this variation is exactly the factor which relates the two solid angles. The precise relation
between them was cited by Torrance and Sparrow [22]:

dw, = 4 cos Oy dw,.

Nayar provides an elegant geometric proof of this result [15]. In Appendix B we give an alternative
proof which easily generalizes to the case of refraction to be discussed below. Consequently, the
BRDF for a surface of roughness ¢ and with ratio of indices of refraction 7 is:

_ F(costy,n) P(wa)

4 cosb, cosfy

This result, when multiplied by a shadowing function, is essentially the Cook-Torrance BRDF.
We now derive the BTDF in a similar fashion. As in the reflected case, the total radiance
refracted into a direction w; Is given by:
(1—=F) Ey cosb)y P(w,) dw,
cos 0, dw; ’

Uy =

The relation between the solid angles dw; and dw, is, however, very different. At first we did not
pay too much attention to this relationship and simply assumed dw,, = dw,. But when we compared
our analytical model with a Monte Carlo simulation for validation, we found large discrepancies.
Finally, after a careful analysis of other BRDF derivations [4, 25] we realized the importance of
this relation. In Appendix B we prove that:

(cos 0 — \/C082 0y +n? — 1)2
77\/(:052 0y +n? —1

It is interesting to note that for » = 1 this factor is zero, i.e., when there is no surface, light travels
unperturbed in a straight line. With this factor the BTDF is equal to:

(1= F(costh, m) Plwa)
cos 0 cos By G(cos b, m)

dw; = dw, = G(cos 0y, n) cos Oy dw,.

t =

This last expression is the main result of this section: a new BTDF model for an isotropic rough
surface. We also multiply this function by the shadowing function proposed by van Ginneken at
al. [25]. We prefer this shadowing function over the one used by Cook and Torrance [4] since it is
consistent with the underlying model for the surface.

The BRDF and the BTDF are shown for different ratios of indices of refraction  and roughness
values o in Figure 5. The top figure corresponds to a ratio = 1.4 which is that of skin. These
plots correspond to the functions 715, t12, 791 and ¢, of our skin model. As mentioned above we
have validated our derivation using a Monte Carlo simulation. Whether they are a good model for
rough surfaces is another matter to be settled by experiment. At least, Cook and Torrance reported
good agreement with experiment for the function 5 [4].

5 The Skin Shader

The main motivation behind our work was to create good skin shaders. It is clear that our illumi-
nation model has many other applications. For example, Hanrahan and Krueger used their model
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Figure 5: Our new BRDFs and BTDFs for a rough surface. The distributions are rescaled to fit in
the figure.

parameter type typical values
epidermis transparency (RGB) | depends the race
dermis albedo color (RGB) (0.993,0.979,0.943)
dermis anisotropy | color (RGB) (0.860, 0.854, 0.823)
surface roughness | scalar 0.1-0.9

Table 2: Parameters of the skin shader.



epidermis

dermis

Figure 6: The skin is composed of a rough surface, the epidermis and the dermis. Most of the
scattering occurs in the dermis.

to render leaves [5]. As shown in Figure 6, human skin consists of a rough surface and two layers
below it: the epidermis and the dermis. The epidermis is a thin layer just below the skin’s surface
which only scatters weakly and mainly absorbs light. This layer determines the skin’s general tone
and corresponds to someone’s “race”. Below the epidermis is the dermis where all the scattering
occurs. This layer is almost completely opaque (7" = 0). The scattering there is characterized by
a high albedo (€2 =~ 1) and high forward scattering (¢ &~ 0.8). The shape of the distribution of
reflected light depends only on the scattering in the dermis. The effect of the epidermis is simply
to scale this distribution. Table 2 lists the parameters of our model. We used the precomputed data
mentioned in Section 3.3 to evaluate our shader. We employed a simple quadri-linear interpolation
for parameter values different from the ones listed in Table 1. Consequently, all of these parameters
can be smoothly texture mapped to achieve many different effects.

We have implemented our reflection model as a shader plugin in our animation software
MAYA. The plugin is available for free on our company’s web page!. The web page also provides
more information on the parameters of our skin shader. Several of our customers have recently
started to use our shader in production with good results.

Figure 7 shows several examples of human heads rendered using our new skin shader. Figure
7.(a) compares our model (right) to a Lambert shader (left) and the Hanrahan-Krueger (HK) model
(center). Our model seems to be a blend between these two models, which is consistent with the
plots in Figure 4. Unfortunately, the comparison is necessarily very vague. Indeed, we manually
tried to find a set of parameters for both the Lambert shader and the HK model which was as close
as possible to our results. In particular, we had to “brighten up” the HK model since it assumes
single-scattering. Figure 7.(b) shows our model illuminated by different area light sources. Notice
also that we texture mapped both the albedo and the roughness of the lips. Figure 7.(c) is similar
for a male head. Finally 7.(d) demonstrates a non-photorealistic application of our shader (notice
that the surfaces have been bump mapped).

