

Guided Control of Intelligent Virtual Puppets

By

Daniel Alexander Taranovsky

A thesis submitted in conformity with the requirements

for the degree of Master of Science.

Graduate Department of Computer Science

University of Toronto

© Copyright by Daniel Alexander Taranovsky 2001

ii

Abstract
Guided Control of Intelligent Virtual Puppets

Daniel Alexander Taranovsky
Master of Science, 2001

Graduate Department of Computer Science, University of Toronto

Controlling the motion of virtual characters with many degrees of freedom can be

difficult and time consuming. For some applications, complete control over all joints at every

time step is not necessary and actually hinders the creative process. However, endowing the

character with autonomous behaviour and decision-making capabilities completely absolves

the user of clearly specifying his intentions. In many circumstances the ideal level of control

allows the user to specify motion in terms of high-level tasks with timing and stylistic

parameters. The user is not encumbered by low-level details, while retaining complete

control over the motion’s semantic interpretation. This relatively unexplored level of motion

specification is termed “guided control”, and is the focus of our work. We present the issues

and results encountered from implementing a prototype animation system with guided

control of a virtual puppet.

iii

Acknowledgements
Knowlege: Ye euery man whan ye to deth shall go

But not yet for no maner of daunger.
Eueryman: Gramercy, Knowlege, with all my herte.
Knowlege: Nay, yet I wyll not from hens departe

Tyll I se where ye shall become.

 Everyman, Scene 17. John Skot (1521-1537?)

I am most thankful for my mother, father, and brother, whose unfaltering support and

encouragement has made everything possible. This thesis is dedicated to them.

I am privileged to have worked among the talented, dedicated people at the Dynamic

Graphics Project. I thank my supervisor Michiel van de Panne for his patient and

knowledgeable advice. Professor van de Panne’s comments and constructive scrutiny greatly

improved the work. My second reader, James Stewart, also diligently read my thesis. I am

grateful to both of these men for their guidance and suggestions. Petros Faloutsos and Joe

Laszlo were always generous with their time and deserve special thanks for their technical

help.

I acknowledge the financial support of the Government of Ontario, the University of

Toronto, and the Department of Computer Science.

iv

Table of Contents
1 Introduction.. 1

1.1 Motivation.. 2

1.2 Thesis Contributions .. 4

1.3 Potential Applications.. 5

1.4 Thesis Organization... 5

1.5 Summary.. 6

2 Literature Survey.. 7

2.1 Characterizing Animation Techniques... 8

2.2 Kinematic Specification of Articulated Figures .. 12

2.3 Keyframing Techniques... 15

2.4 Positioning Articulated Figures with Inverse Kinematics 17

2.5 Motion Capture and Motion Processing .. 20

2.6 Dynamic Techniques.. 22

2.7 Behavioural Techniques... 25

2.8 Interactive Control... 26

2.9 Ergonomics .. 31

2.10 Biomechanics... 32

2.11 Summary.. 41

3 System Overview... 42

3.1 System Architecture... 44

3.2 System Modules... 46

 3.2.1 Interface ... 46

v

 3.2.2 Motion Scheduler... 47

 3.2.3 Posture Generator... 47

3.3 User Input... 48

3.4 Environment... 49

3.5 Virtual Puppet.. 52

3.6 Motion Queue .. 56

 3.6.1 Motion Building Blocks... 57

 3.6.2 Cyclic Motion.. 59

 3.6.3 Critical Body Segments ... 60

3.7 Summary.. 61

4 Motion Scheduling... 62

4.1 Introducing Motion Concurrency.. 63

4.2 Motion Scheduler Operation.. 65

4.3 Motion Concurrency Algorithm... 71

4.4 Removing Tasks... 77

4.5 Animating the Virtual Puppet.. 82

4.6 Summary.. 86

5 Posture Generator... 87

5.1 Solving Inverse Kinematics ... 89

5.2 Overview of IK Algorithm... 96

5.3 2D Inverse Kinematics... 96

5.4 Properties of the Algorithm.. 96

5.5 3D Inverse Kinematics... 102

5.6 Coping with Collisions .. 107

5.7 Natural Postures ... 111

 5.7.1 Estimating Arm Position.. 114

 5.7.2 Estimating Torso Position.. 115

 5.7.3 Weight Schemes... 118

 5.7.4 Score Functions.. 121

 5.7.5 Distributing Iterations .. 124

5.8 Summary.. 128

vi

6 Motion Interface... 129

6.1 Primary Hand Constraints.. 130

 6.1.1 Reaching Motions .. 131

 6.1.2 Sliding Motions.. 132

 6.1.3 General Motions... 133

6.2 Secondary Hand Constraints.. 133

6.3 Modifying the Environment... 137

6.4 Properties of the Interface.. 142

6.5 Special Interpretations.. 143

6.6 Summary.. 145

7 Results.. 146

7.1 Input and Output .. 147

 7.1.1 User Input... 147

 7.1.2 System Output.. 151

7.2 Keyboard Mapping... 152

7.3 Animations... 154

 7.3.1 Manipulating Blocks.. 154

 7.3.2 Blending and Interpreting Tasks.. 157

 7.3.3 Drinking Coffee ... 159

7.4 Summary.. 160

8 Conclusion... 162

8.1 Outstanding Problems.. 162

8.2 Contributions.. 165

8.3 Summary.. 165

Appendix A.. 166

Appendix B... 170

Appendix C... 172

References .. 173

vii

List of Tables
Table 3.1 Joint specifications.. 55

Table 4.1 Two non-conflicting tasks... 64

Table 6.1 Mapping orientation and position goal for object reaching tasks. 131

Table 6.2 Mapping orientation and position goals for space reaching tasks................... 132

Table 6.3 Overriding default secondary goals. ... 136

Table 6.4 Assigning default secondary goals.. 136

Table 6.5 Ignoring lock because of user input. ... 136

Table 6.6 Moving objects.. 138

Table 6.7 Stacking objects. ... 138

Table 6.8 Series of commands with identical interpretation. .. 139

Table 6.9 Sliding objects... 139

Table 6.10 Coordinated task execution with both hands .. 140

Table 7.1 Sample key mapping for animations in Section 7.3.. 153

Table 7.2 System default settings for animation #1.. 155

Table 7.3 Script for animation #1.. 155

Table 7.4 System default settings for animation #2.. 157

Table 7.5 Script for animation #2.. 157

viii

List of Figures
Figure 1.1 Julius Caesar, Act III Scene I. William Shakespeare (1564-1616). 2

Figure 1.2 Canon in D Major, Johann Pachelbel (1653-1706). .. 2

Figure 2.1 Relative number of parameters to be resolved... 8

Figure 2.2 Relative ambiguity of user motion directives.. 9

Figure 2.3 Comparison of animation applications. ... 10

Figure 2.4 Relative user input feedback.. 11

Figure 2.5 State specification of a single rigid link... 13

Figure 2.6 Forward kinematic specification of articulated figure..................................... 14

Figure 2.7 Inverse kinematic specification of articulated figure....................................... 15

Figure 2.8 Form of velocity curves for slow and fast movement. 33

Figure 2.9 Velocity curves of discrete and continuous movements.................................. 37

Figure 2.10 Velocity curve oscillations in fast and slow movement. 38

Figure 2.11 Symmetric and asymmetric velocity curves. ... 39

Figure 3.1 The table scenario. ... 43

Figure 3.2 Diagram of system architecture. .. 44

Figure 3.3 Space and Object Entities. ... 50

Figure 3.4 Entity object relationships. .. 50

Figure 3.5 Object space relationships. .. 51

Figure 3.6 Relational diagram of entities.. 51

Figure 3.7 Table model dimensions (Height = h, Front = f, Skew = s). 52

Figure 3.8 Puppet model body segments. ... 53

ix

Figure 3.9 Puppet model local coordinate frames... 54

Figure 3.10 Joint centres of rotation.. 54

Figure 3.11 Ball joint axis state information... 56

Figure 3.12 Motion Queue with one cyclic motion frame and one non-cyclic motion.... 60

Figure 4.1 Functional diagram of the motion scheduler. .. 63

Figure 4.2 Example of concurrent execution of tasks... 65

Figure 4.3 Pseudocode of motion scheduler operation... 66

Figure 4.4 Three people performing simple reaching tasks.. 68

Figure 4.5 Partial and full overlap of two reaching tasks.. 69

Figure 4.6 Pseudocode for blending two tasks.. 72

Figure 4.7 Pseudocode for scheduling speed and interpolation functions. 73

Figure 4.8 No overlap of two tasks. .. 74

Figure 4.9 Partial overlap of two tasks.. 75

Figure 4.10 Full overlap of two tasks.. 76

Figure 4.11 Task execution timeline... 77

Figure 4.12 Overlap of two tasks with no conflicting critical segments........................... 78

Figure 4.13 Rescheduling Task 1.. 79

Figure 4.14 Scheduling Task 1 secondary goals for 0.2 seconds...................................... 80

Figure 4.15 Scheduling Task 1 secondary goals for 2.0 seconds...................................... 81

Figure 4.16 Scheduling right arm goals from Task 1’. ... 81

Figure 4.17 Modifying Task 1 by migrating goals.. 82

Figure 4.18 Computing the state of each degree of freedom. ... 84

Figure 4.19 Velocity continuity between tasks. .. 85

Figure 4.20 Velocity discontinuity between tasks. ... 85

Figure 5.1 Functional diagram of the posture generator. .. 89

Figure 5.2 System state after step 1... 97

Figure 5.3 System state after step 3... 98

Figure 5.4 System state after step 4... 99

Figure 5.5 Discovering local minima when iterating from the base joint....................... 102

Figure 5.6 Joint displacement for optimizing orientation and position objective funcs.104

Figure 5.7 Projecting E and G for a shoulder rotation. ... 106

x

Figure 5.8 Original posture and corresponding for elbow and hand collisions. 110

Figure 5.9 Grasping posture computed with and without collision removal. 111

Figure 5.10 Proximal and distal posture estimates.. 113

Figure 5.11 Positioning forearm for proximal arm estimates and shoulder for distal..... 114

Figure 5.12 Transforming for x-axis torso rotation... 115

Figure 5.13 Posture transformations from (5.31).. 117

Figure 5.14 Abdomen z-axis rotation limit. .. 117

Figure 5.15 Comparison of our weight scheme with a naïve calculation. 120

Figure 5.16 Calculating the height of the elbow. .. 122

Figure 5.17 Posture generator algorithm.. 125

Figure 5.18 Postures generated by each of the three passes in Figure 5.17.................... 126

Figure 5.19 Human and puppet performing similar tasks... 127

Figure 6.1 Functional diagram of the motion interface... 130

Figure 6.2 Interpreting reaching tasks... 132

Figure 6.3 Interpreting sliding tasks.. 133

Figure 6.4 Interpreting general tasks... 133

Figure 6.5 Applying primary and secondary motion to a task.. 134

Figure 6.6 Overriding default secondary goals with locks.. 135

Figure 6.7 Sliding task moving the left hand dynamic space entity. 137

Figure 6.8 Stack of objects.. 139

Figure 6.9 Moving a cauldron with both hands. ... 141

Figure 6.10 Placing hand at an occupied space... 144

Figure 7.1 Sample environment script. ... 147

Figure 7.2 Appearance of the prototype application. .. 149

Figure 7.3 Sample motion script. .. 150

Figure 7.4 Example keyboard layout of user-specified parameters................................ 152

Figure 7.5 Task execution timeline for animation #1. .. 155

Figure 7.6 Selected frames from animation #1. .. 156

Figure 7.7 Task execution timeline for animation #2. .. 158

Figure 7.8 Selected frames from animation #2. .. 158

Figure 7.9 Selected frames from animation #3. .. 161

1

Chapter 1
Introduction

Computer animation has become prominent in developed societies around the world. It has

affected the way we are entertained and communicate information in a variety of domains.

Medicine, engineering, and education have adopted computer animation as an indispensable

medium for modeling data and simulating virtual environments.

Computer animated films, such as Pixar’s “A Bug’s Life”, use modern technology to

tell a feature length story that appeals to people on an emotional level, rather than being of

interest solely from a technical perspective. Blue Sky Studio’s “Bunny” is a short computer

animated film that has been awarded an Academy Award in recognition of its artistic

qualities. This contrasts to an era where computer graphics and animation resided on the

fringes of the scientific and artistic community. Interactive video games provide people with

a form of entertainment unlike any other, and have become as widespread and popular as

film. Virtual reality simulators allow people to train themselves in dangerous or rare

circumstances that may not be feasible to practice in real-life. Pilots, emergency staff, and

medical doctors have all benefited from the use of computer animation in virtual simulators.

Finally, engineers use computer animation to design better aircraft or office space more

efficiently and reliably.

2

The work presented in this thesis is of interest to society because of its contribution to

the state of the art in computer animation. We consider a new way of controlling virtual

puppets previously unexplored termed guided control, which allows the user to generate

figure animation with relative small effort while maintaining task-level control over the

motion.

1.1 Motivation

In virtually any discipline, ideas are conveyed using some level of abstraction to avoid

tedious, redundant details. A script in theatre or movies directs the actions of a character in

high-level terms.

DECIUS BRUTUS Great Caesar,--
CAESAR Doth not Brutus bootless kneel?
CASCA Speak, hands for me!
[CASCA first, then the other Conspirators and BRUTUS stab CAESAR]
CAESAR Et tu, Brute! Then fall, Caesar.
[Dies]

Figure 1.1 Julius Caesar, Act III Scene I. William Shakespeare (1564-1616).

The author of the play does not specify the joint angles of the character's arm, or worry about

the actor remaining upright after translating the actor's centre of mass.

A musical score will specify the timing and intonation of the notes.

Figure 1.2 Canon in D Major, Johann Pachelbel (1653-1706).

The composer does not have to include precise information about the pianist's hand position,

or the force applied to keys when producing a particular sound. Such details are avoided for

several reasons. First, writing inspiring music is difficult enough without having to specify

3

every parameter in the environment. Second, there is an assumption that the pianist already

knows how to produce notes on his instrument. The pianist is skilled enough to know proper

hand position, and the appropriate joint rotation and angular velocity of the fingers to

produce sound from his instrument.

Much like composing music, timing the actions of characters to produce realistic

motion while instilling an emotional response from the audience is difficult. Just as a

composer is not hindered by having to over-specify the state of the environment, the user

interacting with the virtual puppet may want to be relieved of over-specification as well.

Despite avoiding low-level details, composers have control over the critical aspects of the

music, such as pitch and duration of notes. Users controlling a virtual puppet may want to

influence similar characteristics of motion as well. Specifying the velocity over time or the

perceived emotion associated with a movement are two examples. Unfortunately, there do

not exist many tools to provide users with such a level of abstraction.

Keyframing tools require low-level specification of the figure state at several critical

points in time. Keyframe animation is analogous to specifying the pianist's hand position and

state of each finger joint throughout the performance. Behavioural animation endows the

characters with autonomous decision-making capabilities, and does not allow the user to

specify a desired sequence of tasks over time. The musical counterpart of behavioural

animation is having a skilled pianist and telling him or her the style, era, and general stylistic

description of the music one wants to hear without making any reference to notes or specific

musical pieces. Motion data processing tools can generate motion that is limited by the

properties of the original signal. Motion capture techniques are similar to making a tape

recording of all individual notes in the musical scales, and replaying each note in a specific

sequence to generate music. Clearly there is room in the realm of animation for generating

motion in a level of abstraction that can take advantage of the animator's skill and creativity,

while not overburdening him with excessive parameter specification.

A composer is given the luxury of having skilled musicians throughout the world who

can make music according to his specifications. To implement a similar level of abstraction

for specifying character animation, we must endow the synthetic puppet with the ability to

interpret and execute task-level commands. Consider an animator who wants a character to

grasp a coffee cup with the left hand. To successfully perform this task, the virtual puppet

4

must acquire some knowledge about the environment and its own structure. First, the

character should be aware of at least one coffee cup, and knows which cup the animator is

referring to. Second, the character must know how to move in a natural way to approach the

cup and to pick it up. These points imply that there is some knowledge-based motion

demanded of the puppet.

A musician is equally fortunate to have composers who are able to write beautiful,

inspiring musical scores. Musicians depend on the composer’s ability to sequence notes in a

way that generates music, rather than random noise. In the same context, the motion of a

virtual character is determined by the user’s ability to sequence tasks and motion primitives.

The user’s ability to specify motion is further constrained by the interface and level of

control offered. A user cannot direct a puppet to jump if there is no input that semantically

maps to this command. Likewise, a composer cannot include explosions or popping noises in

the piece, since these sounds do not correspond to notes. If one is interested is generating

task-level motions with user specified primitives, then the interface should accommodate this

level of control. In the context of guided control, the animator needs an interface that maps a

level of abstraction consistent with unambiguously specifying objects, points in space, and

timing parameters. The interface and level of control should be powerful enough to respect

the user’s intentions, yet not be overly cumbersome.

1.2 Thesis Contributions

The goal of this work is to develop an intelligent animation tool with interactive, guided

control. We attempt to give enough control over the character to respect the animator’s

intentions and creativity, while not overburdening him or her with over-specification.

“Guided control” implies autonomous resolution of some parameters when generating the

final motion sequence. “Intelligent” animation implies system interpretation of ambiguous,

high-level user input.

Guided control can be characterized by user specification of velocity and stylistic

parameters, but avoids low-level joint state specification. Our system’s intelligence stems

from three features.

• Interpret animator’s commands in context with the current state of the environment.

• Identify and reasonably respond to conflicting or impossible commands from the user.

5

• The puppet should execute user commands with humanly natural, realistic motion. The

state of the environment and task difficulty should be immaterial to the realism of the

final animation.

The scope of the system implemented is simplified in several respects to achieve the above

objectives. The most important simplifications are the torso puppet model illustrated in

Figure 3.8, and the absence of dynamic stability in the motion model described in Section

4.5.

1.3 Potential Applications
Guided control can be applied to any scenario where mid-level task specification is useful.

Production animation can benefit from guided control by generating complex motion

sequences quickly and efficiently. Animating a scene such as a factory assembly line requires

a distinct sequence of object manipulation tasks to be performed by a large group of

characters. For such an example, the animator may wish to give up some control for

convenience and less cost, especially if the motion is applied to characters in the background.

Production costs of foreground character animation can be lowered by quickly generating an

initial motion sequence to be later refined and improved.

Guided control can be applied to adventure games where the user commands object

manipulation tasks, or demands a lower-level control than typical captured motion sequences

offer. Finally, the level of control presented in this thesis can be applied to virtual characters

presenting information where body movements and hand gestures are fundamental to

conveying the message. Virtual weathermen and repair instructional videos are two

examples.

1.4 Thesis Organization

Chapter 2 presents a survey of literature relevant to our topic. An overview of animation

techniques is presented, and recent research results are summarized to place the work in

context. Chapter 3 presents an overview of our prototype animation system. Chapter 4

describes a methodology for scheduling the execution of tasks. Chapter 5 presents an

algorithm for positioning the puppet’s limbs according to user input. Our method for

6

interpreting the user’s intentions is presented in Chapter 6. Chapter 7 describes the prototype

animation system’s implementation, and the animations successfully produced. Chapter 8

summarizes the work and proposes outstanding problems for further research.

1.5 Summary

This chapter introduced the inspiration and vision of a guided control animation system. An

abstract analogy with similar artistic expression was presented in Section 1.1. Section 1.2

gave a more specific description of guided control, and Section 1.3 proposes potential

applications. The remainder of the thesis was outlined in Section 1.4.

7

Chapter 2
Literature Survey

This chapter introduces principal literature and research in computer animation. An overview

of animation techniques is presented to place our work in context with existing methods.

Biomechanics and ergonomics literature is summarized to give the reader a background in

relevant issues and invite future work. Specifically, a background in biomechanics and

ergonomics helps assess the motion and posture models to be discussed in Section 4.5 and

5.7 respectively. The biomechanics literature surveyed focuses on kinematic models of

realistic human motion and is directly applicable to our topic. Some biomechanics theory

presented has been modeled by similar animation systems, such as Badler’s Jack system

discussed in Section 2.4 and 2.8 [BPW93]. The ergonomics literature discusses empirical

notions of comfort and preferred postures, which is important to our model discussed in

Chapter 5. Section 2.1 introduces metrics for characterizing animation techniques. Kinematic

and dynamic methods are surveyed in Sections 2.2 to 2.6. Behavioural techniques are

introduced in Section 2.7. Interactive methods cover techniques with more abstract control

over the character’s motion, and are presented in Section 2.8. Results from ergonomics and

biomechanics research are presented in Section 2.9 and 2.10 respectively.

8

2.1 Characterizing Animation Techniques
Independent of the technique used to position the character over a sequence of frames, there

is an issue of how much animator control is warranted by the system. A parameter refers to

any information from the animator used to influence the final motion signal. Every animation

technique has a unique level of parameterization in three respects. The degree of

parameterization refers to the number of parameters the animator must resolve for the

system. The parameter’s level of abstraction indicates how much interpretation or

autonomous reasoning from the animation system is required. Finally, the interactivity of the

system indicates how often parameters are specified.

Figure 2.1 Relative number of parameters to be resolved.

In general, high degrees of parameterization and low levels of abstraction require skill

and considerable effort from the animator. The extreme case is keyframing techniques

discussed in Section 2.3, where all degrees of freedom in the figure are specified explicitly in

at least two frames. Low degrees of parameterization and high levels of abstraction relieve

the animator of having to specify too many parameters, but provides reduced control over the

animation. Behavioural techniques and autonomous agents introduced in Section 2.7 are

examples of low parameterization and high abstraction. Systems that offer low abstraction

and low parameterization, or high parameterization and high abstraction are rare. A reason

for their scarcity is that most systems aim to maximize control or minimize effort, while

these two parameter mixes offer neither scenario. An example of low abstraction and low

parameterization is the animator specifying the angle of the elbow and nothing else.

Conversely, a system where the animator provides volumes of complex psychological

information about the characters and how they relate to other characters and the environment

9

is an example of very high abstraction and parameterization. Figure 2.1 and 2.2 present a

relative comparison of animation techniques in terms of parameterization and abstraction.

The ideal mix of parameter control depends on the task. Production animators

demand complete control over characters in every frame. Virtual reality simulators and

interactive autonomous agents require characters to animate autonomously and reason about

appropriate future behaviour. An interesting and relatively unexplored level of parametric

control is guided control, where the animator is able to specify task-level commands along

with a set of motion primitives. Task-level commands specify motion goals such as “walk to

door”, or “pickup object”. Motion primitives modify some property of the motion signal,

such as the velocity or perceived emotion associated with the movement. Guided control is

part of the novelty of our system, which is described in detail in subsequent chapters. A

comparison of applications with respect to interactivity and abstraction is presented in

Figure 2.3.

Figure 2.2 Relative ambiguity of user motion directives.

10

Figure 2.3 Comparison of animation applications.

High interactivity, high-levels of abstraction, and low parameterization is common in

interactive video games. Action video games commonly have only a few high-level

commands available to the user, such as “pass ball”, “jump”, or “pickup object”. However,

the nature of user interactivity implies a degree of randomness or unpredictability in the

control. For the animation to appear realistic the system must correctly interpret and respond

in context with the environment. For example, if a user instructs a character to pickup an

object, the character must move towards the object before attempting to grasp it. Once near

the object, the character must delegate joint rotations to reach the object naturally. This level

of interaction and interpretation with the system is complex, primarily because the character

must reason about his surroundings and have some knowledge about its own kinesiology.

This is one of the objectives of guided control, and requires collaboration between computer

science, biomechanics, and psychology.

Low-levels of interactivity implies the animator resolves the value of input

parameters few times relative to the length of the animation. Script-based animation allows

the user to specify system parameters at the beginning of execution. The system then

computes and outputs motion data without further interactivity with the user. The quantity

and type of parameters the animator can specify in the script depends on the degree of

11

parameterization and level of abstraction. The disadvantage of this level of interactivity is the

animator is given no visual feedback as the animation progresses. The advantage is that there

are limitless degrees of freedom the animator can effectively control. The animator is also

given the opportunity to pause and reflect. Real-time animation assumes the animator knows

what the character ought to do at all times. Replaying motion capture data is a script-based

animation technique with low interactivity, low abstraction, and high parameterization.

Perlin's “Improv” system [PG96] is script-based with low interactivity, high abstraction, and

low parameterization.

Figure 2.4 Relative user input feedback.

Interactive real-time animation, also termed performance animation or digital

puppetry is the highest level of interactivity one can achieve, where the animator can specify

parameters continuously over time with immediate feedback. It is attractive because it allows

a fluidity of expression and spontaneous improvisation difficult to synthesize any other way.

Performance animation is commonly associated with low abstraction and high

parameterization, and aims to maximize the animator's control over limbs, facial expressions,

moving eyes, and other degrees of freedom in real-time. This leads to demands for novel

input devices such as joysticks, optical body suits, and cyber-gloves. Not only do these input

devices make performance animation possible, but make animation accessible to people

otherwise unskilled in animating characters. The interface allows real-life actors, dancers,

and other people trained in using their bodies in expressive ways to control the virtual

characters. The disadvantage with such an interface is that the level of control is limited by

the independent degrees of freedom of the input device. Designing an interface that would

allow an animator to control many degrees of freedom, including facial expressions and a

number of high-level commands is difficult. If one were to have a character with more

12

degrees of freedom than the human body, one would not be able to effectively control it in

real-time. In fact, one could argue the number of degrees of freedom humans can effectively

control is much less than this number, independent of the input device. To overcome this,

some puppetry systems will use multiple puppeteers to control a single virtual character.

Another solution is to animate the character in several passes. Each pass will control a sub-

set of the degrees of freedom, and the final result will combine the result of each pass in a

single animation.

Beyond the quantity, abstraction, and frequency of parameter specification is a

question of how the parameters will be specified. There is a range of input devices available,

ranging from standard keyboards to eye-tracking mechanisms, each with their own qualities

and limitations. An in-depth discussion on this topic is firmly in the realm of human-

computer interaction, and is beyond the scope of this thesis.

2.2 Kinematic Specification of Articulated Figures
The motion model presented in this thesis is kinematics-based, which expresses motion in

terms of joint angles, coordinates, and orientation over time. There is no influence of mass or

force involved in determining the figure’s differential state. Methods that consider the

system’s physical properties are referred to as dynamic methods and are discussed in Section

2.6. Virtual characters’ bodies are typically modeled by articulated figures, which are a set of

rigid links adjoined by joints. The orientation and position of figure’s rigid links determines

the figure’s state. Each variable to be resolved in determining a rigid link’s state is a degree

of freedom, and the number of degrees of freedom in the structure is dependent on the

number of movable joints and the dimensionality of the space. For example, a single rigid

link in 3D space is characterized by six degrees of freedom since a vector of six elements

specifies its position and orientation. The state of a static single rigid link can be specified as

{ }λγφ ,,,,, 000 zyx , where 000 ,, zyx denotes the position of the link in space and λγφ ,,

refers to the object’s local x-axis, y-axis, and z-axis rotations, which deterministically

specifies the link’s orientation. This concept is illustrated in Figure 2.5.

13

Figure 2.5 State specification of a single rigid link

An articulated figure is typically specified kinematically by the position of the figure

in world coordinates, and the orientation of every joint in the figure hierarchy. An arbitrary

3D figure consisting of N links is characterized by CN −6 degrees of freedom, where C

represents constraints imposed by the joints that remove degrees of freedom in the articulated

figure. Let us consider a simple two-dimensional model of a human arm with four degrees of

freedom. The shoulder’s position and orientation is specified by a three dimensional vector

{ }θ,, yx . Since the adjacent links in the arm are adjoined at their respective joints, the

figure’s state is deterministically specified by another local rotation at the elbow denoted β .

The state of the system is expressed as an eight-dimensional vector { }βθβθ dddydxyx ,,,,,,, ,

where βθ dddydx ,,, specifies the differential coordinates over time. To effectively animate

the arm, the animator must control the evolution of this vector over time. The vector’s

elements can be specified with either forward or inverse kinematics, which are introduced

below.

Forward kinematics deterministically specifies the state of all degrees of freedom.

The animator determines the value of the state vector’s elements with no abstraction. That is,

postures are expressed in the same terms as the low-level internal representation of the

14

articulated figure. Figure 2.6 illustrates the concept of forward kinematic specification with

our simple two-dimensional human arm. The articulated figure is denoted F , where

}{},,,{},,{ 100010 βθ === JyxJJJF .

Figure 2.6 Forward kinematic specification of articulated figure.

Inverse kinematics provides the animator with a higher level of abstraction for

specifying the figure state vector. The animator specifies the position of the figure’s root

joint and the desired position and orientation of one or more joints in world coordinates. The

joints that are given desired position and orientation are referred to as end effectors, and

constrain the system to a particular configuration. Typically the posture specification is

redundant, or under-constrained. These terms refer to circumstances where there exists more

than one figure posture that satisfies the end effector constraints. Solving for joint parameters

given an inverse kinematic specification is a difficult problem, and developing effective

algorithms for use in animation is an on-going research topic. Despite its difficulties, inverse

kinematics provides the animator with a convenient level of abstraction for specifying figure

postures. Ultimately, the inverse kinematics algorithm must resolve all ambiguities and

define the state of the figure in forward kinematics. In the example of the two-dimensional

human arm, the position of the shoulder { }00 , yx and desired position of the tip of the hand

{ }ee yx , can specify the figure’s configuration. This specification is under-constrained with

15

two possible configurations, as illustrated in Figure 2.7. The figure F is specified as

},{},,{},,{ 0000 ee yxeyxJeJF === .

Figure 2.7 Inverse kinematic specification of articulated figure.

Keyframing and motion signal processing are examples of forward kinematics

applied to the animation of articulated figures. Keyframing is a technique discussed in

Section 2.3 where the animator explicitly specifies the state vector of the figure. Motion

signal processing manipulates a pre-computed sequence of state vectors to generate new

figure motion, and is introduced in Section 2.5. Inverse kinematics specifies the state of the

figure in a higher level of abstraction than forward kinematics, and is a useful technique for

generating character postures. Inverse kinematics in terms of its application to posture design

and positioning of human figures is discussed in Section 2.4. An introduction of techniques

for solving inverse kinematics is presented in Section 5.1.

2.3 Keyframing Techniques

Keyframing is the most common method of developing production animation. The process

involves rendering animation sequences frame by frame, and gives the animator limitless

control over the character's movement [FvDFH90]. Alternatively, critical frames can be

drawn with a time reference for each frame. The in-between frames, in a process called

16

inbetweening, interpolate between critical frames. Each frame is redisplayed in sequence and

the resulting image appears dynamic over time. For the resulting image to appear fluid

without “flicker”, a high frame display rate is required. The particular technique employed to

display the images as a contiguous animated sequence depends on whether the motion is

viewed on film, computer screen, or video.

Techniques in keyframing stem from traditional two-dimensional drawing animation

developed in the 1930s. To date it remains the predominant method of character animation

for foreground characters in feature film production. Walt Disney studios pioneered

animation as an art form with such classics as "The Three Little Pigs". More modern

production animation such as Pixar's "Toy Story", "Luxo Jr.", and Blue Sky Studio's "Bunny"

are examples of keyframed three-dimensional computer animation.

Despite the impressive results of keyframing for production animation, there are

serious drawbacks associated with this method. Positioning characters manually is a tedious,

challenging task even for experienced animators. Conveying emotional behaviours and

modelling physical phenomena effectively is an art form reserved for those with the

prerequisite talent. A few seconds of animation can potentially take a meticulous animator

several days to produce.

Specifying animation in terms of joint angles or constraints over time requires

significant involvement by the animator. The animator must typically specify postures with

forward or inverse kinematics in a number of frames to ensure natural, smooth motion.

Inbetweening is performed to relieve the animator of specifying every frame. Unfortunately,

interpolating between user-specified keyframes does not always result in appropriate motion.

First, interpolating from one posture to another with human realism is challenging. While the

user specified postures in select keyframes may be biomechanically and physically plausible,

the intermediate frames resulting from naïve interpolation may not be. Furthermore, even if

physical laws are respected, the motion may still look unnatural. Humans have grown

accustomed to observing human locomotion and are sensitive to subtle discrepancies

between natural and synthesized human motion. Second, humans instinctively adjust and

readjust their motion over time to avoid collisions and maintain balance [Lat93].

Interpolation is not always possible if the motion requires careful navigation around

17

obstacles. For these reasons, production animation is synonymous with extensive animator

control over the figure’s position at every time step.

Reeves introduced the Coons patch algorithm, the Miura algorithm, and the Cubic

metric space algorithm for inbetweening keyframes [Ree81]. Among the three, the Coons

patch algorithm performs best overall in terms of generality, smoothness, and computational

efficiency. Steketee et al. give an analysis of keyframe interpolation requirements [SB85]. A

prototype interpolation system is presented with second-order continuity, user control over

motion parameters, and seamless blending of successive motion sequences. Cubic B-splines

are proposed as a suitable interpolation function.

Lasseter discusses the principles of traditional hand drawn animation as they pertain

to three-dimensional computer animation [Las87]. Subtle characteristics of motion, such as

anticipation and exaggeration, have been conveyed in two-dimensional hand drawn

animation for many years. Lasseter claims the methods of conveying these properties are just

as applicable to three-dimensional computer animation as two-dimensional drawing

animation.

2.4 Positioning Articulated Figures with Inverse Kinematics

The position of body segments in space is critical to the accomplishment of reaching and

manipulation tasks in constrained environments. Inverse kinematics provides a useful

abstraction for generating postures that incorporates one or more constraints on the figure’s

position. The user gives up explicit control over the state of all joints in favour of a

convenient level of abstraction for specifying postures. However, positioning the character

with constraints does not intuitively lend to generating postures for all tasks. The literature

discussed in this section focuses on the application of inverse kinematics to controlling

virtual human characters. Inverse kinematics is also thoroughly researched in robotics for

effectively controlling manipulators [Pau81]. Solving inverse kinematics is introduced in

Section 5.1.

Inverse kinematic solutions are keyframes satisfying posture constraints imposed by

the animator. How one chooses to interpolate between these keyframes is an inbetweening

problem, and the generated critical frames must accommodate the inbetweening algorithm

being used. However, instead of employing an inbetweening algorithm the animator may

18

express the motion as a trajectory over time. Every time step along the trajectory defines

desired end effector coordinates, so one can position the figure with an inverse kinematic

solver. This approach will be problematic, however, since inverse kinematic solutions return

the final end effector position rather than the path taken to arrive at a solution. Since inverse

kinematic solutions are underconstrained, the resulting motion curves over time may not be

continous. This will result in "jittering" or sudden posture jerking between consecutive

frames. Lee et al. resolved this problem with a multi-level B-spline fitting technique [LS99].

In fact, any curve fitting technique for scattered data interpolation can be used, and the

specific formulation selected is dependent on the desired properties of the final motion curve.

Badler from the University of Pennsylvania has developed a powerful experimental

test-bed called “Jack” for researching algorithms in inverse kinematics, ergonomic analysis,

and motion planning [BPW93]. Phillips, Zhao, and Badler developed an interface to

interactively position an articulated figure by directly manipulating the state of specific joints

[PZB90]. The user is also able to interactively specify an end effector goal position, and an

inverse kinematics algorithm automatically generates the appropriate figure posture. The

constraints are specified by mouse input converted to geometric transformations. Phillips and

Badler provide a mechanism of interactively controlling figure postures by specifying

various geometric constraints [PB91]. Passive constraints are implemented to satisfy the

user’s intentions while ensuring the figure posture appears balanced. This is accomplished by

positioning the centre of mass as an implicit hard constraint. Zhao’s dissertation provides an

in-depth overview of satisfying geometric constraints with numerical and iterative

optimization techniques [Zha96]. Although the research is interesting from a posture control

perspective, Badler notes that figure motion can not intuitively be specified in terms of

posture constraints.

Badler’s Jack system addresses many of the issues in this thesis involving posture

design and task-level control of articulated figures. The user is able to specify postures by

imposing multiple geometric constraints, such as end effector position and orientation, or

restricting an end effector’s position to a plane, line, or region in space. The Jack system can

generate postures depending on the strength model of the figure [LWZB90], as well as the

geometric constraints imposed by the user [PB91]. The posture generator described in

Chapter 5 differs from this approach in terms of the degree of user specification. We attempt

19

to automatically position figures by modeling a bias towards ergonomically correct postures,

with geometric constraints being applied by the system based on the position of impenetrable

surfaces and objects in the environment. Although this model does not compensate for the

relative weight of objects during lifting motions, it provides a general model that can be

applied to a wide range of motions described in Section 3.6.1. We attempt to position the

figure from a knowledge-based approach with a notion of perceived naturalness.

Kondo developed an inverse kinematics algorithm for generating humanly natural

arm positions [Kon94]. The algorithm involves an initial estimate based on results from

neurophysiology research [SF89a][SF89b]. The same results are used in our algorithm

presented in Chapter 5. Hand position and orientation is then satisfied with a constrained

optimization algorithm. Loftin et al. developed an algorithm that originates from a similar

neurophysiological relationship between the orientation of the wrist and the height of the

elbow [LMY97]. This algorithm compensates posture naturalness in favour of increased

performance.

Siciliano et al. proposes a recursive algorithm for overlapping constraints of multiple

end effectors [SS91]. The algorithm is applied to a chain with arbitrary number of rigid links.

Baerlocher and Boulic present a similar inverse kinematics formulation for satisfying

multiple tasks of arbitrary priority [BB98]. Baerlocher et al. consider obstacle avoidance,

centre of mass positioning, and end effector control as three potential tasks to be satisfied

simultaneously. Multiple instances of these tasks were overlapped to achieve a particular

posture. The algorithm was extended to specifying multiple soft and hard constraints for full

body posture design [BB00]. Boulic and Thalmann developed an algorithm for generating

postures that incorporate physical support for some portion of the human body [BT97].

Paul introduces an algebraic and inverse Jacobian solution to satisfying orientation

and positional objective functions respectively [Pau81]. Welman applied two inverse

kinematics algorithms to a human figure [Wel93]. Various bending and reaching motions

were achieved, and the performance of each algorithm was recorded. The posture generator

introduced in Chapter 5 uses a derivative of the cyclic-descent method discussed in this

thesis.

20

2.5 Motion Capture and Motion Processing
Rotoscoping is perhaps the oldest means of duplicating the motion of a human subject. A

human is filmed using film, video, or strobe photography while performing some desired

motion [FvDFH90]. Joint angles are measured from the individual frames and are applied to

a virtual character to be animated. Differences in the body dimensions of the human subject

and the target character are problematic, as is the camera projection, which changes over time

for a stationary camera and a moving subject.

Motion capture is a modern approach to rotoscoping [Stu94] [Mai96]. Specialized

optical, infrared, electromagnetic, or mechanical indicators are placed on the subject to

record its motion over time. The results are realistic since joint rotations of the live subject

are directly applied to the virtual character. The motion data is recorded in real-time, and can

involve multiple subjects performing complex cooperative motion sequences. This is

particularly useful for interactive video games where the user commands a limited number of

sophisticated motions, such as pitching a baseball or swinging a racquet.

There are several serious drawbacks to this technique, however. The hardware

required for capturing motion can be costly and difficult to calibrate. Once the data is

captured, noise must be removed from the signal, and optical sensor occlusions must be dealt

with. The motion data recorded is specific to characters with the same dimensions and

structure as the subject. The strength and skill of the subject limit the generated motions

resulting from this technique. This can be seen as an advantage as well, since the animator

does not have to be concerned with ensuring that biomechanical properties are respected.

Modifying or retargetting motion capture data for variable environments and

character dimensions is an on-going research area [Gle98]. Concatenating independently

sampled motion sequences into a fluid, continuous animation can also be difficult

[RGBC96]. Each motion sequence is recorded with specific initial and final states that are

unlikely to coincide with those of other motion sequences, leading to motion discontinuities

that must be resolved using other methods.

The animator may also wish to adjust the nature of the data by instilling emotion, or

modify stylistic characteristics of the motion. Applying these transformations is an on-going

research area [UAT95]. Recent attempts have manipulated the motion signal itself by varying

the amplitude of a frequency band, or scaling motion amplitudes at specific points in the

21

signal. For example, let us assume we have motion data of a man walking into a room and

placing a book on a table with neutral emotion. How the motion can be modified so the

character will appear angry as he walks to the table and slams the book down is not clear. A

general method for computing such a transformation has not yet been demonstrated.

Witkin et al. modified motion capture data by specifying constraints as keyframes at

certain points in time [WP95]. The constraints "warp" the original motion curve after

interpolating the data points with an arbitrary interpolating spline. Fine details of the motion

are preserved, and constraints are satisfied. Witkin adapted a regular walking gait to step over

and duck under blocks inserted in its path. Lamouret and van de Panne propose a method of

adapting existing motion data to fit arbitrary situations [LvP96]. A database of possible

motions is kept, and the best-fit motion is selected and adapted for the current situation. The

technique was used to navigate a Luxo character across a two-dimensional terrain map.

Lee et al. represents modifications to the motion as a set of constraints [LS99]. The

constraints were satisfied for each frame and the resulting data points interpolated with a

multi-level B-spline fitting technique. This method was used to modify walking postures,

apply the motion to rough terrain, and apply data to variable character dimensions. Popovic

et al. modified motion data according to variations in the physical properties of the characters

and environment [PW99]. A weightless moon-walk and limping motion were successfully

produced.

Brudelin et al. used traditional signal processing techniques on motion capture data

[BW95]. Interactive motion multiresolution filtering was implemented to create a graphical

motion equalizer. Motion interpolation is used to blend multiple motion signals together.

Waveshaping was used to impose joint limits. Blending two signals and applying local

displacement to a single signal created new walking and waving motions. Similar work was

done by Unuma et al. using Fourier series expansions [UAT95]. Existing motions were

interpolated and smooth transitions between motions were achieved. Most interestingly,

emotional characteristics of motion were extracted to create "tired" and "brisk" variations of

a captured walking motion. Rose et al. used space-time constraints and inverse kinematics to

make seamless transitions between motions [RGBC96]. Data can be placed arbitrarily in time

and the system computes smooth transitions among all motion sequences. Rose also spliced

cyclic data, such as walking motions, to produce motion sequences of arbitrary length.

22

Gleicher studied ways of applying motion data to characters of similar structure but

variable dimensions [Gle98]. Gleicher represents desired motion characteristics as a

constrained optimization problem, such as keeping at least one foot on the ground while

walking. Walking motion sequences were adapted to satisfy imposed geometric constraints

while minimizing signal differences over time.

2.6 Dynamics Techniques
Dynamic simulation provides a technique for creating animation consistent with the laws of

physics. Objects and figure body segments are modeled as having mass and inertia. Physical

simulation will consider gravity, friction, wind, collisions, and any other external forces

acting upon entities in the system. Internal forces model torque exerted in joints by actuator

motors in the articulated figure, or can be modeled more explicitly to mimic the

biomechanics of real human and animal musculoskeletal structures. Actuator motors are the

“muscles” of the articulated figure, controlled manually by the animator or automatically by

dynamic controllers. It is the summation of internal, external, and reactive forces over time

that determines the motion. The benefit of this class of techniques is the realism of the

resulting movement. Subtleties of natural motion are difficult to achieve with kinematic

methods, particularly because of the number of interactive forces to consider at every time

step. The disadvantage of this technique is computational cost and control difficulties.

Controlling figures and objects to perform a desired motion is difficult. Given some

arbitrary figure, it is not intuitive what internal torque is required to move the character

subject to arbitrary external forces. For example, it is not obvious what torque should be

applied by the left and right hip, knee, and ankle to produced a balanced walk of 1 m/s given

the mass, centre of mass, and moment of inertia of each segment in the character's body. To

relieve the animator of such tedious calculation, dynamic controllers are implemented.

Dynamic controllers allow the animator to specify more abstract motion goals that are then

fulfilled by the controllers.

Dynamic controllers are often developed manually by trial and error for a specific

figure in a certain environment, and are sensitive to initial conditions. Developing robust

controllers for even simple figures to remain balanced is tedious. Algorithms that

23

automatically generate dynamic controllers is an on-going research area, although recent

results have been successful for simple figures and motions in a set environment. Extending

controllers to figures of variable mass and dimensions, or adjusting a controller to

compensate for different external forces is an open research problem.

Brotman suggests considering classical mechanics when computing inbetween frames

[BN88]. By respecting laws of physics when interpolating motion parameters, the result

appears more natural than standard interpolation techniques. The technique is restricted to

linear dynamic systems, and was used to animate a truck and aircraft given the initial and

final position, velocity, and orientation.

Raibert et al. hand crafted a number of dynamic controllers [RH91]. Quadruped

creatures, biped creatures, and virtual kangaroos were modeled. Controllers for biped running

and galloping, quadruped trotting, bounding, and galloping, and kangaroo hopping were

implemented. Speed and posture control systems are discussed in the paper. Controllers were

scaled to accommodate models of variable size. Hodgins et al. presents a set of hand-

designed controllers for running, bicycling, and gymnastic behaviours such as vaulting and

balancing [HWBO95]. Group behaviours were incorporated to avoid collisions within large

groups of cyclists and runners. Secondary animations such as cloth simulation were also

incorporated. van de Panne and Fiume propose a controller for simple structured figures

called “sensor-actuator networks” [vPF93]. Articulated creatures are equipped with sensors

to provide feedback on the state of the figure with respect to its environment. Sensors

activate actuators through a network of weighted transitions. A variety of locomotion styles

are achieved by varying the value of the transition weights.

Bruderlin et al. proposes a hybrid kinematic/dynamic model for generating human

walking [BC89]. The technique allows the user to specify three locomotion parameters:

forward velocity, step frequency, and step length. These parameters will effectively define a

walking gait. The forces and torques required to swing the legs according this walking gait

are computed by iteratively approximating various values and applying them until the timing

and trajectory of the walking gait is satisfied. Laszlo, van de Panne, and Fiume present a

technique for dynamic control of periodic, unstable motions such as walking [LvPF96].

Laszlo proposes a method to add closed-loop feedback to an open-loop stepping motion to

24

obtain stable walking gaits. Various open-loop controllers were used to generate stylistic

walks, such as walking into a head-wind.

Hodgins et al. adapted existing controllers for running and cycling behaviours to

figures of variable dimensions and masses [HP97]. Initial controllers were initially tuned for

a standard adult male character. The controllers were successfully adapted to adult female

and child figures in two stages. First, a knowledge-based adaptation of the controller based

on geometric and mass scaling of the target character was performed. The scaled controller

was further tuned with an automatic search of the local parameter space.

van de Panne, Kim, and Fiume explored ways of automatically generating dynamic

controllers for arbitrary articulated figures [vPKF94]. The synthesized controllers used cyclic

finite-state machines to produce periodic motions such as running and swinging. A genetic

algorithm that iteratively tests and optimizes randomly generated gaits synthesized the cyclic

pose control graphs. Grzeszczuk, Terzopoulos, and Hinton developed a neural-network

technique for developing dynamic controllers [GTH98]. Through observation and multiple

trials a neural-network is trained to control a specific figure. Examples of motion are

evaluated according to prescribed animation goals, and successful motions are integrated into

the transition weights of the neural network. This technique was used to successfully teach a

truck to park in position, land a space module on the moon, and a dolphin to swim.

Torkos and van de Panne introduce a novel motion specification technique for

quadrupeds using footprints [NvP98]. Each footprint specifies timing and orientation

information. The footprints implicitly define the motion trajectory. A second pass optimizes

the trajectory to accommodate a simplified dynamic model and comfort heuristic.

Huang and van de Panne propose a search method to achieve complex dynamic

motions such as flips and cart-wheels [HvP96]. The optimal sequence of movements is

selected according to an evaluation function. A search of all possible motions at every

decision-making opportunity in the animation is considered. The search for the best motion

sequence is similar to techniques in chess programs for searching optimal sequences of

moves.

25

2.7 Behavioural Techniques
Animation controlled by very high levels of control abstraction is characteristic of

behavioural animation. Research in the area is considered interdisciplinary since the

characters exhibit autonomous intelligent behaviour. The characters are endowed with

preferences and decision-making capabilities to appropriately react to initial environmental

conditions. The characters will select their own high-level behaviours depending on the

animator’s parameter specifications and the character’s own behavioural model. Generally,

the animator will not interact with the characters, but rather the animation is allowed to take

its course with continuous closed-loop feedback of environmental stimulus and agent

reactions. This method is considered by some to be on the fringe of computer animation and

artificial life, and is more than simply a technique with very high-level control.

Reynolds modeled flocking, herding, and schooling behaviours of animals [Rey87].

Each animal in the group is given individual priorities and basic decision making capabilities.

Remarkably, the collective behaviour of the group exhibits complex behaviours, while only

rudimentary intelligence is distributed throughout the group.

Tu and Terzopoulos created artificial fish with sophisticated locomotion, sensory, and

behavioural models [TT94]. The fish displayed behaviours such as mating rituals, predator

avoidance, and schooling instincts. The fish were modeled with independent behaviour

routines, and the underlying motion primitives were dynamically based. Thalmann proposes

an approach to implementing virtual actors that autonomously solve problems in path

searching, obstacle avoidance, and game playing [Tha99]. A model for learning and

forgetting behaviours is implemented. A sensor-based virtual tennis player was implemented,

where selected behaviours are heavily influenced by visual stimuli.

Blumberg et al. propose a system that endows the animator with multi-level control

[BG95]. Behavioural, motivational, and motor-level commands are all integrated in the

control mechanism. The motivation behind the system is to demonstrate that behavioural and

task-level animation is not mutually exclusive. The user is able to direct the characters at

various levels of interaction. Mateas proposes a system for interactive drama [Mat99]. The

“Oz” system in Carnegie-Mellon University allows the animator to direct characters with

high-level primitives at critical points in the story.

26

Funge, Tu, and Terzopoulos considered a layer of abstraction above behavioural

models [FTT99]. While behaviour techniques plan and choose goals according to knowledge

bestowed and acquired, Funge et al. studied cognitive modeling which govern how

knowledge is acquired, referenced, and internally represented. Beyond autonomously

choosing among a set of goals, cognitive modeling provides the possibility of characters

discovering new behaviours previously unimagined.

2.8 Interactive Control

Specifying animation with a higher level of abstraction than kinematic and dynamic methods

while endowing the user with control over a subset of motion directives is a powerful way of

controlling virtual characters. As described in Chapter 1, task-level abstraction is a

convenient means of specifying motion for certain applications. However, realistic animation

of articulated figures is complex, and determining parameters worth abstracting to a higher

level is task specific. The research presented in this section propose animation techniques

that provide the animator with abstraction beyond the low-level kinematic and dynamic

details, while allowing the user to specify his intentions more specifically than behavioural

techniques.

An early attempt to implement task-level control of articulated figures is proposed by

Korein and Badler [KB82]. The paper was published in 1982, and addresses the problem in

terms of effective inverse kinematics and interpolation algorithms for controlling a primitive

six-link, two-dimensional chain. In 1985, Zeltzer published a paper discussing animation

abstraction in terms of a three-level hierarchy [Zel85]. “Guided motion” in this paper is the

lowest level of abstraction and would be identical to forward kinematic techniques described

earlier. “Animator-level” systems program animation much the same way one uses standard

programming languages today. “Task-level” systems incorporate knowledge of the

environment necessary to execute animator-level motor programs. Task-level abstraction is

proposed as a future goal beyond what the technology is capable of. In 1986, Ridsdale et al.

published a paper describing the recent results of Simon Fraser’s Figure Animation Project

[RHC86]. The author states, “After about ten years of continuous research in this area we are

still not sure whether truly convincing animation of the full range of human movement is

feasible”. There are other interesting papers from a historical perspective, such as

27

[Zel82][AGL86][CS86][Stu84][MFV84]. These papers place the sophistication of today’s

systems in perspective, as well as describe the origins of task-level control problems that

persist today.

Lee et al. presented an algorithm to compute the trajectory of the arm when lifting

objects of variable weight [LWZB90]. A strength model is implemented to calculate a

biomechanically realistic trajectory of joint angles and end effector positions from initial to

final state. Initial optimal trajectories are computed. A comfort level is calculated at every

time step as a ratio of the current exerted torque divided by the maximum possible torque. If

the comfort level degenerates below a certain level, the trajectory constraints are relaxed. The

sophistication of the biomechanical model compromises its general application to arbitrary

tasks.

Levison, Badler, Geib, and Moore implemented a system that translates high-level

directives into task-level commands [LB94][GLM94]. “SodaJack” is a Prolog-like predicate

language, and “OSR” is LISP-like in syntax. The user specifies his intentions in higher level

terms than guided control, but more specifically than behavioural techniques. The commands

are parsed, and the feasibility of each goal at an instance in time is assessed. The problem is

approached from a planning perspective, where a feasible order of motions is sought. The

issues discussed in these papers are resolved in Chapter 6 as they apply to our work.

The research effort most related to guided control of virtual articulated figures is

Badler’s Jack system [BPW93]. There are important similarities and differences between our

prototype and Jack. The similarities serve as appropriate alternative solutions to key

problems in task-level control, while the differences illustrate the breadth of the problem this

work attempts to cover. Three important aspects of Jack’s functionality are posture design for

ergonomic analysis of human factors, path planning, and natural language specification of

task-level commands. Much of the work done in posture design seeks to measure human

exertion and comfort performing object manipulation tasks in constrained environments

[LWZB90]. The models proposed by Badler are more sophisticated for generating specific,

constrained motions, which is ideal for human factors research. The model proposed in

Chapter 5 generates postures for the 3D puppet model presented in Figure 3.8 without user

specification of constraints or explicit goals. Our model aims to generate appropriate postures

in the full range of task space. The posture planning algorithms developed for the Jack

28

system incorporate collision avoidance and strength factors when determining an appropriate

trajectory for a task [BBGW94]. Our system does not consider path planning or collisions

throughout the motion signal, but ensures that collisions are avoided when the task is

accomplished. Collisions and external constraints on the puppet’s postures are discussed in

Section 5.6. The task specification of Jack focuses on decomposing high level natural

language into lower-level motion primitives [LB94][GLM94], as mentioned in the previous

paragraph. The fundamental difference between guided control and the Jack system is the

level of animator control over the timing and sequence of motion. The level of specification

and system interpretation described in this thesis is more intuitive for controlling a virtual

puppet performing arbitrary tasks, while the sophistication of Jack is appropriate for studying

human factor and task resolution issues.

The motion resulting from performance animation is based on the animator’s skill in

controlling multiple degrees of freedom in real-time. Felix the Cat by deGraf/Wahrman Inc.

is an example of a kinematic performance animation system that uses multiple passes to

control all the degrees of freedom [Sor89]. The first pass controls the head of Felix; the

second pass controls the facial expression and eyes; the third pass implements a lip-

synchronization. As one employee states, "More things are going on with Felix than are

humanly possible for one puppeteer to do at once". Sturman wrote a paper discussing

appropriate input devices for performance animation [Stu98]. Kalra et al. describe modeling

issues associated with performance animation. Virtual tennis and dancing environments were

developed [KMMS98]. Laszlo, van de Panne, and Fiume researched real-time interactive

physically-based animations [LvP00]. Using simple input devices such as a keyboard and

mouse, the animator is able to perform sophisticated motions with simple two-dimensional

characters. The novelty of this approach is that the animator is specifying parameters for

dynamic motion in real-time rather than joint angles.

Koga et al. developed a motion planning algorithm for object manipulation with two

human arms [KKKL94]. The motion planner considers legal object grips and arm rotations to

find a path from the initial state to the goal state. The arms are positioned with a novel

inverse kinematics algorithm, and the motion between arm postures is kinematically based.

To achieve the goal state, several grasping and regrasping motions may take place. The

motion is computed autonomously given the goal state. The approach used to generate

29

humanly natural postures is similar to the methods discussed in Chapter 5. Kalisiak and van

de Panne consider animation as a lower level motion-planning problem [KvP00]. The

environment is a two-dimensional terrain map with specified grip points to position end

effectors. The planner is equipped with a preferred mode of locomotion and stride length.

Inverse kinematics is used to tailor the preferred posture to accommodate the grip points and

terrain dimensions. The algorithm is based on a gradient descent process, which is subject to

local minima. Further reading on the classical planning problem can be found in [FN71].

Rijpkema et al. developed a knowledge-based approach for animating grasping

motions of the human hand [RG91]. An initial posture from a database is selected based on

the geometry of the object, and the grasp is finished with a kinematic clasping method. The

user can interactively control the hand by specifying the position of a single finger, a group

of fingers, or selecting a hand posture from the database.

Perlin worked on virtual puppetry using a number of predefined dance movements

[Per97]. Each movement is defined in terms of initial and final joint angles for all degrees of

freedom in the figure. Every degree of freedom interpolates in one of four phases of sine and

cosine functions. By structuring motions in this way, one can effectively combine motions

that use independent sets of joints. Transitions from one motion to another are graceful, since

successive motions are phased-in by applying a decaying weight coefficient to the current

motion. Perlin’s research group also built a scripted animation system called “Improv”

[PG96][PG99]. This system is a layer of abstraction built on top of Perlin's virtual puppetry

system. Users can write scripts to specify which motions to execute at a particular time.

Virtual actors in the system can interact with one another. A behavioural model is

implemented by executing motion scripts if environmental variables exceed some predefined

threshold.

Bruderlin et al. developed an interactive tool for generating running motions

[BC93][BC96]. The system incorporates biomechanical models to calculate appropriate limb

trajectories. The user can customize cyclic running gaits by adjusting the velocity, step

length, step frequency, and height of the stride. Arm, torso, and pelvis movement in the

running stride are interactive parameters adjustable by the user.