6 Conclusions and Future Work

In this paper, for the first time, we compute the reflection and the transmission of light through a
skin layer bounded by rough surfaces. We achieved this through a discretization of the equation of
radiative transfer. We were able to efficiently solve the discrete problem using Fourier transforms

thttp://ww. al i aswavef r ont . comby following “community” and “Download”.
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(a) Comparison of our shader (right) with a Lambertian shader(left) and the Hanrahan-Krueger model (center)

(b) Head under different lighting conditions. Flash-like area source (left) and two area light sources (right)

(c) Another head model with lips and freckles (d) Non-photorealistic application of our model.
texture mapped.

Figure 7: Renderings created using our new skin shader.
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and eigenanalysis of the scattering matrix. Our model takes into account multiple anisotropic scat-
tering and also handles reflections and refractions at the rough boundaries. To the best of our
knowledge a model of this generality has not appeared before in computer graphics or in any of
the related fields such as the atmospheric sciences. Our model is therefore of potential interest to
these other fields as well. We have precomputed the distributions of reflected and transmitted light
for different parameters and used an approximation of that data to build a skin shader. Also, for
the first time we derive an analytical model for the Bidirectional Transmittance Distribution Func-
tions (BTDFs) for a rough surface following earlier derivations for the Bidirectional Reflectance
Distribution Function.

We have compared our solutions for a subset of our parameters with the output of more expen-
sive Monte Carlo simulations. There was good agreement in each case. We are therefore confident
that we have solved the physical formulation of the problem. The question of whether our mod-
els match reality has to be settled by comparing them with experimental data. We found a general
agreement with the Cornell data [12], however, we feel that more comparisons are needed. Assum-
ing our solver to be bug-free, it would be interesting if there were large discrepancies between our
model and experiment. This would suggest that the linear transport theory is perhaps inadequate
for this problem. On the practical side, our animators appreciated our new skin shader as it gave
them an effect previously possible only with texture mapped Phong-like models. Possible future
effects they have requested include “glowing ears”, better skin bump-maps, tiny hairs, etc, which
are of course hard to model using a shader alone. We are currently investigating how to achieve
these effects.

There are many obvious extensions to our model. First, it is easy to include different scattering
layers in our model, and our implementation can handle different layers. However, we found
that one layer was good enough for the skin shader. To keep this paper as readable as possible,
we decided not to add another index referring to the layers. The model can also be extended to
handle anisotropic surfaces: simply use Fourier series instead of Cosine series for the azimuthal
dependence of the radiances.

We intend to make our data publicly available in the hope that it might lead someone to find a
better approximation scheme. Ideally, we would like to have a simple analytical model that fits the
data. This would be of great practical and theoretical interest to many applied fields.

A Details: Angular Discretization

In this appendix we provide the missing details of Section 2.3 that lead to explicit expressions for
the matrices M.
First, we expand the phase function into a cosine series as well:

N
pw' w) = > pr(p', ) cos k(¢ — ¢'), (18)

k=0

where the p,, are functions of the anisotropy factor g and the associated Legendre functions as
shown in Appendix C. If we substitute Equations 7 and 18 into Eq. 4 we get the following N + 1
equations (k = 0,---, N):

+1

d / / /

MEW(M) = ug(p) — Qk[
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where

0, — Q(l + (Sg,k)
k 4

and 9, ; is the Kronecker symbol. We now discretize the problem further by approximating the
integrals in Equations 19 using a quadrature:

-1

[ 700 i 3 () + £}

where w,, are the weights and y,,, > 0 are the ordinates of the quadrature. With this approximation
Equation 19 becomes a set of linear equations:

d

i (pn) = s (pn) — 2_:1 W D1 (= L )Wk (—1m) + Dr(foms 1)k (1) }

d

~Hn k(= Hn) = ur(=pin) = ; W APk (= Hms =t )k () + P (omy = b )ik (f1m) }

Since pi(—pms ftn) = Pr(fms — ) AN P (Hms fin) = Pr(—fim, — i) We introduce the following
two M x M matrices:

(Ak)n,m — (kampk(um; ,U/n) - 6n,m) /Mn and

Consequently, recalling the vector notations introduced in Section 2.3:
_ [ —Ar —By
w- ().
B Relating dw to dw,

Computing the relationship between the two differentials dw, and dw is mathematically equivalent
to computing the Jacobian of the change of coordinates w, — w. In this appendix we compute
the Jacobians for both the reflected and the refracted solid angles. We compute the change of
coordinates in three steps:

Wo — (g, Ya) — (z,9) — w.