Several papers were written proposing specific motion representations or discussing

the characteristics important to any motion abstraction. Badler believes the notation used to

30

express movement should incorporate varying levels of abstraction, from task-level to

kinematic specification [Bad86]. Badler considers Labanotation as a possible representation

for computer animated motion. However, Badler notes that this abstraction does not include

facial expressions, dynamic properties, or muscular contractions. Badler categorizes motion

into four groups: rotations and translations, end effector goals, end effector trajectories, and

dynamic forces that controls a motion.

Drewery and Tsotsos propose an animation system that gives animator-level control

over characters [DT86]. The definition of animator-level control is identical to [Zel85],

where the motion and environment are specified similar to a high-level programming

language. Movements, objects, and articulated figures are instances of data structures. Low-

level interaction with the figure is possible through directly referencing variables in the

figure's data structure. Task-level motions are essentially procedures that reference one or

more data structures, and provide a level of abstraction to compute trajectories and object

positions. What is unique here is the notion of data structures or “frames” describing the state

of objects, articulated figures, and motions. Motions are expressed as objects in the same

context as object oriented languages, with local data and procedures referencing object and

figure data structures. This is similar to the models proposed in Sections 3.4, 3.5, and 3.6.

Morawetz et al. propose an animation scripting language syntactically similar to

BASIC [MC90]. Task-level commands are specified as function calls with parameters for the

speed and start times of motions. Some motion functions take directional parameters, such as

“Look right fast”. The animation specification is compiled to generate an animation script

that outputs a series of keyframes. Overlapping motions that do not cause conflicting goals

for figure body segments are possible. The most novel aspect of this work is the notion of

cyclic motions. Animators can specify walking or waving motions that repeat until halted or

interrupted by conflicting motion. Some similarities can be drawn between the level of user

control and the motion models described in Sections 3.3 and 3.6.

Zeltzer developed an alternative method of modeling task-level commands that

differs from the compiled script mode of interaction of Morawetz and Drewery in [Zel85].

Zeltzer proposes the notion of a “movement queue” that contains task-level directives input

by the user. The proposal is of interest because the “task manager” acts as a simple operating

system, scheduling processes in a first-come, first-serve basis. The user specifies parameters

31

to the task manager, which are passed to the mid-level motor programs and low-level local

motor programs. The task manager’s function is similar to the motion scheduler introduced in

Section 3.2.2 and discussed in Chapter 4.

2.9 Ergonomics

The ergonomics literature is relevant to posture design since it studies comfort and preferred

positions in some environmental context. Despite extended studies and surveys of

comfortable and uncomfortable seated positions, there are few rules without exception that

constitute a comfortable upper body position. The healthiness or unhealthiness of a posture is

determined by physiological variables, such as oxygen consumption and volume of fluid at

certain extremities. Some notions of comfort can be determined by postures that result in

injury over a long-term. This section surveys some research in ergonomics relevant to the

seated puppet scenario proposed in Chapter 3, and is pertinent to the discussion in Section

5.7.

There are several general recommendations given by Tichauer to maximize comfort

in a seated position [Tis78]. Tichauer suggests that comfort is maximized when the elbows

are kept down, moments on the spine are minimized, and forward reaches are kept short.

Naderi et al. defines the general principles for seated workplace design [NA89]. Naderi

recommends that workers seated at a table avoid extreme positions of the joints, avoid

unnatural postures, and maintain proper elbow height in relation to the work surface height.

Corlett proposes other principles of interest to seated work environments [CB76].

Torso twisting is undesirable due to the stresses imparted on the spine. The worker should be

able to maintain an upright and forward-facing posture during work. Chaffin estimates that a

bend forward in excess of twenty degrees can result in increased fatigue and serious injury

[Cha87]. Corlett also suggests that work activities should be performed with the joints at

about the midpoint of their range of movement, particularly the torso, head, and upper limbs.

Ostrom developed a checklist of principles for ergonomically proper seated positions

[OGH92]. The checklist suggested that desirable seated positions include the spine slightly

arched and leaning forward. The elbow joints should remain low and to the side of the

worker. Twisting of the head and trunk should be avoided. Further reading that supports

these principles can be found in [AM91].

32

One can reasonably assume that postures that are comfortable appear natural and are

preferred over uncomfortable postures. Postures that cause injury or stress contort the body

unnaturally, and provide us with more evidence of what is considered a natural seated

working posture. Given the above principles from ergonomic study, our postures should

avoid several characteristics: unnecessarily raising the elbow, acute twisting or bending of

the torso, and extreme positions of the joints.

2.10 Biomechanics

Modeling human joint movement is an on-going research area in biomechanics. The state of

the art is attempting to model single joint motion for isolated, artificially simplified

movements. Unfortunately, these results are unlikely to be directly applicable to natural,

unrestrained, multi-joint motion. Latash claims that analysis of single joint movements

provides a basic framework for studies in multi-joint tasks [Lat93]. Section 4.5 describes

how we naively apply single joint motion models to multi-joint tasks, which is a

simplification of the complex relationship between task and performance parameters. In the

context of this work, task parameters include positional goals for the hand under strict

temporal constraints. The performance parameters correspond to joint position and velocity

curves to perform the task. Unfortunately, the biomechanical and neurophysiology aspects of

the tasks in our scenario are remarkably complex, and are not fully understood by

researchers. A function to model multi-joint movements with velocity and positional

parameters is not known, and many researchers believe that a comprehensive model does not

exist. Research in developing human kinematic models of motion is directly applicable to our

work, and is presented below to invite future research and put the models presented in

Chapter 4 and Chapter 5 in context. Results of single-joint experiments are presented first,

followed by studies in motion variability and multi-joint tasks.

Implementing guided control of a character with human anatomy and realistic motion

in response to arbitrary task-level commands reduces to solving some fundamental problems

in biomechanics [Lat93]. Nicholai Bernstein is regarded as a pioneer in the study of human

motor control, and has provided unique insight into the problem of modeling human motion.

Bernstein was the first to express human motor control as a function of input parameters. The

human’s intentions with respect to placement of a hand, speed of the motion, or accuracy in

33

the movement’s trajectory are all considered an input parameter to the motor control

function. The output of this function is the kinematics of the resulting motion. Defining the

function that maps all factors influencing human movement to a kinematic representation of

the motion has been a fundemental problem researched in biomechanics and neuroscience for

almost a century.

Fast movements of a single joint to a target position exhibit a smooth, bell-shaped

velocity curve during the range of motion, with symmetric acceleration and deceleration

phases. Certain motion can exhibit asymmetric acceleration and deceleration phases. As the

joint approaches the final position small fluctuations in acceleration are common for fast and

slow single joint movements. Decreasing the speed of motion typically results in more

variability in trajectory and less smooth velocity curves. A flat region in the middle of the

velocity curve characterizes slow movements, and is illustrated in Figure 2.8.

Figure 2.8 Form of velocity curves for slow and fast movement.

The variability of a single joint’s velocity is modeled by variations in the target size

and position. Fitts suggested a logarithmic relation between the target position, allowed

margin of error, and total movement time. The relationship is known as Fitt’s Law, and is

defined as

W
D

baT
2

log 2⋅+= , (2.1)

34

where T is the movement time, D is the distance of the target, W is the target width, a and

b are experimentally observed constants. This relationship characterizes non-repetitive arm

movements with visual recognition of explicitly presented targets. Fitt’s Law considers the

time required to correct the trajectory of the end effector during the motion. This implies that

visual perception of the target must be maintained throughout the movement, and that there is

sufficient time to correct the trajectory of the end effector.

Experimental data suggests that movements demanding accurate placement of end

effectors are composed of several submovements. The trajectory of the hand is corrected with

every submovement, and the number of submovements in the overall trajectory depends on

whether the person perceives a correction to be required. Increasing the number of

submovements lends to irregularities in the trajectory of the hand. Milner and Ijaz have found

a correlation between the number of submovements and the difficulty of the task performed

[Lat93]. As the required accuracy of the task increases, the duration of the movement’s

deceleration phase increases along with the number of submovements during the deceleration

phase. A velocity curve with extended deceleration phase is presented in Figure 2.11.

Impulsive or very fast motions, and motions without any visual feedback for corrections are

typically composed of a single submovement. Fitt’s Law has been reformulated for tasks

requiring two submovements.

W
D

baT ⋅+= . (2.2)

Determining relationships between task and performance parameters in multi-joint

motor control is beyond the current state of neuroscience research. Bernstein reformulated

the multi-joint control problem, known as “Bernstein’s Problem”, as the process of control

for overcoming the ambiguity caused by redundant degrees of freedom. Some research

models the joint coordinates with respect to the position of the end effector, while other

research explores the trajectory of the end effector itself.

Experimental observations of the end effector’s trajectory during planar movements

suggest preference for certain motion properties. For example, translating the end effector on

a plane results in nearly straight trajectories of the end effector. The end effector’s

35

displacement over time is characterized by a bell-shaped velocity curve. However, Latash

remarks that joint rotations in the human body that position the hand in space over time are

characterized by a “more complex, multi-phasic form” that depends on the position of the

end effector with respect to the body [Lat93]. As the speed of the planar motion increases,

the trajectory remains a straight line. The shape of the velocity curve is also preserved, with a

simple scaling procedure applied. However, the trajectory of the individual joints through

their respective joint space is not preserved as the speed of the end effector increases.

Soechting and Lacquaniti have shown for planar movements of a two-joint system that their

maximum speed will be achieved at approximately the same time [Lat93].

The movement time for curvilinear motions is dependent on the radius of the

trajectory. The relationship is given below.

3
2

rbV ⋅= , (2.3)

where V is the velocity of the end effector, b is a constant, and r is the radius of the motion

trajectory. Tasks with complex trajectories are segmented into primitive units, such as

straight lines and simple curves. Inconsistent with (2.3), the time to perform drawing and

writing motions is proportional to the number of primitive units in the motion, rather than the

length or radius of the primitive units. In other words, drawing smaller or larger shapes and

characters does not affect the total movement time, but drawing shapes with more edges will

linearly increase the time to execute the motion. Movement speed decreases at the primitive

units’ points of intersection.

The above results for planar motions are all applicable to three-dimensional

unrestrained multi-joint movements. However, additional characteristics of three-

dimensional movements have been experimentally observed. The end effector trajectory

exhibits segmentation along particular planes in space. This implies that humans prefer to

perform motion of complex trajectories as a sequence of planar movements.

Bernstein’s problem subsumes the problem of effectively generating natural human

postures. Bernstein’s problem not only considers the final posture assumed in performing a

task, but also the path through joint space for all joints participating in the movement. We

would like an algorithm that will determine each joint’s rotation throughout the performance

36

of the task. As mentioned previously, the relationship between the end point trajectory and

the individual joints’ rotation over time is not clear, and some scientists believe that a

significant relationship does not exist. Two relevant experimental observations are a result of

analyzing the distance between the joint centre of rotation and the end effector position in

world coordinates. Let us denote the distance between joint i and the end effector as id .

Kaminski and Gentile claim that joints with centre of rotation further from the end effector

will begin rotating towards the target before more proximal joints [Lat93]. This observation

is expanded to a model for solving Bernstein’s problem. The Berkinblit-Gelfand-Feldman

model proposes that the angular velocity of joint i is proportional to the distance id

[BGF86]. That is, more proximal joints will rotate slower than joints with larger amplitude of

motion. Joints that can contribute significantly to the displacement of the end effector

towards the goal will move sooner and faster than joints will smaller id , which is

characteristic of joints that cannot move the end effector towards the goal as readily. This

model does not explain all experimental observations of voluntary human movement, but

does model the rotation of joints in terms of the end effector position, which supports

experimental observation [Lat93].

Models of human voluntary movement have been proposed by neuroscientists to

correlate with observed experimental data. The models attempt to map task parameters to

velocity curves for all joints in the human body, which determine the kinematic state of the

figure over time. Cruse and Brewer assumed that there exists a joint position of maximum

comfort [Lat93]. Their experimental data identified the positions of optimal comfort for the

wrist, shoulder, and elbow. For these joints, comfort was maximized in the middle of the

physiological range of motion. The degree of discomfort is measured as a parabolic function

about the joint’s optimal position, and the total degree of discomfort is measured as a sum of

all joints. Voluntary movements were modeled by minimizing the cost function. Hogan

attempted to minimize the amount of jerk when executing a motion [Lat93]. Jerk refers to the

motion’s acceleration time derivative, and can be correlated with the amount of stress and

wear on the joints. More complex cost functions consider the weighted sum of several

optimization parameters, such as effort, discomfort, expended energy, and jerk. Seif-Naraghi

and Winters modeled human voluntary movements by combining several optimization

37

functions that consider kinematic, dynamic, and electromyographic patterns from

experimental observation of human subjects [Lat93].

Adamovich and Feldman suggest that joint movements of varying amplitude will

preserve properties of the velocity curve [AF84]. In particular, the rotation of a single joint of

x degrees will be performed over some preferred time and bell-shaped velocity curve.

Motions of 2x degrees for the same joint results in a motion of longer duration, with the

shape of the velocity curve preserved. Adamovich et al. claim that this process is performed

by the nervous system by superimposing two motions of x degrees after applying a scaling

factor. This study supports the idea of a primitive motion program from which all other

motions are generated by applying a scaling procedure.

Ostry et al. demonstrated several properties of velocity curves for single joint elbow

movements [OCM87]. Other research supports the claim that motions of variable amplitude

and duration preserve the shape of their velocity curve. However, this study observed small

differences in the velocity curve for motions of variable duration. As the duration of a motion

increases, the duration of the deceleration phase increases, as illustrated in Figure 2.11. This

result was reproduced in [Nag89]. The velocity curves of continuous motions were compared

with discrete movements. Continuous motions were defined as a repetitive, continuous series

of movements, and discrete movements positioned the elbow in a specific pre-defined

position. Continuous movements were characterized by less sharp acceleration and

deceleration phases illustrated in Figure 2.9. This research also demonstrates that the

preservation of the velocity curve form is characteristic of the arm, but does not apply to

other joints, such as the jaw.

Figure 2.9 Velocity curves of discrete and continuous movements.

38

Gottlieb et al. studied the affects of practice on the velocity and accuracy of elbow

rotations [GCJA88]. The results indicate a remarkable improvement in the accuracy and

execution time over a ten-day period. This would suggest the constants a and b in Fitt’s Law

are dependent on the amount of practice and initial familiarity with the movement. It is not

obvious how these results can be applied to more complex tasks requiring multiple limbs and

degrees of freedom.

Mustard et al. studied the kinematic and electromyographic properties of wrist

movements in variable velocities, amplitudes, and external loads [ML87]. As mentioned

previously, velocity curves for voluntary movements of the arm are characterized by a bell-

shaped form with some oscillations at the end of the motion. These oscillations have been

observed to increase as the level of demanded accuracy increases. The study by Mustard et

al. demonstrates the widely documented observation of large oscillations as the velocity of

the movement increases and the demanded accuracy remains constant. As the velocity of the

motion increases, the velocity curve degenerates to an N-shaped curve instead of a smooth

bell-shaped form as shown in Figure 2.10. This is a result of a large correction at the end of

the movement to position the end effector at the desired position.

Figure 2.10 Velocity curve oscillations in fast and slow movement.

39

Nagasaki studied joint trajectories of skilled movements [Nag89]. Skilled movements

are characterized by remarkably consistent joint trajectories when performed in variable

circumstances. The research presented supports minimizing a jerk function as a suitable

model for controlling human arm movements. It is suggested that skilled motions will

minimize arm jerk over time, and subsequently exhibit smooth velocity curves.

Figure 2.11 Symmetric and asymmetric velocity curves.

The research of Nelson, Ostry, and Nagasaki support the notion of an invariable

relationship between the maximum velocity and average velocity during a motion

[OCM87][Nag89]. The relatively consistent form of the velocity curves is a result of the

following ratio.

avgV
V

c max= , (2.4)

where maxV is the maximum velocity during the motion, avgV is the average velocity

throughout the motion, and c is a constant. This ratio remains constant for motions of similar

velocity independent of the amplitude, duration, or inertial load of the motion. Nagasaki

demonstrates that the value of c depends on whether the motion’s velocity can be

characterized as slow, medium, or ballistic. Ratio values for such movements are

40

approximately 1.85, 1.95, and 2.05 respectively. Medium velocity is loosely defined as any

movement with duration of approximately 0.5 seconds.

Researchers have supported the notion of modeling skilled human motions of

medium velocity by an optimization function that minimizes the trajectory jerk. The motion’s

total observed jerk J is calculated by the following equation.

∫ ⋅





⋅=

T

dt
dt

tad
J

0

2
))((

2
1

, (2.5)

where T is the movement time, and)(ta is acceleration. This optimization function generates

smooth, symmetric velocity curves but does not explain experimental observation of

asymmetric velocity curves. Nagasaki proposed an alternative model that constrains the

amount of jerk at various stages in the movement [Nag89]. This modified model obtained

asymmetry of the velocity curves that match observed data when executing certain motions.

van der Meulen et al. studied kinematic properties of fast, goal-directed arm

movements in men [vMGvGG90]. Their results suggest that fast, goal-directed motion is

characterized by highly variable initial accelerations, and numerous corrections during the

motion to continuously maximize accuracy. Hoffman et al. demonstrated kinematic profiles

of wrist velocity subject to variable amplitudes and intended speed [HS86]. Cordo discovered

remarkable accuracy in coordinating multi-joint movements [Cor90].

41

2.11 Summary
This chapter presented an overview of concepts and literature relevant to generating a

kinematics-based animation tool with guided control over a human character. Section 2.1

described the differences and similarities of prominent animation techniques in terms of

parameterization, abstraction, and interactivity. Section 2.2 introduced kinematic

specification of articulated figures, which is fundamental when discussing kinematic motion.

Section 2.3 to 2.7 introduced well-documented approaches to generating computer

animation, and serve to position our work in context with current trends in research. Section

2.8 described animation techniques closely related to the work presented in this thesis.

Section 2.9 and 2.10 give the reader a background in ergonomics and biomechanics to help

evaluate the validity of models proposed in subsequent chapters. The literature surveyed in

biomechanics focuses on kinematic analysis of arm motions. This section presented many

well-documented models of human motion that are directly applicable to implementing a

kinematics-based animation system for generating realistic human motion.

42

Chapter 3
System Overview

This chapter introduces the models and modules designed to implement a guided control

animation system. The system implemented controls a virtual puppet seated at a table

performing tasks that may involve objects in the environment. Having a seated character

implies we do not have to animate the lower body, but collisions with the table can occur. A

diagram of the table scenario is presented in Figure 3.1.

In addition to selecting an environment for our prototype, we must also consider the

types of tasks to be performed by the puppet. Guided control allows the user to specify a task

and associated motion primitives to modify its execution. For example, the user can direct the

puppet to yawn and specify its duration, velocity curve, or any other parameter that modifies

the characteristics of the motion but not its semantic interpretation. The set of tasks available

to the user in our prototype can be loosely categorized as object manipulation tasks and tasks

independent of the environment. Object manipulation is an important subset of tasks in our

work since it requires the puppet to perceive the current state of the environment and react in

context. This is one of the most challenging and interesting features of guided control, since

the resulting motion will vary according to the position of the object. The specific tasks and

motion primitives implemented in our system are introduced in Section 3.3 and further

discussed in Chapter 7.

43

Figure 3.1 The table scenario.

Guided control of a puppet is best described by an example. Assume we would like to

command the puppet to eat. A guided control specification would involve instructing the

puppet to grasp the fork with the left hand, take food from the plate, and move the fork to the

mouth. Each of the three subtasks’ execution can be modified by user-specified stylistic

parameters. The richness and variety of the motion primitives available to the user is specific

to the application’s implementation.

The architecture and data flow of the system is presented in Figure 3.2 along with a

subsequent explanation of the annotations. Section 3.2 gives a functional description of the

three modules implemented in our prototype. In any virtual scenario, one must design a

model of the motion being executed, the synthetic puppets performing the motion, and the

environment with which the characters interact. These models are described in Sections 3.6,

3.5, and 3.4 respectively. The parameter space controlled by the user models his intentions,

and is introduced in Section 3.3.

44

3.1 System Architecture
The functional architecture of the system consists of several models and modules. The

models are simplified representations of some real-world phenomena. In our scenario, the

puppet, the motion, the environment, and the user’s intentions are represented by models

with simplified properties. The modules process the models’ interaction.

Figure 3.2 Diagram of system architecture.

45

The progression of the user’s intentions to the final executed animation is illustrated with

arrows in the above diagram. The arrows are referenced below with annotations.

1. The user specifies his intentions to the interface.

2. The interface module checks the environment state to ensure the user’s intentions are

plausible.

3. The system updates the environment if the task modifies its state. Subsequent input will

be interpreted based on the new environment state, even though the current task may not

have executed to completion. This step is justified since the motion queue is processed in

first-come, first-serve order, and tasks may be input faster than they can be executed.

4. The interface interprets the task in context with the current state of the environment. The

positional goals of the puppet’s body segments to accomplish the task are determined.

For example, a reaching motion will require the hand to be placed at a particular object.

The interface will determine the current position of the object, and reformulate the task in

terms of coordinates. A motion model is created that encapsulates the system’s

interpretation of the user’s intentions.

5. The motion scheduler processes the motion queue in first-come, first-serve order. The

positional goals of the next motion model in line are expressed as an inverse kinematics

problem.

6. In addition to the geometric constraints imposed by the task, the table imposes additional

constraints on the inverse kinematics solution. In general terms, the extra constraints

imposed by the table ensures that the puppet’s limbs do not penetrate the table while

executing the task.

7. A forward kinematic specification of the puppet posture required to accomplish the task

is output. This posture is referred to as the task’s goal state.

8. The puppet animates from its current state to the goal state.

9. When the puppet is finished animating, the motion scheduler is signaled to consider the

next task in the motion queue.

46

3.2 System Modules
There are three modules that process the user’s input at various stages in the animation

pipeline. The modules are labeled by boxes in Figure 3.2. This section presents the function

of each module.

3.2.1 Interface

The interface processes input directives from the user. The operation of the interface is

presented in Chapter 6. The module first interprets the user input in context with the current

state of the environment. Non-executable tasks are rejected by the system. The interface will

then reformulate the task in terms of the environment’s configuration. For example, assume

the user inputs a task to reach for some particular object. The interface will specify the task

as reaching for a particular point in space, where the space corresponds to the current

position of the object. Finally, the interface creates a motion model for the task input, along

with the motion primitives required to animate the puppet while executing the task. Motion

models are introduced in Section 3.6.

The interface accepts the current state of the environment and a task with its

associated primitives specified by the user. The interface will output an updated environment

state if the task moves objects or modifies the environment in any way. A motion model is

output and added to the end of the motion queue. We can model the interface module as a

function if .

).,(),'(tefme ik ← , (3.1)

where e and 'e are the current and updated environment state respectively, t is the task

specified by the user, and km is the output motion model, where k refers to the number of

entities in the motion queue.

47

3.2.2 Motion Scheduler

The motion scheduler processes the motion models in the motion queue in a first-come, first-

serve order. Each motion model in the queue has positional constraints according to the task

being executed and the state of the environment. The motion scheduler will specify these

constraints as an inverse kinematics problem K . The operation of the motion scheduler is

described in Chapter 4.

The motion scheduler takes tasks from the motion queue as input. The output is a

kinematic chain with end effector positional and orientation goals. We can model the motion

scheduler as a function mf .

}).,,,({ 10 km mmmfK K← , (3.2)

where },,,{ 10 kmmm K is the contents of the motion queue. { }()opii eejjK ,,,, 1 K+= , where

{ }K,, 1+ii jj is a subset of the puppet’s joints, pe is the goal position of the end effector in

world space, and oe is the goal orientation of the end effector in world space.

3.2.3 Posture Generator

The posture generator will solve inverse kinematics problems subject to constraints imposed

by the environment. The function of the posture generator is to position the puppet with

human realism to accomplish some task. The input of the posture generator is a task

expressed as an inverse kinematics problem from the motion scheduler. The output is a

forward kinematic representation of the puppet’s posture. The output set of joint angles for

every degree of freedom in the kinematic chain is termed the goal posture or goal state. The

function of the posture generator is modeled as a function pf .

).,(KfJ p← (3.3)

where { }()opii eejjK ,,,, 1 K+= and { }K,, 1+= ii jjJ is a forward kinematic specification of

the task’s goal posture.

48

3.3 User Input
The user specifies motion primitives and high-level tasks. The motion primitives are esthetic

qualities of motion that do not modify the semantic interpretation of the task. High-level

tasks can be categorized as those that interact with the environment, and those that do not.

When processing tasks that interact with the environment, the state of the puppet and objects

determine how the user’s intentions will be interpreted by the system. For example, sliding

the puppet hand upward will result in motion that is dependent on the current state of the

puppet. The specifics of any reaching action depend on the current positions of the target

objects. Examples of tasks that do not interact with the environment are scratching the head,

looking at one’s watch, or waving. The goal posture for these tasks is determined

independent of the puppet or objects’ current state. The specific primitives and tasks

implemented in our system are presented in Chapter 7. An overview of the parameters input

by the user is given below.

The user can modify the motion’s speed, interpolation function, scheduling

parameter, and grip. The speed determines the duration of the animated motion in frames.

The interpolation function will determine the motion’s velocity over time. The scheduling

parameter dictates to the motion scheduler if the task can execute concurrently with other

tasks. The motion scheduler’s operation is discussed in detail in Chapter 4. The grip specifies

the desired position and orientation of the hand with respect to the entity being reached, and

is further discussed in Section 6.1.1. The value of all these parameters is maintained by the

system, and can be modified interactively by the user as described in Section 7.1 and 7.2.

Not all user-specified parameters are relevant to all tasks. For example, it does not

make sense to specify a hand grip for a scratching motion. Grip parameters are only relevant

to tasks that reach for objects or points in space, as explained in Section 3.6.1. The system

simply ignores the value of motion primitives that do not have relevance in the semantic

interpretation of the motion. In addition to motion primitives, some parts of the animation

pipeline are not relevant to all tasks. For example, a yawning posture can not intuitively be

computed with an inverse kinematics solver. In these circumstances, the posture generator is

not helpful. We overcome this in our implementation by hard-coding certain postures in the

system. These motions are called general motions and are introduced in Section 3.6.1.

49

The motion models in the motion queue each represent a task and its associated

motion primitives. The motion model is created in the motion interface, and encapsulates the

system’s interpretation of the user’s intentions. The model is placed in the motion queue to

be processed by the motion scheduler introduced in Chapter 4. The model’s primitives are

initialized by copying the parameters’ default value maintained by the system. The user does

not have to specify all motion primitives for all input tasks. Instead, the user can simply

modify the system’s default value, and all subsequent motion models will copy these values.

For example, if the user sets the speed parameter to some value, all subsequent motions input

by the user will animate at this speed. Modifying the value of these parameters only affects

new tasks input by the user. The models in the motion queue store the value of the

parameters present at the time of their creation.

3.4 Environment

The environment consists of objects, space, and the table. Objects refer to the entities that the

puppet can manipulate. Space refers to some point in world coordinates where objects or end

effectors can be placed. The position of objects and space will dictate how the interface

interprets the user’s input in Section 6.1.1. The position of the table will influence how the

posture generator computes the puppet’s postures in Section 5.6. The environment in relation

to the puppet is illustrated in Figure 3.1.

Objects are modeled as cubic volumes in space. The centre, width, and space and

object relationships defines the state of the object. The centre coordinates correspond to the

object's centre in world coordinates. The width spans perpendicularly from the centre to the

volume surface. The space relationship is a reference to a space entity. The entity referenced

by the space relationship is the current space occupied by the object. The object relationship

references another object sharing the same space. The object referenced is stacked on top of

the original object. A diagram of three objects sharing the same space is shown in Figure 6.8.

50

Space entities are modeled as points in world space. The state of each space entity is

determined by a position expressed in world coordinates, and an object relationship. The

object relation references one object occupying the space, and the referenced object is the

bottom-most object in the stack. Some space entities are fixed in space, while others are

dynamic and can be repositioned. Setting the position of dynamic space entities is a result of

certain user-specified tasks, discussed in Section 6.3.

Figure 3.3 Space and Object Entities.

Consider an example where objects 1O and 2O share the same space 1S . 2O is

stacked on top of 1O , and 1O is the bottom-most object. All the objects sharing 1S can be

determined by constructing a list of object references originating from the space. Both

objects make reference to the same space entity 1S . The state of the space and object entities

is illustrated in Figure 3.3, 3.4, 3.5, and 3.6.

Figure 3.4 Entity object relationships.

51

Figure 3.5 Object space relationships.

Figure 3.6 Relational diagram of entities.

The table is modeled as a two-dimensional plane in world space. Certain body parts are not

permitted to penetrate the table. In this respect, the table imposes constraints on the state of

the puppet discussed in Section 5.6. The table is defined by its height, front, and skew. The

height value is expressed along the y-axis in world coordinates. The front of the table is

expressed as a distance along the positive z-axis in world coordinates. The skew of the table

indicates how far the table is shifted along the positive or negative x-axis. Figure 3.7 shows

the position of the table relative to the puppet.

52

Figure 3.7 Table model dimensions (Height = h, Front = f, Skew = s).

3.5 Virtual Puppet

The puppet interacts with the environment by reaching, grasping, and moving object and

space entities. The motion resulting from user input modifies the state of the puppet.

The puppet hierarchy has twenty-seven degrees of freedom. The figure is composed

of nine body segments, each having a corresponding proximal ball joint which serves to

attach it to it’s respective parent link. The abdomen, chest, head, left shoulder, left elbow, left

wrist, right shoulder, right elbow, and right wrist are the body segments considered in our

model. The lower extremities are not part of the animatable portion of the puppet. Each ball

joint can rotate in the local x-axis, y-axis, and z-axis, although not necessarily in that order.

Range of motion limits, current orientation, and joint length model each ball joint. Joint

limits are modeled from human biomechanical data as the minimum and maximum rotations

with respect to a particular axis. Current orientation refers to the transformation matrix of the

joint’s local coordinate frame. Joint length is calculated as the length from the joint's centre

of rotation to the adjacent joint’s centre lower in the hierarchy. Figures 3.8, 3.9 illustrate our

puppet model. Figure 3.10 and Table 3.1 present specific model dimensions. Certain degrees

of freedom in the elbow are eliminated by setting the upper and lower range of motion limits

to zero. Specifically, the elbow’s local z-axis is restricted from rotating. Both the hand and

elbow have a twist component, which are redundant degrees of freedom. However, these

redundancies help the IK solver converge on a solution in step 6 of the algorithm in Figure

53

5.17. Redundant degrees of freedom are required since both orientation and positional goals

must be accommodated while maximizing the perceived naturalness of the puppet’s posture.

Our puppet model is a simplification of a full anatomical representation of the human

body. The lower extremities remain in a fixed seated position. The puppet has no face,

avoiding the difficult task of animating facial expression. The joint centres of rotation are

positioned at the tip of the adjacent joint's geometry. This avoids mesh deformation issues

when rotating joints. The puppet has simple hand geometry, avoiding the complicated task of

finger positioning in grasping motions.

Figure 3.8 Puppet model body segments

54

Figure 3.9 Puppet model local coordinate frames.

Figure 3.10 Joint centres of rotation

55

Every joint’s axis of rotation maintains its own respective state information. To animate the

puppet from its initial state to the final goal state, we store data to compute the joint’s angle

of rotation over time. The start angle and goal angle are updated at the beginning of the

motion, and the joint’s current angle is updated at every time step. The ball joint’s state

information is illustrated in Figure 3.11. Some reference to the desired interpolation function

of the joint must be maintained, along with the speed at which the joint moves from its initial

state to the goal state. The evolution of a joint degree of freedom from its start angle to the

goal angle is presented in Figure 4.18.

Joint Adjacent Body Segment
Order of

Rotations

Min

Limit

Max

Limit

Joint Centre

(Zero Posture)

1st X -7 45
2nd Z -10 10j0 Abdomen

3rd Y -30 30

(0, 0.609, 0)

1st X -7 45
2nd Z -10 10j1 Chest

3rd Y -30 30

(0, 0.690, 0)

1st Z -80 90
2nd Y -130 30j2 Left Shoulder

3rd X -90 90

(0.063, 0.794, 0)

1st Y -180 0
2nd Z 0 0j3 Left Forearm

3rd X -90 90

(0.305, 0.791, -0.033)

1st Z -90 90
2nd Y -90 90j4 Left Hand

3rd X -180 120

(0.412, 0.789, -0.033)

1st Z -90 80
2nd Y -30 130j5 Right Shoulder

3rd X -90 90

(-0.063, 0.794, 0)

1st Y 0 180
2nd Z 0 0j6 Right Forearm

3rd X -90 90

(-0.305, 0.791, -0.033)

1st Z -90 90
2nd Y -90 90j7 Right Hand

3rd X -120 180

(-0.412, 0.789, -0.033)

1st X -80 90
2nd Z -130 30j8 Head

3rd Y -90 90

(0, 0.888, 0)

Table 3.1 Joint specifications.

56

Figure 3.11 Ball joint axis state information.

3.6 Motion Queue

Motion is modeled in our system in terms of tasks. The user specifies the task to be executed

along with its associated motion primitives, and the system will animate the puppet

accordingly.

The interface allows the user to specify tasks and modify primitives by keyboard or

script. Details of system interaction are presented in Section 7.1 and 7.2. When the user

inputs a task, the system processes the input and begins animating the task as soon as

possible. However, while the system is computing and animating the puppet, the user may

have input more tasks into the system pipeline. This is particularly true when interacting with

the system by script. The script can specify many tasks in a fraction of the time it takes to

complete one motion. To deal with such cases, we store the input in a motion queue. The

tasks will then be processed in first-come, first-serve order.

Maintaining a motion queue also allows the puppet to perform multiple tasks at the

same time. We refer to this concept as motion concurrency or motion blending. Concurrent

execution of tasks is a novel feature of our system, and its operation is explained in detail in

57

Chapter 4. If more than one task is in the motion queue, then the motion scheduler will

consider how the multiple tasks can be executed concurrently. The user can control the

concurrency of task execution by modifying a parameter called the scheduling parameter.

The user can specify certain tasks to be executed independently, while others are blended

together in a single motion.

In addition to adding tasks to the motion queue, the user can modify its contents. The

user can freeze the motion of the puppet by deleted all motion models from the queue. When

the queue is empty the puppet will stop animating immediately. The user can also interrupt

the current motion by replacing the entire motion queue with a single new task. The puppet

will stop executing the current motion and begin the new task. This feature is further

discussed in Section 4.2, and its specification is presented in Table 7.1.

3.6.1 Motion Building Blocks

The motions in our system are categorized by reaching motions that interact with the

environment, general motions that are performed independent of the state of the environment,

and sliding motions that positions the puppet relative to its current position.

Reaching motions include tasks that place the hand at an object or space entity. The

grip, speed, and interpolation function are user-specified primitives that modify the nature of

the motion. The grip parameter determines the orientation and position of the hand relative to

the entity to be reached, as explained in Section 6.1.1. The speed of the motion determines

over how many frames the motion will interpolate. The interpolation function associated with

a motion determines the velocity over time. Applying speed and interpolation functions to the

puppet’s motion is further discussed in Section 4.5.

Sliding motions will position the hand relative to its current position. The motion is

defined by a translation vector that will the position of the hand relative to its current position

in world coordinates, and a matrix that defines the final orientation of the hand. Further

discussion of the translation vector and orientation matrix can be found in Section 6.1.2. The

user specifies the translation vector, orientation matrix, speed, and interpolation function

associated with the motion. The translation vector and orientation matrix are not considered

among the set of user specified motion primitives since they define the semantic

58

interpretation of the sliding tasks. Specifying the translation vector and orientation matrix is

discussed in Sections 7.1 and 7.2.

General tasks are independent of the environment, and can not intuitively be

expressed as an inverse kinematics problem. For example, waving or gesticulating postures

are not appropriate for inverse kinematics solvers. Instead of computing postures, these

motions’ postures are hard-coded in our system. The speed and interpolation functions are

user-specified motion primitives applicable to general tasks. Further discussion on general

tasks can be found in Section 6.1.3.

The three motion classifications above provide the building blocks for animating a

rich variety of tasks. Sequencing the above motion building blocks can generate many object

manipulation motions. For example, a drinking task can be accomplished by first reaching

for the cup, then bringing the cup to the mouth and tilting the head. Grasping the cup is a

reaching motion, while drinking from the cup can be a general task hard-coded in the system.

Two reaching motions and two sliding motions can open a jar. A sequence of motions to

accomplish this task is presented below.

1. Grasp the jar. (Reaching motion)
2. Move the jar close to the body. (Sliding or Reaching motion)
3. Place the opposite hand on top of the jar. (Reaching motion)
4. Adjust the orientation of the hand to twist the jar lid. (Sliding motion)

The second motion can be defined as either a sliding motion or a reaching motion. If the jar

is moved to point closer to the body by some relative measurement, then it is a sliding

motion. If the jar is positioned at an absolute point in space closer to the body, then it is a

reaching motion. Either type of motion can move the jar closer to the body.

There are wide variety of tasks that can be accomplished with an appropriate

sequence of reaching, sliding, and general movements. Playing musical instruments, handling

cutlery and tools, and other object manipulation tasks are conducive to this classification of

motion. Walking, gesticulating, and other motions that do not manipulate objects can be

integrated in our system as general tasks, although much of the work has been focused on

environment dependant motion.

59

3.6.2 Cyclic Motion

Motions in our system are further categorized as cyclic or non-cyclic. Traditionally, the term

“cyclic” refers to tasks such as scratching one’s head that requires several movements to

complete, and these movements repeat themselves. Looking at one's watch is non-cyclic, and

is completed once the wrist and head are in a position where the time can be observed.

Consider drinking water, which requires one to reach for a glass, then bring the glass to the

mouth and tilt the head. This task requires multiple postures to complete, although it is not

cyclic in the traditional sense. The term “cyclic” can be applied to walking or scratching your

head, but does not apply to higher level tasks that require several distinct motions to

complete. In either case, they are treated the same in our system. Cyclic motion in the context

of our classification refers more generally to tasks that involve multiple movements, whether

or not the movements actually cycle.

The three basic tasks described in Section 3.6.1 can be grouped together to form

higher level tasks. Scratching the head can be implemented by cycling between two general

tasks. The first task is a downward stroke on the head, and the second task is an upward

stroke. By repeatedly executing this pair of tasks, we can effectively generate a scratching

motion. Grouping together basic motions as the examples described in Section 3.6.1 can

generate tasks such as opening a jar or drinking from a cup.

Higher level tasks are implemented in our system as well as the motion building

blocks described in Section 3.6.1. If the user commands a higher level task, then a group of

primitive motions is placed in the motion queue as a cyclic task. The group of primitive

motions forms a list of postures that define the cyclic motion. All tasks in the cyclic motion

model with the exception of the last frame have a pointer to the successor in the cyclic

motion. A frame’s successor is referred to as the couple motion. Non-cyclic motions are

modeled as a single frame with no couple motions. This distinction is illustrated in Figure

3.12. Two examples of cyclic motion implemented in our system are drinking from a cup and

turning on a table lamp. Specifying these motions is presented in Table 7.1.

60

Figure 3.12 Motion Queue with one cyclic motion frame and one non-cyclic motion frame.

3.6.3 Critical body segments

All motions are classified according to which body segments are critical to the execution of

the motion. We created six groupings of body segments according to the critical body

segments found in many motions. The six groupings are:

• Left hand, left forearm, left shoulder.

• Left hand, left forearm, left shoulder, head.

• Left hand, left forearm, left shoulder, chest, abdomen.

• Right hand, right forearm, right shoulder.

• Right hand, right forearm, right shoulder, head.

• Right hand, right forearm, right shoulder, chest, abdomen.

The motion associated with a task is not exclusive to the critical body segments. For

example, when one looks at his watch, he uses his left arm to position the watch and

simultaneously positions his head to see the watch on his wrist. However, he must be doing

something with his right hand as well, which will be referred to as a secondary motion. He

may have the hand in his pocket, resting on a table, placed on his hip, or resting on his side.

61

Secondary motions refer to the movement of body segments that are not critical to

accomplishing the task at hand, and primary motion refers to the movement of the critical

body segments. Secondary body segments refer to all body segments that are not critical body

segments.

How one handles non-critical body segments is an issue to be resolved. We can fix

the right hand in a pre-defined position while he is looking at his watch. For example, we can

place the hand on the table. Alternatively, we can implement a variety of secondary motions

that may be performed concurrently with looking at the watch. In this case, the user explicitly

specifies the motion of the right hand to accompany the primary motion of looking at his

watch. Our system incorporates both solutions. There are default secondary motions

implemented that can be overridden by a user-specified motion.

The system default secondary motions can be overridden in several ways. The user

can specify a new default motion by locking the position of a hand in its current position.

This concept is discussed in Section 6.2. The user can also blend multiple tasks together. The

idea is that the secondary body segments of one task may be the critical segments of another.

By overriding secondary motion with the critical body segments’ goals from another task, we

can concurrently execute two tasks. Chapter 4 describes this concept in detail.

3.7 Summary
This chapter introduced the integration of the models and modules used to implement a

system with guided control of a puppet seated at a table. An overview of the system’s

dataflow was introduced in Section 3.1. Each module interacts with the system’s models to

effectively control the motion and state of the system. The functional operation of each

module was presented in Section 3.2. The design of each model was discussed in subsequent

sections. Sections 3.3, 3.4, 3.5, and 3.6 described the user input, the environment, the puppet,

and the motion models respectively.

62

Chapter 4
Motion Scheduling

The motion scheduler is responsible for arbitrating among the tasks in the motion queue.

Some commands require inverse kinematics to compute the appropriate goal posture for

accomplishing the task’s objectives, while others have appropriate joint angles predefined in

the system. The motion scheduler will consider the body segments instrumental in

accomplishing the task and the target hand position determined by the interface to formulate

an inverse kinematics problem. The problem is input to the posture generator to compute the

joint angles required to accomplish the task. Once a complete forward kinematic

specification of the puppet’s position is computed, the puppet is animated from its initial

position to the goal position. The speed and function to interpolate the puppet from its initial

position to the goal position is included in the task specification.

This chapter describes the issues we encountered in scheduling motion independently

and concurrently from a sequential set of tasks. Section 4.1 introduces some of the issues in

implementing motion concurrency. Section 4.2 explains how the user interactively controls

the concurrent execution of multiple tasks. Section 4.3 describes our algorithm for multi-

tasking the virtual puppet. Section 4.4 discusses how tasks are completed and removed from

the motion queue. Finally, Section 4.5 describes how the puppet animates from its initial

position to the goal position. Figure 4.1 shows the functional operation of the motion queue.

63

Figure 4.1 Functional diagram of the motion scheduler.

4.1 Introducing Motion Concurrency
The motion scheduler’s function and operation is similar to an operating system managing

processes and resources. The puppet's body segments act as resources that are assigned to

particular motion models. The motion models are analogous to processes by demanding body

segments as resources and having specific execution times. To complete its task, each motion

model requires a certain set of body segments to execute for a specified duration of time.

This set of body segments is referred to as the critical body segments described in Section

3.6.3. Several subtle issues arise when trying to manage an arbitrary set of motions with

variable resource demands and priority.

We refer to conflicting motion as two motion models that specify two distinct goals

for the same body segment. The problem of effectively scheduling motions that may or may

not be conflicting with variable execution times can be approached in a number of ways. One

possible method is to execute each motion exclusively and in succession. This method does

not allow the user to combine two independent motions, such as scratching one's head and

64

walking. On the other extreme, we can try to multi-task the puppet at all times, and schedule

as many motions to execute concurrently as possible. This does not allow the animator to

separate the execution of walking and scratching one's head into two distinct motions if he

wishes. Furthermore, body segments need not be mutually exclusive to one task. To

concurrently execute multiple tasks, the puppet’s body segments can contribute to satisfying

one task’s constraints, or may be shared among multiple tasks. One novel feature of our

system is the user specification of how potentially concurrent motions are handled.

Motion associated with a task is comprised of two movements referred to as primary

motion and secondary motion introduced in Section 3.6.3. Primary motion refers to the

movement of the task’s critical segments from their initial position to the goal position. To

accomplish a task, the critical segments must achieve the goal position. This is analogous to

stating that a task is complete once the primary motion has finished executing. Secondary

motion refers to the motion of the non-critical body segments and is not crucial to

accomplishing a task. The system has default secondary motion implemented that can be

overridden as discussed in Section 6.2. The example below illustrates the concept of motion

concurrency.

Task 1 “Reach for object A with left hand”

Critical Body Segments Abdomen, Chest, Left arm

Secondary Body Segments Head, Right arm

Task 2 “Scratch head with right hand”

Critical Body Segments Right arm

Secondary Body Segments Head, Abdomen, Chest, Left arm

Table 4.1 Two non-conflicting tasks.

65

Figure 4.2 Example of concurrent execution of tasks.

Overlapping Task 1 and Task 2 results in the body and left arm reaching for object A, and the

right arm scratching the head. The head is assigned default secondary motion. Motion

concurrency is possible when the critical body segments in one task correspond to the

secondary body segments in another. Our system only considers blending at most two

motions at the same time. This simplification is justified since the puppet has only two hands.

The head could potentially execute a third task, but presumably should be positioned to

observe the motion of the hands.

4.2 Motion Scheduler Operation
The user controls the concurrent execution of tasks by setting the value of the scheduling

parameter introduced in Section 3.3 and 3.6. The scheduling parameter for every task is a

user- specified parameter. The value of the scheduling parameter is set to no overlap, partial

overlap, and full overlap. Specifying the scheduling parameter is presented in Table 7.1. A

more precise description of the motion scheduler’s operation is presented in Appendix A.

We use the term scheduling motion in the functional description of the motion

scheduler presented below. Scheduling motion refers to the assignment of positional goals

from a motion model to a subset of body segments in the virtual puppet’s body. When

positional goals are scheduled from a particular motion model, we need a forward kinematic

specification of the puppet’s goal state. If the motion model is a general task, then the joint

angles of the puppet’s critical segments are predefined. For reaching and sliding motions, the

66

puppet’s posture is specified as an inverse kinematics problem as in equation (3.2). The

kinematic chain },,{ 1 K+ii jj corresponds to the group of body segments scheduled from the

particular motion model. The end effector position and orientation corresponds to the

geometric constraints of the task determined Section 6.1. When secondary motion is

scheduled, the inverse kinematics problem is specified the same way, except the end effector

position and orientation is determined from Section 6.2. The first and second task refers to

the motion models at the head of the queue and immediately following the head, respectively.

The motion scheduler determines if motion blending can occur by scanning the first

two motion models in the motion queue. If there is only one task in the motion queue, then

no motion overlapping occurs. If there is more than one task in the queue, then the value of

the second motion model’s scheduling parameter is referenced to determine if any concurrent

execution of tasks should occur. Pseudo-code for this operation is presented in Figure 4.3.

If(Motion Queue is empty)

-Stop animating puppet

Else if (Only one model in the motion queue)

-Schedule motion for all body segments from the first motion model

Else if (Second motion model’s scheduling parameter == No overlap)

-Schedule motion for all body segments from the first motion model

Else

-Blend the motion of the first two tasks in the motion queue if

possible.

The algorithm to blend motions is presented in Figure 4.6.

Figure 4.3 Pseudocode of motion scheduler operation

The above algorithm is executed every time a motion model is removed from the queue, or a

motion model is added while there is less than two models currently in the motion queue.

Freezing the puppet’s motion is implemented by deleting all models from the motion queue.

The algorithm above will be invoked, and the motion of the puppet will stop. Interrupting

motions is implemented by deleting all models from the motion queue and placing a single

task in the motion queue. The algorithm above will interrupt the puppet’s current motion

with the new task. Alternatively, a more sophisticated interrupt scheme could place a task at

67

the head of the queue and re-invoke the above algorithm. How one chooses to implement an

interrupt scheme depends on the semantic interpretation of the command. While the system is

in interrupt mode, all new input tasks will modify the motion queue as defined above. Input

corresponding to freezing the motion and shifting the system state to interrupt mode is given

in Table 7.1.

Determining whether two tasks can be blended together, one must consider if there

are any conflicts in critical segments. However, disallowing two tasks to execute

concurrently due to conflicts in critical segments is an over-simplification of the problem.

From observation of human movement, one can notice humans performing multiple tasks in

spite of conflicting body segments. The issue to be resolved when combining conflicting

motions is determining which body segments can be shared between two tasks, and the

motion resulting from blending the tasks. An example of such movements that applies

directly to our work is reaching tasks involving both hands.

When reaching for an object, humans will use the abdomen, chest, and arm to place

the hand at the desired position. Three subjects were observed reaching for a cup with the left

hand, right hand, and two cups simultaneously. Photos of the people performing these tasks

is presented in Figure 4.4. The bottom row of photos shows how two independent reaching

tasks can be blended into a single motion. When reaching for both cups, the torso is in

conflict between the two tasks but successfully performs the motion by compensating

between the left and right goal. However, two independent left handed reaching tasks cannot

be combined into a single motion. These two tasks cannot be blended because the left hand

cannot be placed in two positions at once. Extending this concept to the scenario below, none

of the subjects can grasp both cups with the left hand at the same time. Although the head is

not an end effector in the traditional sense, it can be thought of as positioning the human’s

gaze, which must be focused on a single subject. In this context, the head cannot be shared

between two tasks. This implies that while some conflicts are unresolvable, others can be

overcome by sharing the conflicting body segments. Figure 4.4 is also of interest because it

illustrates how people perform tasks in remarkably similar ways. This supports the notion of

a “preferred posture”, which the posture generator in Chapter 5 attempts to model.

68

Figure 4.4 Three people performing simple reaching tasks.

When animating two tasks being combined, one must also consider the motion rather

than strictly the final posture. The final posture of two combined tasks must accomplish the

semantic interpretation of both tasks. For example, blending two reaching motions must

place each respective hand at its goal. However, the final posture can be assumed by moving

both arms simultaneously towards their goal, or by sequentially moving each hand into

position. Consider the photo sequence of two blended reaching motions presented in Figure

4.5. The first subject places the left hand at its goal first, then moves the right hand into

position. The second subject simultaneously moves the hands into their respective goal

positions. The first subject is executing the two tasks independently with some anticipation of

the second task. From observation of Figures 4.4 and 4.5 we can make several

generalizations with respect to how humans combine motion. These generalizations are the

basis on which our algorithm for combining motion is designed.

69

Figure 4.5 Partial and full overlap of two reaching tasks.

70

The top two rows of photos in Figure 4.4 illustrate reaching tasks being executed with

no overlap. Figure 4.5 are examples of how two distinct reaching motions can be combined.

The left column of photos is a human example of the partial overlap scheme implemented in

our system. The right column of photos corresponds to the full overlap scheme. Notice that

the final postures in the bottom row of Figure 4.5 corresponds to the photos presented in the

bottom row of Figure 4.4.

As previously mentioned, end effectors cannot be shared between two independent

tasks. In our system, the left and right hand are the only end effectors that can be positioned,

as introduced in Section 3.6.1. This implies that the arms are dedicated to at most one task at

any time. Humans can also look at only one object at a time. The photos of the combined

reaching motions in Figure 4.4 illustrate this concept. All three subjects are looking at one

object, rather than trying to somehow observe both objects, or interpolating the position of

the head to look in between the objects. These two conclusions eliminate all possibility of

blending tasks with conflicting segments with the exception of motions that share the

abdomen and chest as critical segments.

The execution of multiple tasks sequentially or simultaneously is more complex than

simply deciding which tasks to execute at the same time and which to perform in sequence.

Task anticipation is important for creating lifelike, realistic motion and is introduced as a

fundamental principle of animation by Lasseter [Las87]. From a physiological and

psychological standpoint, anticipation can be described qualitatively as preparing the body

for a particular task. Three examples of anticipatory motion are presented with a brief

example.

First, positioning the head to look at an object before reaching for it can be described

as the result of positioning the body to acquire sensory data. Second, consider moving the

hand slightly towards a target with one hand while the other hand is executing a task, then

finishing the movement once the head is moved to observe the target. The left column in

Figure 4.5 shows an example of this. The second grasping motion is delaying to acquire

sensory data on the cup’s position. However, the hand begins to move in the cup’s general

direction in anticipation of the second grasping movement. The third example of motion

resulting from anticipation of future tasks is extending muscles before contracting. Or,

alternatively, to establish the necessary momentum for accomplishing the motion. For

71

example, moving a foot backward before kicking a soccer ball prepares the body to

effectively perform the task [Las87]. Our system attempts to model anticipatory motion as a

form of motion concurrency. While only some tasks can be fused into a single motion, many

tasks can influence the current movement in the form of anticipatory motion, as illustrated in

Figure 4.5.

In our system, motion blending is implemented by not only combining tasks that have

no conflicting critical segments, but also by sharing certain critical segments among two

tasks. The user can also schedule a subset of a task’s critical segments to begin moving as a

form of anticipatory motion. Handling multiple tasks simultaneously has been explored in

robotics literature for highly redundant manipulators [SS91][BB98]. Tasks have also been

combined by computing a weighted sum of the task’s goal postures [BPW93][Per97].

4.3 Motion Concurrency Algorithm

Our system blends motions depending on the user’s input and the specifics of the tasks to be

combined. A functional description of the algorithm is presented below followed by a high-

level description of how the various blending schemes compare to our observations in

Section 4.2. An example of partial and full overlap of a reaching task is presented. The first

and second motion models refer to the model at the head of the motion queue and the model

immediately following the head, respectively.

72

If (Second motion model’s scheduling parameter == Partial overlap)

-Schedule all of the first motion model’s critical segments

-Schedule the second motion model’s non-conflicting critical

segments

-Schedule secondary motion from the first model for the rest of the

body segments

Else If (Second motion model’s scheduling parameter == Full overlap)

-Schedule all critical segments from first and second motion model

If there are conflicting critical segments between the first and

second motion model, then resolve them as follows:

 -Share the conflicting critical segments that can be shared.

-Schedule the critical segments that cannot be shared from the

first motion model.

Figure 4.6 Pseudocode for blending two tasks’ position goals.

Partial overlap mimics anticipation of the proceeding task by starting the motion of the

second motion model’s unconflicting critical segments. The right hand begins its motion

while the first task is executing. Once the left hand has reached its target, the right hand’s

motion executes to completion. Full overlap implies sharing body segments where

applicable. If the conflicting body segments cannot be shared, then the full overlap scheme

performs identically to the partial overlap scheme. The implementation of sharing body

segments is presented in Section 5.7.5.

Blending tasks to effectively model the user’s intentions is further complicated by the

variable speed and velocity functions over time of the two tasks. For example, if the puppet’s

body segments’ positional goals are scheduled from both the first and second task, we would

like to respect the user- specified motion primitives from both tasks. The general algorithm

used to determine the body segments’ velocity over time is presented below.

73

If (No conflicting critical body segments between the first and second

task)

-Schedule the first task’s speed and function primitives for the

first task’s critical segments.

-Schedule the second task’s speed and function primitives for the

second task’s critical segments.

-Schedule the first task’s speed and function primitives for the

remaining body segments.

Else

-Schedule the first task’s speed and function primitives for all

body segments

Figure 4.7 Pseudocode for scheduling speed and interpolation functions.

The user controls whether the first and second task in the motion queue is executed

by the full, partial, or no overlap scheme by modifying the scheduling parameter before

inputting the task to the system. Specifying motion parameters is discussed in 3.2. Consider a

single left and right handed reaching motion. The task models are presented below, and the

three blending schemes’ operation is illustrated.

If the second motion model’s scheduling parameter specifies no overlapping of the

two tasks, then all of the first frame’s critical body segments are scheduled positional goals

from the first frame. Non-critical body segments are scheduled the first task’s default

secondary motion. All body segments move according the first frame’s speed and

interpolation function values. This blending scheme is illustrated in Figure 4.8. In this

example the left arm and torso correspond to the first task’s critical segments. No overlap

implies that the first task in the motion queue is executed independently, and the task’s

primary and secondary motion will execute to completion.

74

Figure 4.8 No overlap of two tasks.

In the above example, the puppet’s left arm and torso is scheduled according to the first task,

and the remainder of the segments is scheduled secondary motion from the system. In Figure

4.8 and all subsequent diagrams, one should assume the puppet is facing the reader.

If the second motion model’s scheduling parameter specifies partial overlapping of

the two tasks, then all of the first frame’s critical body segments are scheduled positional

goals from the first frame. The second frame’s non-conflicting critical body segments are

scheduled positional goals from the second task. The remainder of the body segments are

75

scheduled the first frame’s secondary motion. If the two tasks have no conflicting critical

body segments, then the critical segments are scheduled speed and interpolation data from

their respective tasks, as illustrated in Figure 4.9. Otherwise, all body segments animate

according to the first task’s speed and interpolation function. This case is presented in Figure

4.12. In Figure 4.9, the left arm and torso is scheduled according to the first task, and the

right arm is scheduled from the second task. The head is given the Task 1 secondary motion.

All body segments animate according to the first frame’s speed and trajectory function.

Figure 4.9 Partial overlap of two tasks.

76

If the second motion model’s scheduling parameter specifies a full overlap of the two

tasks, then sharing conflicting body segments between the two tasks is possible. If the

conflicting body segments cannot be shared, then they are scheduled positional goals from

the first task. If a conflict in critical body segments has occurred, then all body segments will

animate according to the first task’s speed and interpolation parameters. Otherwise, the

critical segments animate according to their respective tasks’ specifications. Figure 4.10

illustrates an example where Task 1 and Task 2 share conflicting critical segments. Figure

4.12 illustrate an example of two tasks with no conflicting critical segments.

Figure 4.10 Full overlap of two tasks.