The relation between the spherical and cartesian coordinates is well known and given by
dx, dyg = g dw, and dzx dy = p dw.

Following the approach of Nayar et al. [15] we assume without loss of generality that the solid
angle of the normal dw, is centered along the normal (0,0, 1). We also assume that the source is

coming from the direction (u, 0), or in cartesian coordinates vo = (/1 — 2,0, uo). See Figure

8. Let
n(xaa ya) - (xa; Ya, \/ - 553 - yg)
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Figure 8: Solid angles involved.

be a normal in dz, dy,. Then the reflected and refracted directions are equal to

r = 2(n-vg)n—vy and

nt = <n-v0—\/(n-v0)2+772—1)n—v0,

respectively. The transformation from the normal to the reflected vector corresponds to a change
of coordinates (., y,) — (z,y), where

= 2(y1— pigre + poy/1 — 22 — y2) e — /1 — 41§
y = 2(1— pdwa + por/1 — 22 — y2)¥a.

The Jacobian of this change of coordinates at (z,, y,) = (0, 0) is easily calculated to be equal to:

J = = =4 p2.

dta Oy
Gy O

‘ ox ox ‘ ‘QMU 0

0 2p

Oxq Ya

Therefore,
podw = dxdy = 4,ugdxadya = 4,ugdwa.

In other words,
dw = 4pg dw,,

which agrees with Nayar’s result [15]. Our derivation might seem unnecessarily complicated com-
pared to that of Nayar [15]. However, our derivation has the merit that it can easily be applied to
the refraction problem as well. The Jacobian of the change of coordinates corresponding to the
refraction at (0, 0) is equal to

2] = | Ho — H 0

. _ 2
0 Lo — iy = (po — )",
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where

pe =\ +n*—1
is the cosine of the refracted direction. Again we have the chain of relations
lut dw = drdy = % (o — pe)? dzody, = % (ko — 1)? dws.
n n n
Therefore,
(M(Q) - Nt)Q

Ui

dw = dw,,

as advertised in Section 4.

C Representation of the Phase Function

The Henyey-Greenstein Phase function has the nice property that it can be expanded explicitly in
a cosine series given by Equation 18. The coefficients in the expansion are expressed in terms of
the associated Legendre functions [3]. This explains why this phase function is so popular in the
radiative transfer literature. The expansion follows from the following result [6]:

N
p(cosy) = 3" (2k + 1)g" Pi(cos ),

k=0
where P is the Legendre polynomial of degree k. From a well known relation between the Legen-
dre polynomials and the associated ones?, we see that the coefficients in the expansion of Equation
18 are given by:

N

—k)!
p)=(2-6 o+ 1)g" = E) pr ) pi
Pr(p's 1) = (2= Gox) D_(2n+1)g (g ot Lo B ()

n=~k

where P¥(z) are the associated Legendre functions [19].

D Discrete Representation of the BRDF and BTDF

Let p(w’, w) be one of our BRDFs or BTDFs. We then want to compute the coefficients p; in the
cosine series:

N
pw'w) =D pr(p's 1) cos k(o — ¢').
k=0

Unlike the phase function in Appendix C, we cannot express these coefficients analytically for the
BRDF and BTDF derived in Section 4. For the given set of ordinates j1, - - -, ;137 We approximate
the integrals:

27
T (Jts i) = /0 (£ 4, 0; % fim, #) cos kb dg,

fork =0,---,Nandn,m = 1,---, M. The signs in the integrand depend on the BRDF/BTDF
being computed. The discrete representation of the linear operators associated with p are then
given by matrices L, whose elements are

2This relation was used in [9], for example.
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E Computation of Eigenvalues and Eigenvectors of Eg. 9

We seek a 2M/-dimensional vector (a, b)” and a scalar \ that satisfy
2= -A -B a
b /) B A b /)’

AMa+b) = (A-B)(b—a)
A(b—a) = (A+B)(a+b)

Equivalently,

hence
M(a+b)=(A-B)(A+B)(a+b).

Thus we have reduced the problem to size M. We can solve this problem using standard numerical
methods to get M eigenvalues aq,---, ay, > 0 and M eigenvectors eq, - - -, e;,. Now, let A\, =
Van and \f, = —(B+ A)e,, and

1
v;“:§(en+fn) and v, == (e, —1f,).

One can verify that these definitions provide eigenvalues and eigenvectors for our original problem:

3 viy (—-A -B v, PR —-A -B v,
"\v, | B A v, an "\vi ) B A v ]
These results can be written more compactly using the following matrices:

V= (v;’---vj\}), V- = (vf---v;/[) and AT =diag(\y,..., \y).

We obtain the following matrices of eigenvectors and eigenvalues:
vVt V- AT 0
V:(V V+> and Az( 0 —A+>'
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