77

4.4 Removing Tasks
Aside from scheduling motion from the motion queue, there is an issue of determining when

a motion has ended and a new motion frame should be scheduled. A task is considered

complete once all its critical frames have executed to completion. If the tasks are scheduled,

executed, and completed in order and succession, then the removal of motion models from

the queue becomes trivial. Tasks are removed when finished and a new task begins

execution. However, several anomalies can arise if tasks are naively removed from the

motion queue when multiple tasks are executing concurrently. These problems are a result of

modeling motion as a series of self-contained tasks as described in Section 3.6. This model is

conducive to guided control since the user’s input is inherently task-level, but is subject to

the problems described in this Section when trying to generate motion from several tasks.

Consider the case where two tasks are executing concurrently. The first task is

reaching for an object with the abdomen, chest, and left arm. The second task is scratching

the head with the right arm. There are no conflicts in critical segments, so each task executes

from the model’s own respective speed and interpolation function. Assume the reaching task

is to execute for 2.0 seconds, and the scratching task executes for 1.8 seconds. Figure 4.11

and Figure 4.12 illustrates this scenario.

Figure 4.11 Task execution timeline.

78

Figure 4.12 Overlap of two tasks with no conflicting critical segments.

The scratching task will end after 1.8 seconds. The motion scheduler will remove the

scratching task from the motion queue since all its critical segments have finished executing.

The motion scheduler will now scan the motion queue to determine which tasks should

execute next. Since the left handed reaching motion model is at the head of the queue, the

motion scheduler is guaranteed to schedule all the left-handed tasks’ critical segments. This

is a result of the algorithm presented in Figures 4.3 and 4.6. However, the left-handed

reaching motion has already begun animating. Rescheduling the task from scratch will

79

animate the reaching motion from its current state to the goal state for another 2.0 seconds.

The timeline for this task execution is illustrated in Figure 4.13.

Figure 4.13 Rescheduling Task 1.

This is clearly not what the user had intended. We must respect the user’s specification of

time with respect to the start and finishing time of tasks. To avoid this anomaly, we apply the

following general rule when scheduling motions from the motion queue.

• If all the critical segments in a motion model have begun animating, do not reschedule

the motion model.

This rule implies that when a set of body segments is scheduled positional data from a

motion model, and this set of body segments correspond to the task’s set of critical body

segments, then the body segments should animate to completion.

While the above anomaly seems intuitive enough to assume without explicit

discussion, its implementation leads to another problem which requires overwriting some

motion models’ positional goals to overcome. Consider the state of the system when the right

hand scratching motion has completed in Figure 4.11. It is not clear what the right hand’s

motion should be during the last 0.2 seconds of the left hand-reaching task. There are two

cases to consider.

80

1) The next task in the motion queue has the right arm among its set of critical segments,

and the motion model’s scheduling parameter is set to partial or full overlap. In this case,

the right arm’s positional goals for the task are scheduled, and new motion for the right

arm begins.

2) There are no more frames in the queue, the next task does not have the right arm among

its set of critical body segments, or the next task has the scheduling parameter set to no

overlap. In this case, no useful motion for the right arm can be scheduled.

In the second case, it is not clear what positional goals should be assigned to the right hand.

There are three reasonable alternatives to consider.

The first option is to schedule the first task’s secondary motion for the right hand. Let

us assume the secondary motion places the right hand on the table. The speed and

interpolation function with which we animate the right hand is questionable. We can animate

the right hand to finish its motion at the same time as the left hand’s reaching task. This

option considers the user’s timing directives for the first task as a hard constraint, and moves

the hand from its current position to the top of the table in 0.2 seconds, which will look

completely unnatural. However, this option ensures that the time to execute the motion

associated with blending the two tasks is bounded above by the longest task’s execution time.

Figure 4.14 Scheduling Task 1 secondary goals for 0.2 seconds.

81

Alternatively, we can move the right hand to the table at the same speed as the reaching task,

or limit the speed of the motion to some reasonable maximum limit. This will look more

natural, but the entire animation sequence will extend beyond 2.0 seconds.

Figure 4.15 Scheduling Task 1 secondary goals for 2.0 seconds.

Our prototype system implements the final option, which is to migrate goals. This

concept implies storing positional data of the right hand in the left hand’s motion model. In

other words, upon completion of the scratching motion the position of the right hand

overrides the left-hand reaching motion’s secondary motion. The result is that no motion of

the right hand will occur following the scratching task. This concept is illustrated in Figure

4.16 and 4.17.

Figure 4.16 Scheduling right arm goals from Task 1’.

82

Figure 4.17 Modifying task 1 by migrating goals.

4.5 Animating the Virtual Puppet

The puppet can animate once every degree of freedom is scheduled goal states and

interpolation information from the motion queue. A schematic of the state of every degree of

freedom in every ball joint is shown in Figure 3.11. At the start of a new motion, the start

angle is set to the current angle, and the goal angle is updated according to the scheduled

positional data from the motion queue. The current step is a measure of the number of time

steps elapsed since the start of the motion. The goal step is the duration of the motion in time

steps. By expressing the state of every degree of freedom over time as a function we can

deterministically position the puppet at every time-step.

Each degree of freedom is an Euler angle corresponding to a particular ball joint. The

following equations for interpolation can also be applied to quaternions, which provide a

compact form for expressing orientations. Interpolating quaternions follows the great arc

between two orientations, while this is not guaranteed when interpolating Euler angles.

However, the internal state of the puppet is expressed in Euler angles, and interpolating

between quaternions would imply transforming the orientation representation back to Euler

angles at every time step. The angles are interpolated as follows:

83

.)(ψψθφ +







×−=

G

C
I step

step
f , (4.1)

where φ is the current angle, ψ is the start angle, θ is the goal angle, Cstep is the current

step, and Gstep is the goal step. If is the interpolation function associated with the particular

movement.

At every time-step, the rotational angle for every axis of rotation in every ball joint is

computed by equation 4.1. In order ensure the puppet will animate from its initial position to

the final position, several constraints on the interpolation function If must be respected.

• () .00 =If

This property ensures the motion will begin from the puppet’s initial position. From

Equation 4.1, if 0=Cstep , then ψφ = .

• .1)1(=If

This property ensures the puppet will be in the goal posture at the end of the motion.

From Equation 4.1, if GC stepstep = , then θφ = .

• .0,1)(0 GI stepxxxf ≤≤∀≤≤

This property ensures the puppet will not violate any joint limit constraints while

interpolating since MaxLimitMinLimit ≤≤≤≤ θφψ or

.MinLimitMaxLimit ≥≥≥≥ θφψ We know MaxLimitMinLimit ≤≤ θψ , since the

posture generator enforces joint limits for goal angles, and the start angle corresponds to

the goal angle of the previous motion. This assertion is extended to the first task and

interrupted tasks without justification.

84

The parameters in Equation 4.1 are taken from the motion model of the joint’s currently

executing task. The goal step and interpolation function, referring to the duration of the task’s

motion and its velocity over time respectively, are user-specified motion primitives. The

possible values for these parameters are presented in Table 7.1. The set of goal angles for

every degree of freedom in the motion’s critical segments defines the posture to accomplish

the task. If a general task is being performed, then the goal angles are hard-coded in the

system and are resolved in the motion interface module presented in Chapter 6. If a reaching

or sliding task is performed, then the posture generator will compute the goal angles required

to position the end effector. The state of every degree of freedom is illustrated in Figure 4.18.

Figure 4.18 Computing the state of each degree of freedom.

We can determine the signal for a degree of freedom over the entire animation

sequence by concatenating the interpolation function over time. For example, consider the

rotation of the left wrist’s y-axis while performing two tasks. Let us assume the puppet

reaches for some object, followed by a scratching motion. The scratching motion is cyclic,

composed of several wrist movements over time. The speed and interpolation functions for

each task are user-specified parameters, so the signal will be dependent on user input. We

present two examples of how the signal varies over time depending on different parameter

values for each task. The first example performs a slow reaching motion followed by fast

85

scratching. Both tasks’ velocity curves are characterized by a sinusoidal interpolation

function consistent with research presented in Section 2.10. The second example shows a fast

reaching motion followed by slower scratching movements. The reaching motion is executed

with constant velocity, and the scratching movements are characterized by negative

acceleration.

Figure 4.19 Velocity continuity between tasks.

Fig. 4.20 Velocity discontinuity between tasks.

86

The first example shows 1C continuity of motion. The second example has

discontinuous velocity between movements. The velocity of each motion is a user-specified

parameter, and hence the user is also responsible for enforcing continuity of velocity, if any.

Figure 4.19 mimics some properties of observed human behaviour, and simplifies the

problem in several respects. The motion’s velocity profile is a smooth, bell-shaped curve,

which models fast, voluntary, single joint motions. The curve is scaled to accommodate

variable amplitudes and time constraints, which models the experimental observations

presented in Section 2.10. Many of the complexities of human motion are omitted from the

animation of the puppet for several reasons. First, there does not exist a comprehensive

model for arbitrary multi-joint voluntary discrete movements. Second, modeling all of the

experimental observations in the biomechanics literature would imply much more

autonomous control of the puppet’s motion. For example, implementing Fitt’s law as a hard

constraint on the puppet’s motion would restrict the user from controlling the duration of

each task. Much of the applicable neuroscience research is focused on discovering preferred

velocity parameters when executing various movements. However, the animator may not

wish to be restricted to these parameters. Determining how more sophisticated biomechanical

models can be effectively implemented in the system without limiting the user’s control is a

topic for future research. The most important deficiency in the current implementation for

modeling realistic human motion is an overly simple approach to Bernstein’s problem. In the

current implementation, all joints rotate with respect to a single scaled interpolation function.

In reality the acceleration of all joints in the human body is not uniform, and has been

observed to be a function of the distance between the end effector and the joint’s centre of

rotation.

4.6 Summary

This chapter introduced algorithms and issues encountered when blending tasks together. Our

method of combining several tasks into a single motion stems from the notion of critical

segments discussed in Section 3.6.3. The user can dictate how a task will be combined with

other tasks by specifying the value of the scheduling parameter. The motion scheduler’s

operation is summarized in Figure 4.3, and tasks are blending according to Figure 4.6 and

4.7. The motion resulting from scheduled tasks was discussed in Section 4.5.

87

Chapter 5
Posture Generator

The motion scheduler described in Chapter 4 is responsible for assigning tasks to groups of

body segments. Some tasks may be performed independent of the environment, such as

scratching or looking at one’s watch. These tasks are referred to as general tasks, and are

introduced in Section 3.6.1. General tasks are not ideally expressed as an inverse kinematics

problem, so the position of the puppets’ body segments accomplishing the task is hard-coded

in the system’s interface module in Section 6.1.3. Sliding and reaching motions are specific

to the current state of the environment, and require positioning the puppet’s hand according

to the current position of the object or space. These tasks are formulated as inverse

kinematics problems by the motion scheduler in Section 4.2. The problem is solved by the

posture generator, which returns a forward kinematic specification of the joints assigned to

accomplish the task. This chapter describes the IK solver used for computing the puppet’s

postures when performing tasks dependent on the state of the environment, such as reaching

and sliding motions.

Realistic human inverse kinematics is remarkably complex, since the algorithm is

modeling anatomical structures with abstract notions of comfort. Robotic manipulators have

no esthetic preference for a single joint configuration over another. The solution space of the

inverse kinematics problem applied to robotic manipulators is constrained by the mechanical

88

limitations of the robot. However, robotics engineers attempt to maximize the manipulability

of the robot arm, which dictates the maneuverability of the manipulator in some

configuration [DMSB95]. Humans on the other hand, have strong preferences for certain

postures over others. This assertion is illustrated in Figure 4.4. These preferences constrain

the solution space far more than the physiological limitations of the human body. Human

motions appear to have common preferences as has been shown in numerous experiments

discussed in Sections 2.9 and 2.10. Computer scientists have considered this problem as well,

such as Lee et al. who proposed a model of human comfort for executing lifting tasks

[LWZB85][BPW93]. Tevatia et al. investigated algorithms for effectively dealing with

redundancies in humanoid robots [TS00]. A survey of research in positioning virtual

humanoid figures with inverse kinematics is presented in Section 2.4.

To model realistic human motion, we must consider the decision-making process

involved in performing some reaching motion which is not completely understood by

neuroscientists. There are physiological limitations that would account for discarding most

postures. For example, muscle and tendon elasticity and joint range of motion limitations

both explain why humans do not reach for objects in certain ways. However, within some

acceptable comfort level there is still a wide range of postures that humans consistently

reject. Posture design applied to computer animation delves into neurology, psychology, and

biomechanics to model how humans fundamentally perceive their surroundings and apply

their bodies to accomplish certain tasks. Understanding human comfort and preferred

postures is widely researched in ergonomic studies. The algorithm presented in this chapter

considers results in both ergonomics and neurological research, as described in Sections 2.9

and 2.10.

The motion scheduler will analyze the contents of the motion queue, and schedule

one or more tasks concurrently. This is accomplished by parsing the puppet’s body into

several kinematic chains, each with their own geometric constraints that specify a posture to

accomplish a particular task. Given the algorithms presented in Chapter 4 and the groupings

of critical segments presented in Section 3.6.3, there are only three possible kinematic chains

associated with an IK problem from the motion scheduler. This assertion is presented without

justification. A diagram of the posture generator’s functional operation is presented in

Figure 5.1.

89

Figure 5.1 Functional diagram of the posture generator.

The kinematic chains associated with an IK problem can be one of three possibilities.

Postures can be solved for a single arm, a single arm and the torso, or both arms and the

torso. Kinematic chains that include a single arm has one end effector at the tip of the hand.

When both arms and the torso are positioned by the IK solver, the torso is shared between

two end effectors at the tip of either hand.

Section 5.1 presents an overview of techniques for solving inverse kinematics

problems that will serve as a basis for presenting the algorithm implemented in Section 5.2.

Section 5.3 describes how orientation goals are incorporated into the algorithm. Section 5.4

discusses the properties of our algorithm in terms of posture design. Section 5.5 describes

how the algorithm proposed in Section 5.2 is applied to our 3D puppet model. Our method

for dealing with table collisions is presented in Section 5.6. Finally, Section 5.7 describes the

heuristics employed to find humanly natural inverse kinematics solutions.

5.1 Solving Inverse Kinematics

A kinematic chain is composed of a series of coordinate frames with a root joint and end

effector. The root joint is at the base of the chain and has its own fixed coordinate frame

relative to world coordinates. The end effector is the tip of the final joint segment in the

chain. The end effector is not an active joint itself, but can be expressed as a translation from

the base of the last joint in the chain. The end effector assumes the same orientation as its

adjacent joint.

90

Formally, a kinematic chain CK with n joints can be expressed as an ordered set of

transformation matrices.

}{ .,,,,, 1210 enC MMMMMK −= K , (5.1)

where 0M and eM are the root joint and end effector coordinate frames respectively.

.

1000

0

0

0

1000
100

010

001

1000

00

0
3,3

0
2,3

0
1,3

0
3,2

0
2,2

0
1,2

0
3,1

0
2,1

0
1,1

0

0

0

00
3,3

0
2,3

0
1,3

00
3,2

0
2,2

0
1,2

00
3,1

0
2,1

0
1,1

RT
RRR

RRR

RRR

T

T

T

TRRR

TRRR

TRRR

M
z

y

x

z

y

x

o =









































=





















= , (5.2)

where 0T and 0R is a rotation and translation with respect to world coordinate space.

.

1000
100

010

001

e

e
z

e
y

e
x

e T
T

T

T

M =





















= , (5.3)

where eT is a translation with respect to the adjacent coordinate space 1−nM . Intermediate

joint position and orientation is expressed as a rotation and translation with respect to the

adjacent coordinate frame.

.0,1 niRTMM ii
ii <<= − (5.4)

The configuration of the chain where all respective joint rotations equal zero is referred to as

the zero configuration illustrated in Figure 3.10. When the puppet is in its zero configuration

IR i = and ni <≤0 .

91

Given an arbitrary kinematic chain configuration, the end effector coordinates are

calculated as a multiplication of transformation matrices.

enp
z

ooo

p
y

ooo

p
x

ooo

MMMMM
eeee
eeee
eeee

e 1210
3,32,31,3

3,22,21,2

3,12,11,1

1000

−=





















= K . (5.5)

The end effector position pe and orientation oe is isolated from the above matrix and

expressed as

.,

3,32,31,3

3,22,21,2

3,12,11,1

















=
















=
ooo

ooo

ooo

o

p
z

p
y

p
x

p

eee
eee
eee

e
e
e
e

e (5.6)

The end effector coordinates is a function of the kinematic chain configuration CK .

.)(CKfe = (5.7)

Forward kinematics resolves the parameters of f to compute e . Inverse kinematics

however, begins with the value of e and attempts to solve for the kinematic chain

configuration CK .

.)(1 efKC
−= (5.8)

There does not exist a general solution to this problem. The method employed to solve for a

kinematic chain configuration requires intuition about the properties of the system and the

constraints imposed by the problem.

There are a number of constraints one can impose on the solution, such as specifying

end effector orientation oe or restricting the range of motion of one or more links. One may

92

not require the end effector to rest at a specific point, but rather be satisfied with placing the

end effector on a plane or along a line in space. The algorithm used to solve)(1 ef − must

also consider redundancies in the solution. That is, more than one solution may exist (often

infinite solutions exist) and the solver may consider secondary constraints to deal with such

under-constrained problems. A common secondary constraint is a prioritization of joints in

the chain. Some joints are preferred over others and will more readily acquire a larger

coordinate displacement. How redundancies are resolved depend on the properties sought in

the final link configuration. Another variation of the problem involves 1>m end effectors

with one or more common links. The problem can be restated with more than one parameter

for the function f .

.),,,(21
1

mC eeefK K−= (5.9)

Constraints may be specified as “hard” or “soft” constraints [BB00]. Hard constraints are

characterized as a necessary element in the final solution. An attempt is made to satisfy soft

constraints, but not at the expense of any hard constraints.

Solving for the joint angles is difficult due to the non-linearity of the problem.

Differential changes in the position of the end effector with respect to some joint i can be

expressed as an m -dimensional vector, where m is the dimension of the end effector

position. Let us assume the end effector position is expressed as a three-dimensional vector.

.
















=

z

y

x

i

i

i

i

d
d
d

d (5.10)

The vector id is referred to as the joint velocity of joint i , since it maps differential changes

in joint coordinates to differential changes in end effector position. We can compute the

differential end effector position by multiplying the incremental change in joint coordinates

by the joint velocity vector.

93

.i

i

i

i

z

y

x

dj
d
d
d

de
de
de

de

z

y

x

⋅
















=















= (5.11)

Unfortunately, the velocity vector id in a multiple link chain is dependent on the

current state of the system. That is, id is a function of all other joints’ coordinates in the

chain. This introduces the non-linearity of the problem, since incremental coordinate changes

in some joint i will affect the velocity of all other joints in the system.

A common approach is to linearize the problem about the current state of the system.

We ignore the fact that joint velocities have to be recomputed after incremental changes in

the state of the chain. The assumption is that joint velocities remain constant despite

incremental changes. Considering the current state of the system, we compute velocity

vectors for all joints and construct a Jacobian matrix.

.

1

1

1

















=

zz

yy

xx

n

n

n

dd
dd
dd

J
L
L
L

, where n refers to the number of joints in the chain. (5.12)

The previous equation scales with the Jacobian matrix.

.djJde ⋅= , where .
1
















=

ndj

dj

dj M (5.13)

In this case, we are solving for differential changes in the end effector coordinates given

differential changes in joint coordinates. However, we know the differential change in end

effector coordinates and need to solve for the differential joint coordinates. For the inverse

kinematics problem, we reformulate the equation.

.1 deJdj ⋅= − (5.14)

94

Because of our linearization approximation, the resulting solution is only reasonable for

small incremental changes in joint angle. As a result, we must iteratively solve the above

equation and recompute 1−J for each iteration. Once dj is solved for a single iteration, we

integrate to find the new joint coordinates.

.'
0

0∫+=
t

iii dtdjjj , where 0t is small. (5.15)

The Jacobian matrix is not always invertible. When the dimensionality of the end

effector is less than the number of degrees of freedom in the kinematic chain there will be

more columns than rows in the Jacobian matrix. In this case, the Jacobian matrix is

redundant. If the rows in the Jacobian are not all independent, the matrix is singular and the

chain is said to be in a singular configuration. Neither redundant nor singular matrices are

invertible, which renders further iterations toward a solution impossible with the above

formulation. Ill-conditioned matrices cause large spikes in joint velocity that intuitively lends

to unusual contortions. Overcoming non- invertible and ill-conditioned matrices gracefully is

difficult, and algorithms must take special consideration when dealing with such degenerate

cases.

Another method for solving)(1 efKC
−= involves reformulating the problem as a

non-linear optimization problem. An objective function is proposed, which is to be

minimized or maximized, depending on the problem and the objective function. An obvious

choice for an objective function is the distance formula, where we attempt to minimize the

distance between the end effector and goal coordinates.

.)()()(22 p
z

p
z

p
y

p
y

p
x

p
x

pp gegegegeD −+−+−=−= , (5.16)

where pe and pg are the end effector and goal coordinates in world space respectively. The

position of the end effector pe is dependent on the configuration of the kinematic chain.

Hence, D is also dependent on the chain configuration, and the objective function can be

reformulated.

95

.)(Cp
p Kfe = (5.17)

.)(p
CpK gKfD

C
−= (5.18)

The function pf is an n -dimensional function, where n corresponds to the number of joints

in the kinematic chain. Hence,
CKD is also an n -dimensional function, and can be visualized

as an 1+n -dimensional surface Dn+1. The surface is 1+n -dimensional because we have n

joints corresponding to n independent variables, and one dependent variable D . We are

looking for a chain configuration
minCK that will correspond to a point minD that minimizes

the dependent variable D .

.,min CKDD ∀≤ (5.19)

Graphically, minD corresponds to the shallowest point on the surface Dn+1.

Finding minD is not always easy. There are a number of iterative search techniques

and numerical methods designed to solve non-linear optimization problems. Often these

methods are sensitive to the initial state of the system. The problem is further complicated if

we do not know the value of minD . If a solution to the inverse kinematics problem exists,

then 0min =D . However, this may not always be the case. Depending on the formulation of

the problem, some 0'min >D may be sufficient, where min'D is the minimum distance found

by our solver. If min'D is not satisfactory for our purposes, there is no way of determining

whether minmin' DD = .

Assuming we know minmin' DD ≠ , it is difficult to determine where our solver failed.

If the solver failed due to degenerate initial conditions, it is not always clear how a new

initial configuration should be selected. If the solver itself is unable to find minD , it is not

always obvious how one should modify its parameters. When minmin' DD ≠ the configuration

is said to be stuck in local minima.

96

5.2 Overview of IK Algorithm
The algorithm implemented in our system is an iterative optimization technique, where every

joint is positioned independently to minimize the objective function. Our IK algorithm

achieves a desired goal configuration by modifying joint angles one at a time, beginning with

the most distal joints of the IK chain and terminating with the most proximal joints. This

differs from inverse Jacobian methods, where each step of the algorithm involves a

coordinated movement of all joints. The algorithm proceeds as presented below.

Step 1: Estimate a natural position to minimize the distance between the

end effector and the goal position.

Step 2: Refine the estimate with the IK solver to satisfy the position and

orientation constraints. Multiple solutions are computed.

Step 3: Select the best solution from among several possibilities that

maximizes the perceived naturalness of the posture, and minimizes the

error according to the objective functions and imposed constraints.

Step 1 uses studies introduced by Soechting et al. to generate a natural-looking estimate of

the IK solution [SF89a][SF98b]. This estimate acts as the IK solver’s initial conditions, and

is presented in Section 5.5. Step 2 is accomplished with a 3D inverse kinematics algorithm.

The algorithm applied in 2D is a derivative of the cyclic-coordinate descent method

presented in Wellman’s thesis [Wel93]. The algorithm is applied to the puppet’s 3D ball

joints by reducing the problem to a series of 2D cases. Solving the 2D problem is presented

in Section 5.3, and its application to 3D ball joints is described in Section 5.5. Multiple

postures are computed, and the best among them is selected in step 3 according to a score

function presented in Section 5.7.5.

5.3 2D Inverse Kinematics

For all joints, we determine the rotation angle that will minimize the distance between the

current end effector position E and the goal coordinates G. Assume the algorithm is currently

considering some joint ij . The algorithm proceeds as follows.

97

Figure 5.2 System state after step 1

1) Transform the current end effector and goal position to joint i local coordinates.

Let us refer to the new positions as 'E and 'G respectively.

2) Determine the joint angle iΨ between the vectors 'E and 'G . iΨ is illustrated in

 Figure 5.2.

98

Figure 5.3 System state after step 3

2) We apply a weight factor to iΨ to control the amount of rotation applied to joint i . Let

us refer to the damping value of some joint i as iw , where 10 ≤≤ iw . iw is an indication

of the perceived "stiffness" of the joint. A damping factor of 0 implies a completely stiff

joint, while 1 indicates a free moving joint that moves readily towards the goal. The new

computed angle is calculated from the equation iii w⋅Ψ=Ψ ' . The new computed end

effector position ''E is shown in Figure 5.3.

99

Figure 5.4 System state after step 4

4) If the original state of joint i is Φ , then the updated joint angle is denoted 'Φ , where

'' Ψ+Φ=Φ . Joint rotation limits are applied to constrain the state of joint i . Let us denote

the upper and lower bound of joint i as ΦU and ΦL respectively.

'.''

'''
'''

Φ=Φ

=Φ<Φ
=Φ>Φ

ΦΦ

ΦΦ

else

LthenLif
UthenUif

 The new state of joint i is ''Φ after constraining its range by the upper and lower bounds.

Figure 5.4 shows the final end effector position '''E after being constrained by ΦU .

100

The algorithm performs the above computation for every joint in the kinematic chain starting

with the most distal link 1−nj and ending at the root joint 0j . In step 3 the algorithm updates

the state of the system after every joint computation. For a kinematic chain with n joints, the

state of the system will be updated n times per iteration. Prismatic joints do not exist in our

puppet model and are not considered in the above algorithm.

As a non-linear iterative optimization algorithm there is an objective function

maximized or minimized. For each joint, we calculate a rotation that positions the end

effector as close to the goal as possible. This objective function can be expressed in several

of ways:

1) Minimize the distance GED −= .

2) Maximize the vector dot product GEDP o= .

where E is the end effector and G is the goal expressed as vectors in world

coordinates.

There are a variety of ways one can approach the two objective functions. There are

numerical methods that iteratively converge on a minimum or maximum of non-linear

functions, such as the above functions. The algorithm above proposes an analytical solution

using simple geometric reasoning, which is executed in constant time.

5.4 Properties of the Algorithm

The benefits and disadvantages of non-linear optimization techniques versus Jacobian

methods is a lengthy discussion introduced in Section 5.1. The most prominent disadvantage

of non-linear optimization is that the algorithm may find a local minimum rather than the

global minimum. Depending where one begins to decend towards a surface minimum and the

algorithm used to dictate the direction and magnitude of the decent, we may discover a local

minimum. Determining whether or not one has discovered a local minimum or the true

global solution may require solving the original problem. There are several techniques for

avoiding or escaping local minima, such as randomly selecting several initial configurations,

or randomly shifting the state of the manipulator to escape a shallow cusp in the objective

101

function’s height field. When stuck in local minima the algorithm will cease to converge on a

potential solution, while Jacobian based methods are not subject to these anomalies. An in-

depth discussion on local minima is beyond the scope of this thesis.

Our IK algorithm avoids local minima by setting the initial state of the system close

to the global minimum. This is done by estimating a solution in Section 5.7. The estimate

reduces the probability of encountering local minima while iterating towards the global

minimum. The posture estimate also reduces the computation time of the algorithm, since the

figure’s initial position is close to a global solution. Several paths are considered when

iterating towards the goal in Section 5.7.4. These paths are saved as several potential

solutions to the IK problem, from which the score function in Section 5.7.5. chooses the best

alternative.

In terms of computational cost, Welman observed better performance from the cyclic-

coordinate descent method when compared with inverse Jacobian methods [Wel93]. As the

accuracy demanded of the solution increases, the computation time of inverse Jacobian

methods increases exponentially, while the above iterative technique increases approximately

linearly. Under some circumstances the algorithm will begin to converge slowly, particularily

when the kinematic chain is being "stretched" towards the goal. In these cases the joint angle

perturbations become small and require many iterations to pull the end effector. An in-depth

analysis of inverse kinematics algorithms is an open research area and is beyond the scope of

this thesis.

One important property of this algorithm in terms of posture design is the preference

of certain joints in determining a solution. Each iteration begins with the most distal link and

progresses towards the base. Every joint in the chain maximizes its potential progress

towards the goal, which can result in severe contortions of the most distal links. Beginning

iterations at the root joint is not a feasible alternative for two reasons. First, the algorithm will

be biased towards joints closer to the root, which is not any more desirable than distal links.

Second, progression from the most distal link to the root is imperative or else the algorithm

becomes susceptible to local solutions, rather than iterating towards the global minimum.

This is illustrated in Figure 5.5, where the left-most diagram illustrates the problem, and the

next two diagrams illustrate how the objective function is minimized if one considers distal

102

or proximal links, respectively. The figure in the third diagram from the left is stuck in local

minima.

Figure 5.5 Discovering local minima when iterating from the base joint.

Preference for distal links is not conducive to posture design, where human beings tend to

distribute joint rotations throughout the body to achieve some reaching task. This property is

resolved by damping joint rotations at distal links, which implies applying a low weight

factor for a particular joint. The damping factors applied to each joint is presented in

Appendix C. Adopting any other inverse kinematics technique, such as inverse Jacobian

methods, does not resolve our problems. The fundamental issue is to understand how humans

delegate joint rotations for an arbitrary reaching motion, and this extends beyond the

particular inverse kinematics algorithm selected.

5.5 3D Inverse Kinematics

In this section we describe how orientation and position objective functions are integrated

into a single IK model. The theoretical description of end effector goals for our 3D puppet

model is presented.

Orientation goals are specified by the value of the grip parameter for reaching tasks,

and the orientation matrix for sliding tasks. The specification of reaching and sliding task

103

parameters is discussed in Section 3.6.1 and 3.6.2. The motion scheduler will assign

orientation goals for each end effector in the kinematic chain as summarized in Figure 5.1.

Incorporating orientation goals into the IK solver requires some intuition about the

properties of the figure being positioned and the IK algorithm itself. Difficulties may arise

primarily when orientation goals and positional goals conflict with one another. At every

iteration there is a dilemma of how to satisfy both positional and orientation constraints when

the two objectives may suggest different solutions.

To compute a solution for satisfying orientation constraints, we consider the

orientation of the current joint coordinate frame, the current orientation of the end effector,

and the goal orientation of the end effector. Let us refer to these 33× matrices as ej OO , ,

and gO respectively. The transformation applied to the current joint that will satisfy the end

effector orientation constraints is denoted '
gO . We compute the updated joint orientation '

jO

by the equation below.

.

.
1'

''

geg

gjj

OOO

OOO

⋅=

⋅=
−

(5.20)

Since each ball joint’s orientation is defined in terms of Euler angles, we would like to

express this transformation in terms of three rotations ,, ϕφ and ψ about the local x, y, and

z-axis respectively. Without loss of generality we assume an arbitrary order of rotations.

).()()(' ψϕφ ZYXg RotRotRotO ⋅⋅= (5.21)

Paul presents an analytical solution to solve for the local transformations [Pau81], and is

presented in Appendix B. The local axis rotations that maximize the orientation objective

function is computed in equation (5.21). The objective function we are attempting to

maximize is the matrix dot product between the current and goal orientation, which are

denoted by 33× matrices. The dot product DP is computed as the summation of the product

of corresponding elements.

104

















=

2,21,20,2

2,11,10,1

2,01,00,0

eee
eee
eee

Oe ,
















=

2,21,20,2

2,11,10,1

2,01,00,0

ggg
ggg
ggg

Og

ge OODP o= , (5.22)

where eO is the current end effector orientation, and gO is the goal orientation.

)()()(2,22,21,01,00,00,0 gegegeDP ⋅++⋅+⋅= K . (5.23)

Damping weight factors and joint limits are applied to the joint rotations the same as in step 3

and 4 of the algorithm in Section 5.3. These parameters are incorporated in the calculation

presented in Appendix B.

To integrate both orientation and positional goals at every iteration, we consider a

weighted sum of the optimal joint angles for both objective functions. The final joint state is

a function of ρ and η that minimizes and maximizes the position and orientation objective

functions respectively. The angles with respect to some figure configuration are illustrated in

Figure 5.6. The final differential joint angle ij∆ for some degree of freedom ij is calculated

for every iteration in equation (5.24).

Figure 5.6 Joint displacement for optimizing orientation and position objective functions.

105

)(ηρ ⋅+⋅⋅=∆ poii wwwj , (5.24)

where ow and pw are the orientation and position weight factors respectively, and iw is the

damping weight factor of the current joint introduced in Section 5.3 and presented in

Appendix C.

)1(po ww −= , and 10 ≤≤ pw . (5.25)

Finding appropriate values for ow and pw is difficult, since the joint will neither optimize the

orientation nor the position objective functions. It is not clear how one can find a solution if

every iteration compromises between orientation and position, especially when)(ηρ − is

large. Our final implementation sets 0=pw for some degrees of freedom in some iterations,

and 1=pw for the rest of the cases. The values of ow and pw parameters at various stages

of the IK solver’s iterative process is presented in Section 5.7.6.

Given the two-dimensionality of the algorithm in Section 5.3, additional calculations

must be performed when applied to our three-dimensional puppet. Ball joints in our puppet

can be modeled as three one-dimensional joints corresponding to each axis in the coordinate

frame. All three one-dimensional joints have the same centre of rotation, and will rotate in a

specific order about its respective axis. Given the pre-defined order of rotations, the first two

joints have a link length of zero, while the final joint length is the length of the adjacent body

segment. The same proximal to distal ordering is preserved for the puppet’s three

dimensional ball joints. Within each ball joint we consider each axis independently and in a

sequence determined by the ball joint’s specific order of rotations presented in Table 3.1. As

the algorithm iterates each ball joint, the goal coordinates and end effector are mapped onto

the two dimensional plane perpendicular to the current axis considered. This projection is

illustrated in Figure 5.7. The distance objective function is minimized with respect to the

rotating axis by the 2D algorithm presented in Section 5.3. The orientation objective function

is maximized as in equation (5.22) and Appendix B. Let us assume the algorithm is

considering some joint axis ij . The computation proceeds as follows.

106

Figure 5.7 Projecting E and G for a shoulder rotation.

Step 1: Project the three-dimensional end effector and goal coordinates

onto the plane perpendicular to ij . Refer to Figure 5.7.

Step 2: Solve the 2D problem according to the algorithm presented in step

2 of Section 5.3.

Step 3: Determine the joint rotation to maximize the orientation objective

function according to the calculations in Appendix B.

Step 4: Compute the differential joint rotation from equation (5.24).

Step 5: Apply joint limits according to the algorithm presented in step 4

of Section 5.3.

107

Step 6: The position of the hand, wrist, and elbow is updated. We check

for collisions according to the algorithm in Section 5.6.

Step 7:

7.i. If ij is the last axis in the ball joint’s sequence of rotations,

then the algorithm proceeds to the first rotation in the proceeding ball

joint. If ij belongs to the ball joint at the base of the kinematic chain,

then the preceeding ball joint returns to the most distal joint in the

kinematic chain.

7.ii. If ij is not the last axis in the ball joint’s sequence of

rotations, then the algorithm proceeds to the next axis.

5.6 Coping with Collisions

An additional constraint imposed on the inverse kinematics algorithm is collision detection

and avoidance. A comprehensive collision detection and path planning implementation is

beyond the scope of the thesis. Relevant literature can be found in [BBGW94][GC95]. The

algorithm proposed in this section is similar to [BB98]. The existing implementation only

considers collisions between the arms and the table, which demonstrates how object

avoidance can be incorporated into the existing posture design framework. There are two

phases involved when considering collisions. One must first detect whether or not a collision

has occurred. Second, one must remove the collision by modifying the state of the puppet.

In step 6 of the algorithm presented in Section 5.5, the state of the puppet is analyzed

to see if a collision with the table has occurred. The joint positions are modeled as points that

correspond to its centre of rotation. However, we must also consider that the puppet's

geometry may have penetrated the table, even though a particular joint's centre of rotation

has not. To accomplish this, we consider an offset value to compensate for the puppet's

geometry when detecting collisions. This offset is denoted by threshT in equation (5.26). The

offset is conservatively set to ensure the geometry does not penetrate the table, rather than

invoking a collision correction only for deep penetrations of the puppet’s geometry. The

position of the puppet is corrected if the arm joints are within a certain distance to the table.

Detecting collisions is simplified in our model since the table is parallel to the X-Z plane in

world coordinates.

108

Let us refer to the position of the end effector, wrist, and elbow as],,[zyx eee ,

],,[zyx www , and],,[zyx lll respectively. Let YT refer to the height of the table, and ZT refer

to the distance between the puppet and the edge of the table, as shown in Figure 3.7. A

collision has occurred if at least one of the following statements is true:

ZzthreshYy

ZzthreshYy

ZzthreshYy

TlandTTliii

TwandTTwii

TeandTTei

>+<

>+<

>+<

,)

,)

,)

(5.26)

We also consider the geometry of the forearm as a possible source of collision. A primitive

bounding cylinder with axis of symmetry 1L approximates the geometry of the forearm. A

line segment 2L approximates the front edge of the table. A collision with the forearm has

occurred if the cylinder approximation penetrates the front edge of the table. This is

determined by calculating the distance between the most proximal points on line segments 1L

and 2L . If this distance is less than the cylinder radius R then a collision has occurred.

)iv Distance RLL <),(21 (5.27)

There are several methods for coping with collisions. One possibility is to allow

collisions to occur, then adjust the state of the puppet to remove table penetration. This

method is termed collision removal, which removes collisions after they occur. The puppet’s

position must be adjusted to preserve the posture’s character while removing the collision.

Alternatively, collision aviodance does not update the state of the puppet if a collision is

detected. The iteration that caused the collision is discarded and the algorithm considers the

next joint. Collision avoidance did not work as well as collision removal since it severely

hampered the IK algorithm's progress. Local minimum anomalies were common, since the

technique does not reposition the puppet to iterate towards a global solution. Puppet

configurations that are close to a collision state may conceivably be unable to adjust any

109

degree of freedom without penetrating the table. In these circumstances, the puppet will

cease to move any of its joints. Our system implements collision removal, and the algorithm

is presented below.

While detecting collisions is straightforward, removing the collision is more difficult.

First, we must reposition the puppet so collision constraints are respected and the new

posture remains natural. Second, we must reposition the puppet to ensure the progress of the

IK algorithm. If one removes the collision yet moves the end effector drastically far away

from the goal, it is conceivable that a solution may not be found if multiple collisions occur.

Third, we must reposition the puppet so the IK will progress towards the global minimum. It

is possible for thrashing to occur if the new puppet posture is close to the previous iteration

that caused the collision. Future iterations will move the puppet into the same collision state

repeatedly, while no progress towards the goal is made.

Our method first calculates a default posture that is guaranteed to remove the

collision. A collision-free posture is computed by interpolating between the current colliding

configuration and the default posture. An algorithm summary is presented below.

Step 1 : Compute a default state for the arm AS that is guaranteed to be

collision-free.

Step 2 : Linear interpolation in joint-space is used to determine the

final puppet posture FS according to the equation BAF SfSfS ⋅−+⋅=)1(,

where BS is the original colliding puppet configuration.

The value of f in Step 2 is determined by a simple sequential search procedure, fnf ∆⋅= .

We choose the smallest value of f such that FS is collision-free and thrashing is avoided.

110

Figure 5.8 (From left to right) Original posture BS , and corresponding AS for elbow and

hand collisions.

Determining the collision-free posture AS requires intuition about the current state of

the environment and the problem domain being considered. In our table scenario, a collision-

free posture is computed by rotating the appropriate joints to position the geometry vertically

in world space. Figure 5.8 shows examples of AS and BS . The first diagram is some

arbitrary original posture BS deemed to be colliding with the table according to (5.26) and

(5.27). The second diagram illustrates AS for elbow and forearm collisions, and the third

diagram shows AS for wrist and hand collisions. If an elbow or forearm collision occurs, the

shoulder is rotated to position the upper arm vertically in world space. If the hand or wrist

collides with the table, the elbow and shoulder is rotated to position the forearm vertically in

world space. In both cases, AS is computed by rotating the arm joints to modify the colliding

configuration BS .

When the shoulder is rotated to remove an elbow collision it is possible for hand or

wrist collisions with the table to occur. It is also possible for multiple joints to collide with

the table while the IK algorithm is iterating towards a solution. To overcome these

anomalies, we first remove the elbow collision to generate a pose AS . If wrist or hand

collisions persist, we remove the collisions from AS to generate a new posture '
AS .

111

If (elbow or forearm colliding with table)

Remove elbow collision

If (hand or wrist colliding with table)

Remove hand collision

Figure 5.9 Illustrates the effectiveness of our collision removal algorithm for a simple two-

handed grasping motion. The left diagram is the posture computed with collision removal

enabled, and the right diagram shows the same task executed without collision removal.

Figure 5.9 Grasping posture computed with and without collision removal.

5.7 Natural Postures

Before the inverse kinematics algorithm is invoked, a solution is estimated to position the

end effector close to the goal with a natural-looking pose. Maximizing the naturalness of the

postures and minimizing computational cost demands a constant-time function that maps end

effector goals to a humanly natural IK solution. Unfortunately, such a function does not exist.

Instead, we estimate a posture that is humanly natural but not an IK solution. We employ our

inverse kinematics algorithm to position the end effector at the desired goal while preserving

the naturalness of the original estimate.

112

The introduction of Chapter 5 categorizes inverse kinematics problems according to

the body segments included in the kinematic chain. For each kinematic chain in Section

3.6.3, we estimate the position of each group of body segments in the following order.

Single Arm:

1) Estimate arm position

Single Arm and Torso:

1) Estimate torso position

2) Estimate arm position

Both Arms and Torso:

1) Estimate torso position

2) Estimate left arm position

3) Estimate right arm position

The estimate will serve as the initial conditions for the IK algorithm, which will be natural-

looking and close to a global solution. The function used to position the arms is summarized

in Section 5.7.1, and the torso estimate is presented in Section 5.7.2.

The estimate function is dependent on the relative distance of the goal coordinates to

the puppet’s body. Distant goal coordinates will generate different initial solution estimates

than more proximal coordinates. We make the distinction since positions that require far

stretching will require more pronounced bend at the torso. The arm posture will tend to be

straight when stretching far for distant goal positions, as opposed to proximal goals where the

arm position is the result of a more complex function. If the distance between the base of the

head and the goal coordinates is greater than some pre-defined value D then the task

requires far stretching by the puppet, and the distal estimate function is used. Proximal and

distal posture estimates are shown in Figure 5.10. The left diagram shows the puppet’s initial

position after computing a proximal estimate. The right illustrates a distal approximation for

the same task.

113

Figure 5.10 Proximal and distal posture estimates.

114

5.7.1. Estimating Arm Position

Estimating the position of the arm for proximal reaching tasks follows from results in

neurophysiology, which found a near linear relationship between the position of a stylus held

by a human and the orientation of the shoulder [SF89a][SF89b]. The goal position is

expressed as spherical coordinates in terms of the shoulder local coordinate frame. Let R be

the distance from the end effector goal to the origin. Let Φ and Ψ be the azimuth and

elevation of the target respectively. The elevation and yaw of the upper arm, Θ and Ν

respectively, is expressed in degrees as:

.10.109.17.6 Ψ⋅+⋅+−=Θ R (5.28)

.00.168.07.67 Φ⋅+⋅−=Ν R (5.29)

After the shoulder positions the upper arm, the forearm is positioned to minimize the distance

between the end effector and the goal position. Consider the two line segments (E,e) and

(E,G), where (E,e) is the line originating at the elbow’s centre of rotation and passing through

the end effector coordinates, and (E,G) is the line originating at the elbow’s centre of rotation

and passing through the goal coordinates. The shoulder x-axis and elbow y-axis determine

the forearm's orientation, and are adjusted to make (E,e) and (E,G) collinear. This is

illustrated by the left diagram in Figure 5.11.

Figure 5.11 Positioning arm for proximal and distal estimates.

115

For distal reaching tasks, the shoulder simply points the arm straight at the goal

position. The shoulder z-axis and y-axis is positioned to make the line segments (S,e) and

(S,G) collinear, where (S,e) and (S,G) are line segments originating at the elbow centre of

rotation and passing through the end effector and goal coordinates, respectively. This is

illustrated by the right diagram in Figure 5.11.

5.7.2. Estimating Torso Position

If the chest and abdomen is included in the kinematic chain, we must estimate an appropriate

orientation for the body as well as the arm. The estimate calculations were refined by

observation and trial and error to determine which values ultimately generated the most

natural postures. For proximal approximations the torso rotations are minimal, while distal

goal coordinates induce more severe body contortions.

The initial orientation of the torso is determined by computing Euler angles in terms

of the abdomen coordinate frame. Let us refer to the forward bend, sideways bend, and twist

of the torso as γ , λ , and δ respectively. The computed sequence of rotations first considers

γ , then λ , and lastly δ . δ is computed to position the torso facing the goal. We compute γ

and λ to minimize the distance between the base of the neck and the goal coordinates. The

initial forward bend rotation γ is computed with respect to the modified goal coordinates 'G

in Figure 5.12. 'G is calculated by rotating the original goal coordinates G about the y-axis to

align it along the z-axis.

Figure 5.12 Transforming G for x-axis torso rotation.

116

Once the orientation of the abdomen coordinate frame that minimizes the distance

between the base of the neck and the goal is computed, we determine the initial position of

the chest and abdomen coordinate frames. Let us refer to the optimal computed Euler angles

as 'γ , 'λ , and 'δ , which correspond to rotations about the local x-axis, z-axis, and y-axis

respectively. Each computed Euler angle is divided by some damping factor d that is unique

to the particular ball joint and estimate being considered. Proximal estimates are

characterized by high damping factors, while distal estimates have lower values. The

puppet’s initial abdomen and chest rotations are calculated from the Euler angles 'γ , 'λ , and

'δ in equation (5.30). Examples of estimated torso postures are shown in Figure 5.10.

abdomen
abdomen d

'' Γ
=Γ , and

chest
chest d

'' Γ
=Γ , (5.30)

'Γ corresponds to one of the three optimal Euler angles. '
abdomenΓ , '

chestΓ represent the

estimated abdomen and chest rotation respectively. 2≥abdomend and 2≥chestd are unique for

the particular Euler angle and estimate being computed.

The joint limits for the chest and abdomen local z-axis rotation 'λ is a function of 'γ

and the local y-axis joint limits. Modeling joint limits as a function of the current local

orientation is justified by the equality (5.31). Figure 5.13 illustrates (5.31) with respect to the

puppet model. The first diagram in Figure 5.13 corresponds to a transformation)(π−RotY .

The second diagram illustrates a transformation)(πRotX . The third posture corresponds to

the transformation on either side of the equation (5.31).

).()()()(ππππ RotZRotXRotXRotY ⋅=⋅− (5.31)

117

Figure 5.13 Posture transformations from (5.31).

By considering the rotation about the x-axis first, subsequent local z’-axis rotations are

equivalent to an x-axis rotation with an initial y-axis component. To achieve the above

position, we must consider how the z’-axis rotations are positioning the torso geometry in

world space. That is, if the puppet is upright then z’-axis rotations will bend the torso

sideways. Humans are not very flexible in this direction, so the upper and lower rotation limit

is small. However, if the puppet is already bent forward, then rotations about the z’-axis is

equivalent to the puppet first twisting then bending forward, as illustrated in Figure 5.13 and

equation (5.32). To overcome this anomaly, we calculate the chest and abdomen z’-axis

rotation limits as a function of the initial x-axis rotation. This concept is illustrated in Figure

5.14 and equations (5.32) and (5.33).

Figure 5.14 Abdomen z-axis rotation limit.

118

The abdomen and chest local z-axis joint limits are determined by the equation below, where

LimitMaxLimitMaxLimitMin ZYY ,, and LimitMinZ are the joint limits according to Table 3.1, and xφ is

the absolute value of the x-axis local coordinate frame rotation. The below equations assume

2
π

φ ≤x .

).(
2'

LimitMaxLimitMax
x

LimitMaxLimitMax ZYZZ −⋅
⋅

+=
π
φ

(5.32)

).(
2'

LimitMinLimitMin
x

LimitMinLimitMin ZYZZ −⋅
⋅

+=
π
φ

(5.33)

5.7.3 Weight Schemes

A weight scheme is a term for an n-dimensional vector, where n refers to the number of

degrees of freedom in the puppet. The elements correspond to the weight factor of a

particular degree of freedom. Weight factors refer to the perceived degree of stiffness of the

joint, and are incorporated by the iw term in the IK solver presented in Section 5.5. iw refers

to the damping weight factor, and should not be confused with the weight factors ow and pw

that determine the influence of the orientation and positional objective function on the

optimal joint state in equation (5.25).

The algorithm presented in Section 5.2 computes each posture. Step 2 is performed

three times with distinct weight schemes. The specific weight factors for each joint in each

pass is presented in Appendix C. The first weight scheme makes the shoulder z-axis,

abdomen z-axis, and chest z-axis degrees of freedom completely stiff. In the second pass of

the IK solver, the abdomen and chest z-axis is permitted to deviate slightly from the initial

estimate by assigning a very stiff weight factor, while the shoulder z-axis remains completely

stiff. The third pass allows both the torso and shoulder z-axis degrees of freedom to deviate

from their initial estimated state. These three degrees of freedom can lead to unnatural

postures, since the torso will contort unnaturally in achieving an IK solution, while the

shoulder z-axis will tend to raise the elbows.

119

With each pass we loosen the constraints on the degrees of freedom in an effort to

find a solution at the expensive of perceived naturalness. In general, the first pass will

generate the best posture, while each successive pass deteriorates the naturalness of the pose.

The first scheme may not find a solution as readily as successive schemes since certain joints

not permitted to rotate. However, under certain circumstances the second or third pass may

generate better postures than the first pass. It is not obvious which pass generates the best

posture for arbitrary initial and goal positions. For this reason, multiple passes will be

computed even if an earlier, more constrained weight scheme successfully finds a solution.

The resulting posture of each pass is evaluated by the score function in Section 5.7.5.

Computing multiple passes is computationally expensive, but we benefit from a more robust

IK solver.

In selecting a weight scheme, we must consider the properties of the IK algorithm

itself and the desired postural characteristics derived from ergonomics and neurophysiology

literature. The nature of the IK algorithm is conducive to slowly iterating towards the goal,

since the algorithm is biased towards distal links. Certain anomalies and unusual contortions

of the body can also arise since our algorithm considers each joint independently. These

problems can be overcome by a weight scheme that slowly converges on a solution.

Incorporating postural preferences such as minimal torso rotations and limiting the

height of the elbow is not trivial. Simply applying a narrow range of motion or a low weight

factor to a particular degree of freedom may result in severe contortions in other areas to

compensate for the joint's limited movement. Furthermore, our ultimate goal is to find a

solution to the IK problem. Any solution is preferred over no solution, particularly for end

effector goals that are "hard to reach". A weight scheme should be conducive to natural

postures, but not at the expense of a solution.

Figure 5.15 illustrates reaching tasks with and without our implemented weight

scheme. The postures in the first column were scored the best from the three weight schemes

in Appendix C. The second column illustrates a naïve computation where the all degrees of

freedom were assigned a weight factor 1=iw from equation (5.24). All other parameters in

computing the four postures in Figure 5.15 remained constant. Raised elbows, severe torso

contortions, and local minima are typical with the naïve weight scheme.

120

Figure 5.15 Comparison of our weight scheme (left) with a naïve calculation (right).

121

5.7.4 Score Functions

The quality of the puppet’s posture is evaluated by a score function that considers the

naturalness of the pose, and whether or not the pose solves the particular IK problem. After

each pass, the posture generated is given a score based on certain criteria from ergonomics

literature surveyed in Section 2.9. The score function is novel in the sense that we attempt to

quantify the "naturalness" of a pose. The score function is derived from experimental

observation, intuition, and trial and error.

The score function considers certain properties and degrees of freedom when

assessing the quality of a posture. Each kinematic chain is evaluated with a distinct score

function, since there is a unique set of body segments associated with every chain. We first

summarize the criteria by which we evaluate each posture. A discussion of the issues and

justification for evaluated postures based on these criteria is presented. The score function as

it applies to each kinematic chain is then given.

Each posture is evaluated in terms of the distance between the end effector and the

goal, the height of the elbow with respect to the wrist in world coordinates, and the state of

specific degrees of freedom. The posture is assigned a score in each of the above criteria, and

the final posture score is the sum of these scores.

The distance between the end effector and goal indicates whether or not a solution has

been found. If the end effector is not within some error threshold of the goal, then a very bad

score is assigned for the criteria. In our implementation, postures that do not solve the IK will

certainly be rejected unless all other attempts to reach the goal have failed.

The height of the elbow is important in the perceived naturalness of the pose. Our

score function is very biased against postures where the elbow is higher than the wrist. Such

positions are highly unnatural and should be avoided unless absolutely necessary. We

measure the vertical distance between the elbow and the wrist center of rotation in world

coordinates. If the elbow is higher than the wrist, the vertical distance between the joints is

multiplied by a large scalar to ensure the resulting posture is scored poorly. This

measurement is illustrated in Figure 5.16.

122

Figure 5.16 Calculating the height of the elbow.

The x-axis and z-axis of the shoulder, abdomen, and chest are critical to the

naturalness of the posture. As these joints deviate from their centre of rotation, the perceived

naturalness of the pose degenerates quickly. To measure the extent to which the joint

degenerates the naturalness of the posture our score function measures the ratio between the

current joint state and the respective joint limit, and the angular difference between the initial

estimated joint state and the final computed rotation. The ratio is calculated as ΦΦ= Ur if

0>Φ and ΦΦ= Lr / if 0≤Φ , where Φ is the current state of the joint and ΦΦ LU , is the

maximum and minimum joint rotation respectively. The angular difference is calculated by

initΦ−Φ=∆Φ , where Φ is the current state of the joint and initΦ is the initial estimated

position from the algorithm presented in Section 5.7.1 and 5.7.2. The naturalness of an

individual joint’s state is determined by the sum ∆Φ+r .

The ratio gives an indication of how close the joint rotation is to the joint limit. Joint

rotations close to the respective limit are considered uncomfortable positions. The ratio term

favors joint positions in the middle of its range of motion, assuming the joint limits extend

equally in the positive and negative direction. Practically this is not necessarily true,

particularly with the shoulder where humans comfortably function close to the minimum z-

123

rotation joint limit. The ratio term can also be perceived as favoring postures close to the

zero. This implies that the zero posture embodies our notion of comfort, which may not

necessarily be true. The puppet's zero posture presented in Figure 3.10 is unnatural only with

respect to the shoulder Z-rotation. The arms extend outward, which is positioned in the

middle of the range of motion although it is not a natural position in the sense that one would

rarely perceive a human performing a reaching task in this way.

∆Φ measures the final joint state’s deviation from the estimated position. Our

assumption is that the estimated joint position is optimal in terms of comfort and perceived

naturalness since it is derived from neurophysiological and ergonomic data. This assumption

implies that the more the joint departs from the estimated posture, the more unnatural the

posture will appear.

The naturalness of a joint’s position is the sum of the ratio r and the deviated angle

∆Φ expressed in radians. This implies that reaching the joint’s rotational limit is equally as

bad as deviating from the estimated rotation by 1 radian. The two values are not mutually

exclusive, since deviating from the estimated posture may bring the joint close its limit.

Since the kinematic chains introduced in the introduction of Section 5.7 include

variable number of end effectors and body segments, the above scoring criteria must be

tailored to accommodate each case. The score associated with the distance between the end

effector and goal is denoted D . The score associated with the vertical distance between the

elbow and wrist is denoted H. The value of ∆Φ+r for some joint i is denoted ∆Φ+ri)(. The

score function for the kinematic chain composed of a single arm, single arm and torso, and

two arms and torso is denoted SingleArmf , ArmTorsof , ArmTorsof 2 . The score functions are defined

below.

∆Φ+∆Φ+ −+−++= rrSingleArm axiszShoulderaxisxShoulderHDf)()((5.36)

∆Φ+∆Φ+

∆Φ+∆Φ+

−+−+

−+−+=

rr

rrSingleArmArmTorso

axiszAbdomenaxisxAbdomen

axiszChestaxisxChestff

)()(

)()(
(5.37)

∆Φ+∆Φ+

∆Φ+∆Φ+

−+−+

−+−+
+

=

rr

rr
RightSingleArmLeftSingleArm

ArmTorso

axiszAbdomenaxisxAbdomen

axiszChestaxisxChest
ff

f

)()(

)()(
2

)(,,
2 (5.38)

124

5.7.5 Distributing Iterations

As mentioned in Section 2.9, we would like to restrict the torso rotations in favor of arm

rotations when computing postures. Section 5.7.4 describes how the IK solver attempts to

accomplish this by setting appropriate weight factors to favor certain degrees of freedom

over others. However, we can also allow the arms to iterate more often than the torso. For

example, assume we would like to reach for an object using the torso and one arm. We can

iterate the arm joints to position the end effector close to the goal coordinates prior to

considering the arm and torso. By iterating the arm more frequently than the torso, we can

ensure the arm will account for the majority of the end effector's displacement.

In addition to ordering the iterations to favour certain body segments over others, we

must also consider the value of ow and pw introduced in equation (5.24). As the IK solver

iterates each joint towards a solution, we must consider whether the joint will optimize the

orientation objective function, positional objective function, or both simultaneously.

Each of the three inverse kinematics problems is solved with the same general

algorithm. Naturally, the algorithm is tailored to accommodate the distinct set of body

segments included in the kinematic chain. The general algorithm proceeds by first

positioning the end effector at the goal coordinates. We then attempt to incorporate the

orientation goals by dedicating wrist rotations entirely to maximizing the orientation

objective function. The elbow and shoulder will simultaneously minimize the positional

objective function to correct the positional deviations incurred by the wrist. In practice, this

method will generally find a solution that both maximizes and minimizes the orientation and

position objective functions respectively. The general algorithm is presented below.

When the torso is shared between two reaching tasks, it is given an intermediate

position that favors neither goal. This is accomplished in step 5 by moving the torso

according to one task’s position goal for several iterations, then rotating with respect to the

second task’s position goal for several iterations. The result is that the torso will converge on

a position in between the two goals, and neither task is given priority. If no solution is found,

then the IK solver will attempt to dedicate the torso entirely towards one reaching task, while

a single arm will be responsible for accomplishing the second task. Postures sharing the torso

between two tasks is illustrated in Figures 5.9, 5.15, 5.19, 7.8, and 7.9.

125

For 3 passes

 Step 1) Load the joints’ corresponding weight scheme (per Section

5.7.3)

 Step 2) Estimate initial posture (per Section 5.7)

 Step 3) Set 1,0 == po ww .

 Step 4) Iterate the puppet’s arm(s) for 1n iterations (per Section 5.3)

 Step 5) Iterate the whole kinematic chain for 2n iterations

 (per Section 5.3)

 Step 6) Set 0,1 == po ww for the wrist joint. Set 1,0 == po ww for the

 elbow and shoulder.

 Step 7) Iterate the puppet’s arm(s) for 1n iterations (per Section 5.3)

 Step 8) Score the resulting posture (per Section 5.7.4)

Output best posture

Figure 5.17 Posture generator algorithm.

In practice, we found that 5001 =n and 400002 =n solve the problem consistently with

realistic postures. This process is quite robust in practice, and converges quickly on a

configuration that satisfies both positional and orientation constraints in several hundred

iterations. The disadvantage of dedicating the wrist entirely to satisfying orientation

constraints is that the joint may be bent severely in some circumstances. This situation does

not arise often, but is more common with awkward reaching tasks that require the puppet to

stretch far to the side or close to the body. In these circumstances, the orientation of the

forearm may differ significantly from the goal orientation. One can notice this anomaly in

Figure 7.8. It should be noted that it is not always unnatural for the wrist to come close its

range of motion limits when trying to satisfy some orientation goal, as observed in Figure

5.19.

The problem is considered solved when the end effector is within some acceptable

positional error. Step 4, 5, and 7 are considered complete once the end effector position is

within some acceptable distance from the goal coordinates, or when the number of iterations

exceeds the maximum permitted. For our purposes an acceptable error threshold is 0.1% of

the height of the puppet model. For standard IK problems, fewer than a thousand iterations is

126

typically necessary. Over twenty thousand iterations may be required for more difficult

problems that require the puppet to stretch for the goal or that generates frequent collisions.

The number of iterations required to solve a problem also depends on how close the

estimated posture positions the end effector to the goal.

Figure 5.18 illustrates three postures computed by each of the three passes in Figure

5.17. Clockwise from the top left corresponds to the first, second, and third pass of the

algorithm. The top left posture was scored the best among the three possibilities. Figure 5.19

shows a human performing simple reaching tasks. The posture generator computed postures

for similar tasks, which are presented beside the photos in Figure 5.19.

127

Figure 5.18 Postures generated by each of the three passes in Figure 5.17.

128

Figure 5.19 Human and puppet performing similar tasks.

5.8 Summary

This chapter described our system’s posture generator module, which is responsible for

positioning the puppet with human realism given certain end effector constraints from the

motion scheduler. A robust posture generator is important to guided control to relieve the

animator of specifying reasonable joint rotations for every task. The algorithms and

heuristics described in this chapter attempt to model how humans position their bodies for

arbitrary reaching motions. Sections 5.1, 5.2, and 5.3 give the background for computing

three-dimensional inverse kinematics. Section 5.6 describes how external geometric

constraints can be incorporated in the existing posture design model. Section 5.5 describes

some methods and issues in generating realistic postures for humanoid articulated figures.

129

Chapter 6
Motion Interface

The motion interface is responsible for converting the user’s input into geometric constraints.

The user inputs a higher level motion command, which the motion interface will interpret

according to the state of the puppet and the environment. For every task, the position and

orientation of both hands must be resolved. When the user specifies a task for a particular

hand, the hand is referred to as the primary hand since its position and orientation goals

accomplish the primary task as defined in Section 3.6.3. The other hand, referred to as the

secondary hand, will be assigned a secondary task autonomously by the motion interface.

The objective of the motion interface is to interpret the user input and determine an

appropriate position and orientation of the primary and secondary hand. Similar work on

interpreting and resolving higher-level tasks to lower level goals was done at the University

of Pennsylvania [BPW93][LB94].

Once both hands are assigned geometric goals, a motion model is created to

encapsulate the user’s intentions. The motion model includes posture constraints as well as

the timing, velocity, and scheduling parameters of the task introduced in Section 3.3. The

contents of the motion model are dependent on the type of motion building block. Reaching,

sliding, and general tasks include data specific to their execution. The motion model is then

130

placed in the motion queue and processed by the motion scheduler described in Chapter 4. If

the motion performed by the puppet modifies the environment’s state, then the environment

is updated.

Figure 6.1 Functional diagram of the motion interface.

The orientation and position constraints are resolved depending on whether the task is

a reaching, sliding, or general task. Determining primary hand constraints for the three

motion building blocks is described in Section 6.1. Secondary goal resolution is introduced in

Section 6.2. Section 6.3 describes how and when the motion interface updates the state of the

environment. There are advantages and limitations with our proposed way of specifying

motion with respect to objects and space. These issues are discussed in Section 6.4. Finally,

some anomalies arise in the motion interface’s interpretation from Section 6.3. Section 6.5

describes the solutions implemented to handle such cases.

6.1 Primary Hand Constraints
The task specified by user input dictates the motion of the primary hand. The motion

interface will determine the geometric constraints that generate a posture to accomplish the

input task. The input parameters required to infer these geometric constraints are dependent

on the specific motion building block; these are introduced in Section 3.6.3. The geometric

constraints specified by the motion interface are simply position and orientation goals for the

131

particular hand performing the task. The following subsections describe each motion building

block in terms of its distinct input parameters and the geometric constraints imposed by the

motion interface. Specifying these input parameters is presented in Chapter 7.

6.1.1 Reaching Motions

Reaching motions allow a user to position the hand relative to some object or space entity in

the environment. Properties of space and object entities are introduced in Section 3.4. The

position and orientation goals of the end effector are determined by the user specified grip

parameter. Our current implementation considers grasping the top, side, or bottom surface of

the object’s cubic approximation. A grip’s corresponding orientation and position depends on

whether the right or left hand is performing the motion. The following table maps the input

parameters to end effector constraints. Satisfying these constraints will accomplish the

reaching task specified by the user. In the following table, ZYX OOO ,, is the centre of the

object volume and WO is the volume width. Orientation is specified about the (Z, Y, X) axis

respectively.

 Side Top Bottom

 Left Hand

Position:

(WX OO + , YO , ZO)

Orientation:

(0, -90, -90)

Position:

(XO , WY OO + , ZO)

Orientation:

(0, -90, 0)

Position:

(XO , WY OO − , ZO)

Orientation:

(0, -90, -180)

 Right Hand

Position:

(WX OO − , YO , ZO)

Orientation:

(0, 90, 90)

Position:

(XO , WY OO + , ZO)

Orientation:

(0, 90, 0)

Position:

(XO , WY OO − , ZO)

Orientation:

(0, 90, 180)

Table 6.1 Mapping orientation and position goal for object reaching tasks.

Space reaching motions position the hand at some space entity. Similar to grasping objects,

the hand can be placed at the space entity with the palm facing downward, on the side, or

132

facing upward. Independent of whether the left or right hand is performing the motion, the tip

of the hand is positioned at the corresponding point in space. In the following table,

ZYX SSS ,, is the position of the space entity in world coordinates. Orientation is specified

about the (Z, Y, X) axis respectively.

 Side Top Bottom

 Left Hand

Position:

(ZYX SSS ,,)

Orientation:

(0, -90, -90)

Position:

(ZYX SSS ,,)

Orientation:

(0, -90, 0)

Position:

(ZYX SSS ,,)

Orientation:

(0, -90, -180)

 Right Hand

Position:

(ZYX SSS ,,)

Orientation:

(0, 90, 90)

Position:

(ZYX SSS ,,)

Orientation:

(0, 90, 0)

Position:

(ZYX SSS ,,)

Orientation:

(0, 90, 180)

Table 6.2 Mapping orientation and position goals for space reaching tasks.

Figure 6.2 Interpreting reaching tasks.

6.1.2 Sliding Motions

Sliding motions position the hand relative to its current position in space. The specification

of position and orientation is not relative to any particular object or space entity. Instead, the

user explicitly specifies the goal orientation and displacement of the hand. In addition to

providing lower-level control over the puppet’s motion, slides allow the user to specify end

effector goals with respect to its current position, rather than fixed points in space. The end

effector positional constraint computed by the motion interface is summarized by

),,(),,(000 zzyyxxzyx ∆+∆+∆+← , where (zyx ,,) is the goal end effector position,

133

(000 ,, zyx) is the current end effector coordinates, and (zyx ∆∆∆ ,,) is the user-specified

displacement vector. The orientation is specified by the user-specified local transformations

(γβα ,,).

Figure 6.3 Interpreting sliding tasks

6.1.3 General Motions

General tasks are executed using canned postures embedded in the motion interface. A

forward kinematic specification of a posture that completes the task is output by the motion

interface. The IK solver does not compute the posture, so no geometric constraints are

specified. The end effector position and orientation is determined by the joint coordinates

output by the motion interface.

Figure 6.4 Interpreting general tasks.

6.2 Secondary Hand Constraints
The primary hand positions specified in Section 6.1 are derived from user input. The position

and orientation of the hand not involved in the task is specified by the system, rather than

user input. Secondary motion is applied to all body segments that are not critical segments in

the user-specified task. This default motion is specified by a posture that placed the

secondary hand at some pre-defined position and orientation. Figure 6.5 illustrates how

geometric constraints are applied to particular body segments. User input will determine the

goals of its critical segments, while the system determines the secondary motion assigned to

the non-critical body segments.

134

Figure 6.5 Applying primary and secondary motion to a task.

In our prototype the head default position is to observe the primary hand performing its task.

The secondary hand is placed flat close to the table’s edge. The user can also override the

default end effector constraints for the secondary hand. This is accomplished with posture

locks introduced below.

When a puppet completes its task, the primary hand can be locked in its final

position. Locks are interactively set and released by the user. Both the left and right hand

maintain their own instance of a lock. We refer to these instances as the left lock and right

lock respectively. Posture locks influence the puppet’s motion by overriding default

secondary constraints. If a lock is set, the secondary hand will assume positional and

orientation goals from the lock, rather than the system default values. Once a lock is released,

the corresponding hand returns to satisfying default constraints.

The locks specify the secondary hand task in the same level of abstraction as when

the lock was set. For example, if the user reaches for some object A and sets the lock, the

lock will specify the secondary task as “Reach for object A” rather than “Reach for

coordinates x,y,z”. This implies that even if the object moves, the locked hand will maintain

its position relative to the object. Locking a sliding motion will fix the end effector at a

specific position and orientation. A locked general task will store the joint coordinates of the

135

canned executed posture. An example of specifying secondary goals while the right lock is

set with a reaching motion is presented in Figure 6.6.

Figure 6.6 Overriding default secondary goals with locks.

Assume the puppet is executing a left-handed task as in Figure 6.5, and the right-hand is

among the group of non-critical segments. Let the right lock be set by some previously

executed task as in Figure 6.6. In this case, the left hand is positioned according to the user’s

input in Figure 6.5 and the right hand is positioned according to the right lock in Figure 6.6.

If the right lock were not set, then the right hand would be scheduled default secondary goals.

These two scenarios are illustrated below. The left column summarizes the user and system-

defined parameters input to the motion interface, and the right column shows the resulting

output.

136

 System State Posture Goals

User Input: Reach object B with left hand

Left Lock Frame: Empty

Right Lock Frame: Reach space A

Default Secondary Motion: Place hand on table

Left hand task: Reach object B

Right hand task: Reach space A

Table 6.3 Overriding default secondary goals.

 System State Posture Goals

User Input: Reach object B with left hand

Left Lock Frame: Empty

Right Lock Frame: Empty

Default Secondary Motion: Place hand on table

Left hand task: Reach object B

Right hand task: Place hand on table

Table 6.4 Assigning default secondary goals.

If the user specifies a task for a hand while its corresponding lock is set, then the lock is

ignored and does not override the primary motion. This concept is illustrated in Table 6.5.

Under some circumstances, specifying motion for a locked hand can update the state of the

environment, and is discussed in Section 6.3.

 System State Posture Goals

User Input: Reach object B with right hand

Left Lock Frame: Empty

Right Lock Frame: Reach space A

Default Secondary Motion: Place hand on table

Left hand task: Place hand on table

Right hand task: Reach object B

Table 6.5 Ignoring lock because of user input.

137

6.3 Modifying the Environment
The user can specify motion that modifies the position of object and space entities in the

environment. Objects and space are introduced in Section 3.4. Certain space entities, referred

to as dynamic space, can be repositioned by performing sliding motions while static space

has fixed coordinates. There are two dynamic space entities corresponding to the left and

right hand. Sliding motions performed by the respective hand can control the position of

these entities. For example, if the puppet performs a sliding motion with the left hand, then

the left hand’s dynamic space entity is placed at the new end effector position. Updating the

position of dynamic space is illustrated in Figure 6.7.

Figure 6.7 Sliding task moving the left hand dynamic space entity.

The dynamic space entities can be referenced the same as static space. This implies objects or

the opposite hand can be positioned at dynamic space, which results in rich variety of multi-

limb cooperative tasks. While static space entities resolve end effector goals to a pre-defined

point in space, dynamic entities determine end effector goals relative to the puppet’s current

hand position. For example, the user can interactively specify a motion that positions the

palm upward, then place an object in the hand. An example of this motion is illustrated by

the second image in the third row of Figure 7.9.

138

To move an object the user must first command the puppet to grasp it. Performing an

object reaching motion, then locking the task to the respective hand will be interpreted by the

system as a grasp. Once the object is grasped, subsequent reaching motions will be

interpreted as a command to move the object. If the puppet reaches for a space entity while

grasping an object with the same hand, then the object will be placed at the specified space

entity. An example of moving some object A to space entity B is presented in Table 6.6.

 System State Posture Goals

User Input: Reach space B with right hand

Left Lock Frame: Empty

Right Lock Frame: Reach object A

Default Secondary Motion: Place hand on table

Left hand task: Place hand on table

Right hand task: Move object A to space B

Table 6.6 Moving objects.

If the user commands a puppet to reach for an object after performing a grasp with the same

hand, then the motion interface will interpret the input as a stacking motion. The following

series of commands will stack object A on object B.

 System State Posture Goals

User Input: Reach object B with right hand

Left Lock Frame: Empty

Right Lock Frame: Reach object A

Default Secondary Motion: Place hand on table

Left hand task: Place hand on table

Right hand task: Stack object A on object B

Table 6.7 Stacking objects.

If an object is moved to a space occupied by one or more objects, then the object is placed at

the topmost position in the stack. If an object A is to be stacked on top of an object B, object

A is placed at the topmost position in the stack that includes object B as one of its members.

Table 6.8 is a non-exhaustive series of commands identical in their interpretation. The

resulting configuration of objects is presented in Figure 6.8.

139

 Case 1 Case 2 Case 3

Move Object A to Space A

Move Object B to Space A

Move Object C to Space A

Move Object A to Space A

Stack Object B on Object A

Stack Object C on Object A

Move Object A to Space A

Move Object B to Space A

Stack Object C on Object B

Table 6.8 Series of commands with identical interpretation.

Figure 6.8 Stack of objects.

If the hand’s lock frame is set with an object reaching motion, then slide motions are

interpreted as sliding the object. For example, if the left hand lock frame is set as “Reach for

object A”, then sliding the left hand will be interpreted as “Slide object A”. The system state

for sliding objects is shown in Table 6.9.

 System State Posture Goals

User Input: Slide with right hand

Left Lock Frame: Empty

Right Lock Frame: Reach object A

Default Secondary Motion: Place hand on table

Left hand task: Place hand on table

Right hand task: Slide object A

Table 6.9 Sliding objects.

140

Motions requiring the coordination of both hands are possible given the current model

of dynamic space and locks presented in this chapter. Two examples of coordinated motion

are moving an object with both hands and placing an object in the hand. The first example is

performed by locking both hands on an object in a single stack. Moving the hand locked on

the bottom-most object will cause the entire stack of objects to move, and both hands will

subsequently move with the stack. This is a result of object locks that position the hand at a

particular object independent of its position. An example of moving a stack of objects with

both hands is given in Section 7.3.2. A single object is simply a stack with one object, and

moving it with both hands is illustrated in Figure 6.9. The state of the system and task

specification is presented in Table 6.10. Moving an object to dynamic space, which is

positioned at the hand following a slide motion, places an object in the hand. Figure 7.9

illustrates a cup being placed in the palm of the puppet’s hand.

The combination of static and dynamic space, pre-defined grips, interactive

orientation specification, specifying tasks with respect to objects or space, and posture locks

provides a powerful interface for interactive control. The number of motions and tasks that

can be expressed in terms of the above control primitives is large. Examples of possible

scenarios are mentioned in Section 3.6.1.

 System State Posture Goals

User Input: Reach space B with right hand

Left Lock Frame: Reach object A

Right Lock Frame: Reach object A

Default Secondary Motion: Place hand on table

Left hand task: Move object A to space B

Right hand task: Move object A to space B

Table 6.10 Coordinated task execution with both hands.

141

Figure 6.9 Moving a cauldron with both hands.

142

6.4 Properties of the Interface
Thus far in the discussion, the orientation of the puppet’s hands is restricted to one of three

pre-defined grips. The puppet is also restricted to positioning its hands and moving objects to

predefined points in space. These restrictions are useful for several reasons. It is cumbersome

for the user to specify the movement of hands and objects in terms of coordinates in world

space. Generating the motion of a puppet stacking three blocks on top of each other is tedious

with respect to determining and specifying appropriate end effector coordinates for every

task in the animation.

The high-level references for objects and space allow the animator to specify an

otherwise complicated sequence of tasks in compact form. Our system allows the user to

reference objects and space independent of their position in world coordinates. This is useful

when the animator does not know the arrangement of the environment prior to determining

the tasks to be executed by the puppet. Furthermore, the position of space and object entities

can be changed without modifying the sequence of tasks. This is particularly useful if the

animator wishes to rearrange the environment while preserving the sequence of tasks

executed. This feature is illustrated in Figure 7.6.

Specifying tasks with respect to objects is a particularly useful component of the

interface. If one could only specify tasks with respect to space, then difficulties can arise

when modifying a long sequence of tasks. Assume one would like to place a cup on a saucer.

To specify the correct task, the animator would have to know which space entity occupies the

saucer and input the command “Move cup to space A”. If the saucer is moved several times

prior to this task, the animator must keep track of the current position of the saucer. Consider

a long script of tasks involving a particular object that is moved frequently throughout the

animation. Assume the animator would like to modify the initial position of the saucer, or a

task that moves the saucer to another point in space. The animator would have to change all

tasks in the script affected by the change to accommodate the new position of the saucer.

High-level references for objects and space also allow interactive specification of

tasks. Labeling objects and points in space with unique values is conducive to keyboard

control over the puppet. Presumably, each object and space entity maps to a particular key on

the keyboard. The user can interactively specify an entity associated with a task by pressing

the appropriate key in Figure 7.4.

143

The disadvantage of uniquely referencing entities is that tasks are limited to

positioning a single object at one of several points in space. The number of object and space

entities that can be effectively referenced by the animator is constrained by the properties of

the input device. These issues are discussed briefly in Chapter 2, and cover issues in human-

computer interaction. We partially resolve this problem by incorporating sliding motions that

can position the end effector anywhere in space. However, specifying these motions are more

tedious and cannot be expressed as conveniently as static space. Chapter 7 discusses the

modes of input implemented by our system.

Aside from problems in specifying entities related to a task, there are certain types of

tasks that cannot be specified using this notation. Tasks such as “Grab any object” or “Push

object forward” ambiguously references objects and points in space. The level of control

presented in this thesis requires an unambiguous specification of the entities involved in a

particular task. Resolving ambiguous tasks is possible, and would be appropriate future work.

Presumably, to incorporate such tasks the interface would reformulate the command in terms

of specific entities in the environment. When the user inputs a task such as “Grab closest

object”, the interface would compute the closest object, and reformulate the task as “Grab

object C”, where C is the closest object. Likewise, a task such as “Move any object forward”

would be resolved to “Move object B to space E”.

6.5 Special Interpretations

Given the model of interpreting grasping, moving, and stacking objects presented in Section

6.3, there are certain sequences of commands which require special consideration. Each case

is presented in the following paragraphs with our proposed interpretation.

If one would like to move a hand to some space entity that is occupied by one or more

objects, it is not clear how one should execute the task. One may place the hand on top of the

stack, beside the stack, or reject the motion all together. Our implementation will position the

hand with a side grip at the bottom-most object in the stack.

144

Figure 6.10 Placing hand at an occupied space.

There is an issue of how to deal with hand positions that penetrate objects. When

objects are organized in a stack, it is not possible to reach for an object with a top or bottom

grip without penetrating adjacent objects in the stack. If one hand is locked on object A with

a top grip, and we try to place another object B on top of A, then B will penetrate the hand

geometry. Likewise, if a hand is grasping object A with a bottom grip, and we attempt to

place it on object B, then penetration between the hand and object B will occur. This is also

the case if a hand is locked at a particular space entity, and an object is moved to the space.

To overcome colliding configurations, the system will modify the input or lock to adjust the

hand position and avoid penetrating the object. In all circumstances where a hand may

penetrate some object A, the hand will assume a side grip on object A. This concept is shown

in Figure 7.8.

Another scenario requiring special attention is moving objects within the same stack.

If the user requests to stack an object on top of itself, the input is concerned nonsense and

ignored. Likewise, if the user requests to stack object A on top of object B, and object B is

positioned lower in the same stack, then the task requested has already been achieved and the

input is ignored. Finally, assume the user commands object A to be stacked on top of object

B, and A is lower than B in the same stack. The request can be interpreted as a swapping task,

where objects A and B trade positions within the stack. This particular motion is not

implemented in our system so the input is ignored.

145

6.6 Summary
This chapter described how higher level tasks can be formulated as posture constraints. The

motion scheduler analyses the body segments assigned to a particular constraint to identify

motion conflicts. The constraints are later satisfied by the posture generator to position the

puppet. Constraints for some body segments were derived from user input, while others were

assigned system default values. The default system posture constraints can be overridden by

user specified locks. Tasks input for locked hands are interpreted differently than unlocked

hands, and results in motion that modifies the environment, such as moving objects and

dynamic space entities. The range of potential interpretations may also result in non-intuitive,

redundant, or complex motion. These cases were handled in our system by choosing one

interpretation over another when no significant advantage existed among the set of possible

interpretations, or by simply ignoring the input.

146

Chapter 7
Results

This chapter describes animations resulting from our prototype application. The principal

features of our system are guided-level control of the puppet, which provides a rich variety of

motions at the user's disposal, and autonomous interpretation and execution of user-specified

tasks. Tasks and primitive motion specifications mapped to standard input devices is

presented. Three animations demonstrate the principle features of our work, and give

examples of our system’s capability. The first scenario demonstrates the puppet reaching and

stacking blocks in variable environments. The second scenario demonstrates our system’s

autonomous interpretation of the user’s commands. The third scenario incorporates a variety

of objects with specific manipulation motions associated with them.

Section 7.1 describes the modes of input and output of our prototype system. Section

7.2 presents a sample mapping of tasks and motion primitives to keystrokes. This mapping

was used to generate the three animations discussed in Section 7.3.

147

7.1 Input and Output
The user interacts with our system at several levels. This section describes the modes of user

interaction in terms of how and when input is specified, and the output produced. The

advantages and disadvantages of various modes are briefly discussed, while subsequent

sections describe the semantics of the input.

7.1.1 User Input

The user specifies the state of the environment and inputs the motion specifications to the

puppet. The state of the environment is characterized by the position of the table, the

dimensions and position of the object entities, and the position of the space entities in space.

Motion specification includes both the primitives that modify the characteristics of a motion,

such as speed and interpolation functions, and the task to be accomplished. The environment

and motion models are introduced in Section 3.4 and 3.6 respectively. The motion signal to

satisfy these specifications is generated by the system and displayed to the user.

The user specifies the environment by a script. The script includes the position of all

space entities in world coordinates. Objects' dimensions are determined by a single value

corresponding to the width of the approximating bounding cube as illustrated in Figure 3.3

and 3.6. Each object entity is associated with a space entity to determine its initial space

relationship. A sample environment specification is as follows:

0.6 0.2 0.0 Table

1- 0.1 0.0 0.2 Space Entities
2- -0.2 0.1 0.15
3- -0.1 0.0 0.1
4- 0.2 0.0 0.05
5- 0.0 0.0 0.15
6- -0.7 0.2 0.9

A- 0.1 1 Object Entities
B- 0.04 4
C- 0.02 2
D- 0.09 6

Figure 7.1 Sample environment script.

148

The first line determines the position of the table in world coordinates. The values

correspond to the height, front, and skew of the table respectively. The following six lines

specify the position of the space entities with respect to the centre of the front edge of the

table. All space entities are specified as an offset from table coordinates so moving the table

does not modify the space and objects' position with respect to the table. The approximating

cube’s width and the space the object initially occupies, which correspond to the first and

second value in the environment script, define the state of the objects.

To effectively understand the input mechanisms of the system, it is useful to be

familiar with the visual aspects of the system. The application includes three windows on the

graphical display. One window displays the puppet and the current state of the environment.

The user can observe the motion as it is processed. The user is able to zoom and rotate the

position of the camera with respect to the origin of world space.

A Tcl/Tk window provides the user with a command-line interface to modify the

value of certain variables. Recall that a sliding motion is defined by the value of a translation

vector and an orientation matrix. Three scroll bars correspond to the x, y, and z components

of the translation vector. Three other scroll bars correspond to x, y, and z rotations, which

defines an orientation matrix. Subsequent slide motions will move according to the values

specified by the scrollbars. The user can also select a joint from its corresponding radio

button, and directly modify the joint’s state. Three other scrollbars can be manipulated to

adjust the x, y, and z local rotations of the selected joint. A message is printed at the top of

the Tcl/Tk window describing the current task being executed. Examples of messages are,

Reaching for object A or Looking at watch. A third window is a system console that prints

computation statistics and error messages. The three windows are presented in clockwise

order from the top left in Figure 7.2.

149

Figure 7.2 Appearance of the prototype application.

The user has several options when specifying tasks and motion primitives. Our

system permits the user to input directives by script, keyboard, and mouse. The mouse is

limited to specifying sliding motion primitives by adjusting the translation vector and

orientation matrix in the Tcl/Tk window.

Keyboard input can specify tasks or modify motion primitive variables. The key

presses are processed in real-time. A key press specifying a task will immediately invoke the

motion interface and create a motion model to be placed in the motion queue. Motion

primitives are updated immediately from keystrokes.

Since keystrokes are processed in real-time, keyboard input allows the user to

interactively control the motion of the puppet. The posture computation time is too long to

consider the keyboard interaction as real-time. Complicated postures such as grasping two

objects at the same time may take several minutes to compute. However, for canned motions

150

the computation required is minimal, and the user can take advantage of the interactivity to

carefully correlate the timing of certain motions.

The user can write a script specifying all tasks and motion primitives over time. The

script is input and processed when the program is launched. The user can observe the motion

as it transpires on the graphical display. Our script notation simply specifies keystrokes at

specific points in time. A sample script is presented below:

:nq
92
6)))==__G3DL
110
?r

Figure 7.3 Sample motion script.

The first line is executed at the start of the animation. Every second line is an integer. This

number refers to the time that the next line should be read and executed. In the example

presented above, the line “6)))==__G3DL” will be read and processed at frame 92 of the

animation. The sample script above specifies six tasks to be executed over approximately 150

frames. Pauses can be incorporated into the script by scheduling no motion for some period

of time. For example, if the motion queue is exhausted at frame 100, and the next task will

not be queued until frame 120, then the final animation will have still motion for 20 frames.

The notion of time is expressed as frames. For higher-level task specification, the user

will want to specify timing parameters in terms of seconds. This is can be incorporated into

any future scripting notation developed for the system. For the purposes of developing

movies rather than specifying motion, knowing the duration of certain events in frames rather

than seconds is useful. The motion output by our system can be run on a number of

commercially available rendering programs at whatever frame rate the animator desires. A

time specification in frames is consistent among any group of motion reproductions.

The interactivity of the system can be categorized as a hybrid between real-time

specification of tasks and script-based systems. The keyboard interface provides some

feedback to the user as the animation progresses. However, the computation time is too long

to be categorized as performance animation. One adjustment that provided near real-time

interactivity was to eliminate the inverse kinematics from the posture generator all together.

Postures were computed simply from the estimate in Section 5.7. As the user entered input

151

from the keyboard, visual feedback was provided in real-time. A script with identical

notation as illustrated above can be generated from the user's input. Hence, the user's input is

used to generate a script rather than the final motion. Although the estimated postures do not

place the end effector precisely at the goal, the estimate is good enough to give the user a

general idea of the final motion. The script generated is then processed in a second pass to

generate the final animation. This approach is the most promising to implement real-time

interactivity. Optimizing the inverse kinematics to achieve even near real-time posture

generation does not seem feasible with our current IK solver.

Sliding motions provide another problem to keyboard interaction. Specifying an

orientation and translation component is tedious. The current implementation allows the user

to modify these parameters with the mouse or the keyboard. As previously mentioned, the

mouse can adjust scrollbars to resolve the parameters. Alternatively, the user can increment

or decrement the vector components and axis angles of rotation from keystrokes. This is not

very practical for real-time interaction. Our current implementation has several frequently

used orientation and translation vectors hard-coded to specific keys. For the majority of

sliding motions, this subset of translation and orientation specifications is sufficient. A

mapping of keystrokes to motion primitives and tasks is shown in Table 7.1.

7.1.2 System Output

Animation is output in two forms. First, the animation is shown on the graphical display as

motion is processed by the system. In addition to the visual feedback from the system, a

script file is output with complete forward kinematic specification of the puppet at every time

step. The file output is in BVH format, which is a standard file format for recording motion

capture data. The script can be input to a commercial rendering package to generate a

polished movie.

152

7.2 Keyboard Mapping
The mapping of task and motion primitive specifications to keystrokes is presented in this

section. The mapping of tasks and motion primitives to keys is not presented with the

intention of proposing an optimal interface to control the puppet, but rather to illustrate the

level of control at the user's disposal. Effectively specifying motion parameters involves

issues in human computer interaction, and is considered appropriate future work. The set of

parameters that can be specified by the user is the focus of the work, rather than the mode of

specification. Figure 7.4 illustrates the keyboard layout of the motion directives in Table 7.1.

Figure 7.4 Example keyboard layout of user-specified parameters.

The three interpolation functions implemented allow the user to specify stylistic parameters

of the executed motion. 1func corresponds to a sinusoidal interpolation function illustrated in

Figure 2.9 and 4.18. 2func is a quadratic function, where the velocity of the motion increases

linearly over time. The drinking motion in the animation presented in Section 7.3.3 was

performed with this interpolation function. Finally, 3func is a square root function that is

characterized by high velocity at the beginning, and deceleration for the remainder of the

motion.

153

Keystrokes Corresponding Task

A,S,D,F,Z,X,C,V
Reach for Object Entities

1,2,3,4,5,6,7,8 with left hand

a,s,d,f,z,x,c,v
Reach for Space Entities

1,2,3,4,5,6,7,8 with left hand

G,H,J,K,B,N,M,<
Reach for Object Entities

1,2,3,4,5,6,7,8 with right hand

g,h,j,k,b,n,m, ,
Reach for Space Entities

1,2,3,4,5,6,7,8 with right hand

> , ? Slide left/right hand

. , /
Reach for left/right dynamic

space entity

: , ; Start/Stop recording motion

q , y Scratch head with left/right hand

w , u Check watch with left/right hand

e , i
Drink from coffee cup with

left/right hand

r , o Pour coffee with left/right hand

t , p Turn on lamp with left/right hand

1,2,3

Set scheduling parameter to No

overlap, Partial overlap, Full

overlap

4
Set scheduling scheme to

interrupt mode

5 Freeze motion

6,7,8

Set grip parameter to Side, Top,

Bottom. The slide motion

orientation matrix is set to the

left hand values in Table 6.1.

0 ,)

Increment/decrement slide motion

translation vector x-component by

0.05

- , _

Increment/decrement slide motion

translation vector y-component by

0.05

= , +
Increment/decrement slide motion

translation vector z-component by

154

0.05

[, {

Increment/decrement slide motion

orientation matrix x-axis

rotation 45 degrees

} ,]

Increment/decrement slide motion

orientation matrix y-axis

rotation 45 degrees

\ , |

Increment/decrement slide motion

orientation matrix z-axis

rotation 45 degrees

9

Set slide motion translation

vector to

(0 , 0 , 0)

(
Set slide motion orientation

matrix to identity matrix

l , L Toggle left/right hand lock

! , @ , # , $, %
Set speed to 20 , 30 , 40 , 50 ,

80

^ , & , *
Set interpolation function to

321 ,, funcfuncfunc (see below)

Table 7.1 Sample key mapping for animations in Section 7.3.

7.3 Animations

Several animations were developed to illustrate the practicality of the system. The animations

were generated with the intention of showing how the concepts described in this work satisfy

the proposed thesis contributions in Section 1.2. The first animation manipulates blocks to

show how the puppet executes tasks in context with the current state of the environment. The

second animation shows some of the interpretation and autonomous reasoning about the

user's intentions. The third animation shows the rich set of motions that a guided-level

control animation system is capable of.

7.3.1 Manipulating Blocks

155

Our system successfully produced an animation of stacking blocks. The puppet was directed

with a simple script presented below. The script is presented below as a natural language

translation of the original keystroke specification script, along with the system’s hard-coded

default secondary motion.

Body Segment System Default Goals (see Figure 6.6)
Left arm Place hand on table with top grip
Right arm Place hand on table with top grip
Torso Upright
Head Look at hand executing primary motion

Table 7.2 System default settings for animation #1.

Script for Animation #1
1. Reach yellow block with left hand.

Motion Primitives: Grip = top; Speed = 30; Function = 1func
2. Lock left hand.
3. Reach blue block with left hand.

Motion Primitives: Grip = side; Speed = 60; Function = 1func

Table 7.3 Script for animation #1.

Figure 7.5 Task execution timeline for animation #1.

156

Figure 7.6 Selected frames from animation #1.

This script is used to illustrate the perceived intelligence of the puppet by appropriately

executing the tasks according to the current state of the environment. The above script is

executed four times to generate four animations. Each animation is generated with a unique

environment script. The position and size of the objects is modified, while the motion script

remains unaltered.

The resulting four animations illustrates the strengths and deficiencies in our current

implementation. The red puppet executes the script with objects of simple dimensions and

positions, and is illustrated in Figure 7.6. Images from the other three animations are not

presented in this text. The top row of images in Figure 7.6 corresponds to frame 0 and 30,

and the bottom row corresponds to frames 45 and 60. The yellow and green puppets are

given awkward environment specifics. The red, yellow, and green puppets execute the tasks

without any serious physically implausible results. The purple puppet is forced to stretch far

157

for the blue block. Although the final posture of the stacking motion is realistic, the

interpolating movement passes the hand and the cube through the table. This anomaly can be

overcome by integrating geometric constraints throughout the motion signal, rather than the

starting and ending points of task execution [LS99][BBGW94]. The final posture does not

position the cube flat on the blue cube. This is a result most likely due to the joint limits of

the hand, and the biased towards the positional objective function over the orientation when

computing postures.

 The four animations were computed on a Pentium II 400MHz. Computing the final

motion for each script took approximately 1 minute.

7.3.2 Blending and Interpreting Tasks

The motion for a script requiring blending tasks and autonomous reasoning is successfully

produced. Two reaching motions are combined into a single task. Two cubes are stacked on

top of each other, and the puppet's hand position is adjusted appropriately to avoid object

penetration. The script includes an implausible motion that is interpreted and rejected by the

system. The final task requires reasoning about the current state of the system to generate

appropriate motion. The script is presented below.

Body Segment System Default Goals (see Fig. 6.6)
Left arm Place hand on table with top grip
Right arm Place hand on table with top grip
Torso Upright
Head Look at hand executing primary motion

Table 7.4 System default settings for animation #2.

Script for Animation #2
1. Set scheduling parameter to ‘full overlap’
2. Reach yellow block with left hand.
 Motion Primitives: Grip = top; Speed = 30; Function = 1func
3. Reach blue block with right hand.

 Motion Primitives: Grip = top; Speed = 30; Function = 1func
4. Lock left and right hand.
5. Set scheduling parameter to ‘no overlap’.
6. Reach yellow block with right hand.

 Motion Primitives: Grip = top; Speed = 30; Function = 1func
7. Reach blue block with left hand.

 Motion Primitives: Grip = top; Speed = 30; Function = 1func

158

8. Reach for space #1 with left hand.
 Motion Primitives: Grip = top; Speed = 30; Function = 1func

Table 7.5 Script for animation #2

Figure 7.7 Task execution timeline for animation #2.

Figure 7.8 Selected frames from animation #2.

159

Frames from the animation are presented in Figure 7.8. The top row of images corresponds to

frames 0 and 30, and the bottom row corresponds to frames 60 and 90. This script illustrates

some of the autonomous interpretation of user commands implemented in our system. Tasks

1 and 2 are blended together in a single motion. The blue block is then stacked on the yellow

block. However, the left hand is grasping the yellow block with a top grip. If the blue block

is placed on top of the yellow block without making any adjustment, the block will collide

with the hand. The system autonomously adjusts the left-hand grip to a side grip to avoid the

blue block.

Task 7 is interpreted as swapping the position of the blue and yellow cubes.

Swapping objects' positions in a stack is not implemented in our current system. The system

does not know how to handle swapping motions, so the task is rejected by the system and no

motion results from the command.

Task 8 requests reaching for space entity #1 with the left hand. The left hand is

locked on the yellow object, so the task is interpreted as a request to move the yellow block

to space #1. The blue block is stacked on top of the yellow block, and the resulting motion

will move the stack of objects to space #1, instead of the yellow block alone. The right hand

is positioned on the blue block in its new position. This movement of the right hand is

performed since the right hand is locked on the blue block and both the yellow and blue

block are being move to space #1.

The final motion of both hands is a result of the system interpretation of the user's

input described in Chapter 6. The resulting motion was generated in 6 minutes on a

Pentium II 400 MHz.

7.3.3 Drinking Coffee

We built a scenario of a puppet pouring and drinking coffee from several cups. Cyclic and

non-cyclic general tasks such as scratching the head and looking at a watch are presented.

Using the motion building blocks described in Section 3.6.1, we successfully executed tasks

such as pouring coffee, turning on a lamp, and unscrewing the lid of a jar. The tasks are

160

overlapped and executed with variable speeds and interpolation functions. The entire

animation is the result of a single script, which included some pauses in between motions.

This example is an attempt to show how multi-limb manipulation of objects can be

effectively controlled by our system. An analysis of the script is not justified, as opposed to

the previous two examples. The animation script is written with the intention of animating a

rich variety of motions, rather than demonstrating particular features of the implemented

system. Images from the animation are presented in Figure 7.9.

7.4 Summary
This chapter demonstrated that the algorithms and models presented in Chapters 3, 4, 5, and

6 can be integrated into a practical prototype animation system that generates movies. A

sample mapping of parameters to a common input device is presented in Section 7.2. Section

7.3 demonstrates simple animation sequences resulting from guided control over the puppet’s

motion. The three animations illustrate the success of the system in meeting the requirements

of guided control presented in Section 1.2.

161

Figure 7.9 Selected frames from animation #3.

162

Chapter 8
Conclusion

In this thesis we explored issues in developing an intelligent guided-level control animation

system. Solutions to some of the issues are proposed as part of this work, while others are left

for future research. Section 8.1 presents appropriate future work for issues not addressed in

this work, or for implemented solutions deficient in some respect. Section 8.2 summarizes

the contributions of the thesis.

8.1 Outstanding Problems

Guided-level control can be extended in a number of directions. Our vision of guided-level

control of articulated figures presented in Section 1.2 extends beyond a single humanoid

figure seated at a table. Guided control is a level of abstraction that can be applied to a

number of characters and scenarios for improved convenience and control over the resulting

motion. The topic is broad and can benefit from results in areas of research not directly

related to computer graphics. The following paragraphs introduce some of the unresolved

issues encountered in our research.

Results from ergonomic and neurophysiology research were instrumental in

developing posture generator algorithm in Chapter 5. However, the computation time is too

long for real-time interactivity. The implemented IK algorithm may benefit from

163

optimizations that will yield adequate postures in real-time. The current prototype only

allows approximate posture estimates when used in real-time. Considering a more

sophisticated knowledge-based approach, such as incorporating a database of human

postures, may improve run-times and the perceived naturalness of the postures.

Implementing more advanced constant-time neurological models may also result in improved

postures and run-times for certain tasks. Our current puppet model is simplified in several

respects as discussed in Section 3.5. It would be interesting to see how the lower limbs add to

the complexities of posture generation and executing multiple tasks simultaneously [BB00].

At the heart of this level of control is an understanding of how the character effectively uses

his body to perform arbitrary tasks, which may delve into areas of neurology and

biomechanics. Topics in realistic human kinematic motion are presented in Section 2.10.

Awkward grasping motions, although biomechanically feasible, are not well suited to

our current implementation. The problem of grasping and manipulating objects of variable

size, weight, and geometric configurations with a realistic model of the human hand is

challenging. Positioning the fingers to model a realistic handhold on an object would be

relevant future research [RG91]. This problem reduces to modeling how humans

psychologically perceive objects and apply learned behaviours to manipulate them.

The motion of the puppet has been simplified by interpolating between the puppet's

initial and final state. Although our interpolating functions correlate with biomechanical

studies of single joint motions, the problem of accurately modeling multi-joint human

movement is much more complex. Incorporating more sophisticated biomechanical models

can contribute to the realism of the puppet's motion. A survey of applicable research is

presented in Section 2.10.

Considering emotional characteristics of motion as a user-specified parameter would

be another interesting improvement upon our current implementation. Having a user specify

“happy” or “angry” rather than making a reference to a particular interpolation function

would be a powerful feature for generating complex movement. The current state of the art

does not make this immediately feasible, and would have to incorporate motion capture data

into the system. Unfortunately, this would narrow the range of possible motions

considerably. Facial expressions are also important to conveying the mood of the character

performing a task [Per93]. A reasonable short-term plan for incorporating emotion into our

164

system is to texture map a face onto the existing puppet model, and allow the user to

interpolate between various possible expressions.

Our initial intention was to implement full real-time interaction with the puppet.

Assuming the computational cost of the inverse kinematics is overcome, the optimal mode of

specifying a large number of parameters for controlling a virtual puppet in real-time is not

clear. Guided-level control implies that there may be several motion primitives to specify for

every task command. Executing several tasks quickly would require an interface conducive

to such a level of interactivity and control. These issues benefit from future research in

human computer interaction. The current implementation provides multi-modal interaction

with the puppet. The effectiveness and learning curve associated with the interface was not

considered in this thesis.

Applying collision detection and removal throughout the motion signal is imperative

for a robust animation system [BBGW94][WP95]. Path planning to avoid objects and self-

collisions are important for the perception of realism in arbitrary environments. Currently,

our system only ensures collisions are avoided at specific keyframes, and does not check for

possible collisions occurring between keyframes. The model proposed in Section 5.6

illustrates how collision avoidance of geometry in the environment can be integrated in the

system.

Guided-level control of multiple characters in a shared environment would be

interesting. The user’s intentions would be interpreted in terms of the other character’s state,

previously performed tasks, and the state of the environment. Allowing a user to specify

cooperative, multi-limb tasks of several characters is applicable to many scenarios. Applying

guided-level control to articulated figures of arbitrary dimensions would be an enhancement

of the posture generator discussed in Chapter 5. Attempts to implement guided-level control

of other species, such as quadrupeds or inanimate objects, would be another prototype that

would not benefit from the work presented in Chapter 5, but would extend the issues

discussed in Chapters 4 and 6.

165

8.2 Contributions
The work presented in this thesis provides a novel set of motion directives to effectively

control a 3D articulated figure in a specific scenario. The animations presented in Chapter 7

were generated with a level of control, effort, and interactivity consistent with Figure 2.3.

Chapter 4 introduces how multiple tasks can be performed concurrently at variable velocities

over time. The foundation for more sophisticated interpretation of user intentions is set in

Chapter 6. A new posture design algorithm for a 3D, 27-degree of freedom virtual puppet is

introduced in Chapter 5.

A prototype animation tool is implemented with multi-modal puppet interaction. The

interaction with the system is described in Section 7.1, and the architecture of the system is

illustrated in Figure 3.2. Our system generates human-like motion to accomplish multi-limb

object manipulation tasks. The user can effectively control the puppet’s hands to perform

multiple independent tasks simultaneously, or a single task requiring cooperative use of both

hands. Finally, our system exhibits intelligent behaviours by adapting postures and

interpreting the user's intentions in context with the current state of the environment.

The results and proposed solutions suggest that guided control systems can be an

effective tool for animating characters in variable environments with a limited set of objects

for manipulation. Task specification in our prototype suggests that it is feasible to express 3D

character motion in a level of abstraction similar to other forms of artistic expression.

8.2 Summary

The challenge of human animation invokes an introspective examination of human motor

control. How and why we move a certain way and are able to distinguish between living and

synthetic motion is a mystery modern science cannot explain. The ultimate goal of human

guided control is to effortlessly specify abstract tasks resulting in motion that cannot be

distinguished from a real human being. This was not achieved in this thesis, but it is hoped

that my humble contribution has advanced us closer to the goal.

166

Appendix A
The extent to which the scheduler will attempt to concurrently execute motions depends on

the value of the scheduling parameter. The scheduling parameter can be set to one of three

values: no overlap, partial overlap, full overlap. The following notation is used to describe

the three scheduling schemes.

• 10 ,mm : the first and second frame in the motion queue respectively.

• { }810 ,, jjj K is the set of all joints in the puppet.

• { }criticalmk . is the set of joints corresponding to critical body segments in motion frame

km .

• paramschedmk _. is the value of the scheduling parameter in motion frame km .

•
kmPS _ is the set of ball joints scheduled positional goals from motion frame km .

•
kmTS _ is the set of ball joints scheduled trajectory data from motion frame km .

Before we can schedule posture and trajectory goals, we group the joints twice into two

mutually exclusive sets (
1010

,,_,_ mmmm TSTSandPSPS). Every degree of freedom in

the puppet is assigned data from 0m or 1m , depending on which set the respective ball joint

belongs to. For example, the x-axis data structure of ball joint ij (denoted xij ,) will

reference positional data in motion frame km if
kmi PSj _∈ , and trajectory data in 'km if

'
_

kmi TSj ∈ .

167

The Group_Positions() procedure will include all the puppet’s eight ball joints in one of

two mutually exclusive sets,
0

_ mPS or
1

_ mPS . The joints referenced in
0

_ mPS will copy

positional data from motion frame 0m . Likewise,
1

_ mPS is the set of joints to copy

positional data from 1m .

Group_Positions():
If ((overlapnoparamschedm __.1 ==)||(One Motion Frame in Motion Queue)) {

0
_ mPS { }810 ,, jjj K←

1
_ mPS { }←

}
Else if (overlappartialparamschedm __.1 ==) {

if
{ } { } { }()()
{ } { } { }()() 








∩∈

∩∈

criticalmcriticalmjjj

criticalmcriticalmjjj

..,,

||..,,

10765

10432 {

{ }
{ }←

←

1

0

_

,,,_ 810

m

m

PS

jjjPS K

}
else{

{ } { } { } { }()()criticalmcriticalmjjjcriticalmPS m ..,,._ 1081000
∪−∪← K

{ } { }criticalmcriticalmPS m .._ 011
−←

}
}
Else if (overlapfullparamschedm __.1 ==) {

if { } { }() { }()1010 ,.. jjcriticalmcriticalm ==∩ {
{ } { } { } { }()()criticalmcriticalmjjjcriticalmPS m ..,,._ 1081000

∪−∪← K

{ }criticalmPS m ._ 11
←

}

else if
{ } { } { }()()
{ } { } { }()() 








∩∈

∩∈

criticalmcriticalmjjj

criticalmcriticalmjjj

..,,

||..,,

10765

10432 {

{ }
{ }←

←

1

0

_

,,,_ 810

m

m

PS

jjjPS K

}
else{

{ } { } { } { }()()criticalmcriticalmjjjcriticalmPS m ..,,._ 1081000
∪−∪← K

{ } { }criticalmcriticalmPS m .._ 011
−←

}
}

168

1) If overlapnosysschedm __.1 == , then each frame is executed independently. All joints

are scheduled posture data from the head of the queue, 0m .

2) If overlappartialsysschedm __.1 == , we first consider any conflicting critical segments

between 0m and 1m . If 0m and 1m have a common arm in the set of critical segments,

then no motion blending can occur and we schedule all positional data from 0m .

Otherwise, then all the critical segments in 0m are scheduled positional goals from 0m .

Critical segments in 1m that are not critical in 0m are scheduled positional goals from

1m . The rest of the body segments are scheduled from 0m .

3) If overlapfullsysschedm __.1 == , then we check if 0j and 1j are critical segments in

both 0m and 1m . If 0j and 1j are common critical segments in 0m and 1m , then the two

joints are shared between the two tasks (i.e. the motion frames are ‘blended’). Body

segments that are not critical in either 0m or 1m are scheduled positional data from 0m . If

{ }10 , jj are not common critical segments, then ‘full_overlap’ schedules positional data

identical to the ‘partial_overlap’ scheme

Similar to Group_Position(), the Group_Trajectory() procedure will divide the puppet’s

ball joints between two mutually exclusive sets,
0

_ mTS and
1

_ mTS . Trajectory data is

copied from motion frame 0m or 1m depending on which set the joint belongs.

169

Group_Trajectories():
If ((overlapnoparamschedm __.1 ==)||(One Motion Frame in Motion Queue)) {

{ }810 ,,_
0

jjjTS m K←

{ }←
1

_ mTS
}
else if((overlappartialparamschedm __.1 ==)||(overlapfullparamschedm __.1 ==)){

if { } { } { }()==∩ criticalmcriticalm .. 10 {
{ } { } { } { }()()criticalmcriticalmjjjcriticalmTS m ..,,._ 1081000

∪−∪← K

{ }criticalmTS m ._ 11
←

}
else{

{ }810 ,,_
0

jjjTS m K←

{ }←
1

_ mTS
}

}

1) If the scheduling parameter of 1m is no overlap, all joints are scheduled trajectory data

from 0m .

2) If the scheduling parameter of 1m is partial overlap or full overlap, and there are no

conflicting critical segments between 0m and 1m , then the critical segments from 0m and

1m are scheduled trajectory data from 0m and 1m respectively. Body segments that are

not critical in 0m or 1m are scheduled trajectories from 0m . If there is conflicting critical

segments, then all the joints are scheduled trajectory data from 0m .

170

Appendix B
There are a number of analytical and numerical methods which can be employed to satisfy

the orientation objective function. Our implementation uses an algebraic approach introduced

by Paul [Pau81]. The orientation of some joint i with respect to world space is calculated as

follows:

0121 MMMMMO iiii K−−= ,

where kM is the orientation of joint k with respect to joint k-1 local coordinate frame.

Let OG be the goal orientation with respect to world coordinates. Let joint k be the link

adjacent to the end effector. Let us assume joint k orientation is specified by rotations about

the z, y, and x-axis respectively. Hence, we would like to find κβα ,, such that

.)()()(1−⋅⋅⋅= kO ORotXRotYRotZG κβα

OG and 1−kO are known values. We solve for α :

).()(')(

).()()(
1

1
1

1

κβα

κβα

RotXRotYMRotZ

RotXRotYOGRotZ kO

⋅=⋅

⋅=⋅⋅
−

−
−

−

Since matrix equality implies equality of corresponding elements, the above equation gives

us:

]).0][0[',]0][1['(2arctan

.
]0][0['
]0][1['

)tan(

.0]0][1[')cos(]0][0[')sin(

MM
M
M

MM

=

=

=⋅+⋅−

α

α

αα

171

Now α is a known value so we have ')('' 1 MRotZM ⋅= − α and)()('' κβ RotXRotYM ⋅= .

]).1][1['',]2][1[''(2arctan

.
]1][1[''
]2][1[''

)tan(

).cos(]1][1[''
).sin(]2][1[''

]).0][0['',]0][2[''(2arctan

.
]0][0[''
]0][2[''

)tan(

).cos(]0][0[''
).sin(]0][2[''

MM
M
M

M
M

MM
M
M

M
M

−=

−
=

=
−=

−=

−
=

=
−=

κ

κ

κ
κ

β

β

β
β

κβα ,, satisfy the orientation constraints OG . β and κ are dependent on α . One should

consider joint limits and weight factors before calculating β and κ . Let)(' θθ f= , where

f applies weight factors and ensures joint limits are respected. We calculate β and κ with

respect to constrained 'α , since 'β and κ will maximize the objective function given the

orientation after the Z-rotation. If we calculate β and κ before constraining α , then we will

be maximizing the objective function assuming α is unconstrained. The algorithm for

maximizing the orientation objective function is:

).('
).('

]).1][1['',]2][1[''(2arctan
]).0][0['',]0][2[''(2arctan

'.)'(''

).('
]).0][0[',]0][1['(2arctan

.'

1

1
1

kf
f

MM
MM

MRotZM

f
MM

OGM kO

=
=

−=
−=

⋅=

=
=

⋅=

−

−
−

κ
ββ

κ
β

α

αα
α

172

Appendix C
The following is a table of weight factors for all joints in every pass of the algorithm in

Figure 5.17. The values in the table correspond to the variable iw in equation (5.24).

Joint Pass 1 Pass 2 Pass 3
Abdomen x-axis 0.001 0.001 0.001
Abdomen y-axis 0.001 0.001 0.001
Abdomen z-axis 0 0.001 0.001
Chest x-axis 0.001 0.001 0.001
Chest y-axis 0.001 0.001 0.001
Chest z-axis 0 0.001 0.001
Left shoulder x-axis 0.05 0.05 0.05
Left shoulder y-axis 0.4 0.4 0.4
Left shoulder z-axis 0 0 0.005
Right shoulder x-axis 0.05 0.05 0.05
Right shoulder y-axis 0.4 0.4 0.4
Right shoulder z-axis 0 0 0.005
Left forearm x-axis 0.1 0.1 0.1
Left forearm y-axis 0.4 0.4 0.4
Left forearm z-axis 0 0 0
Right forearm x-axis 0.1 0.1 0.1
Right forearm y-axis 0.4 0.4 0.4
Right forearm z-axis 0 0 0
Left hand x-axis 0.4 0.4 0.4
Left hand y-axis 0.4 0.4 0.4
Left hand z-axis 0.4 0.4 0.4
Right hand x-axis 0.4 0.4 0.4
Right hand y-axis 0.4 0.4 0.4
Right hand z-axis 0.4 0.4 0.4

173

References

[AF84] S. Adamovich, A. Feldman. Model of the Central Regulation of the

Parameters of Motor Trajectories. Biophysics, 29(2):338-342, 1984.

[AGL86] W.W. Armstrong, M. Green, R. Lake. Near-Real-Time Control of Human

Figure Models. Proceedings of Graphics Interface, pages 147-151, 1986.

[AM91] M. Ayoub, M. Miller. Industrial Workplace Design. Workspace, Equipment

and Tool Design, Mital and Karwowski (ed.), pages 67-92, 1991.

[Bad86] Norman Badler. Animating Human Figures: Perspectives and Directions.

Proceedings of Graphics Interface, pages 115-120, 1986.

[BPW93] Norman Badler, Cary Phillips, Bonnie Webber. Simulating Humans. Oxford

University Press, Oxford, NY, 1993.

[BBGW94] Norman Badler, Ramamani Bindiganavale, John Granieri, Susanna Wei,

Xinmin Zhao. Posture Interpolation with Collision Avoidance. Proceedings of

Computer Animation, pages 13-20, 1994.

[BB98] Paolo Baerlocher, Ronin Boulic. Task-Priority Formulations for the Kinematic

Control of Highly Redundant Articulated Structures. Proceedings of IEEE

IROS ’98, pages 323-329, Oct. 1998.

174

[BB00] Paolo Baerlocher, Ronan Boulic.. From Soft to Hard Priorities for IK Control

of the Full Body. Poster Proceedings of Graphics Interface, pages 2-3, 2000.

[BGF86] M. Berkinblit, I. GelFand, A. Feldman. Model of the Control of the

Movements of a Multi-Joint Limb. Biophysics, 31(1):142-153, 1986.

[BG95] Bruce Blumberg, Tinsley Galyean. Multi-Level Direction of Autonomous

Creatures for Real-time Virtual Environments. Computer Graphics

Proceedings, Annual Conference Series, pages 47-54, 1995.

[BT97] Ronan Boulic, Daniel Thalmann. Complex Character Positioning Based on a

Compatible Flow Model of Multiple Supports, IEEE Transactions on

Visualization and Computer Graphics, 3(3), July-Sept. 1997.

[BN88] Lynne Brotman, Arun Netravali. Motion Interpolation by Optimal Control.

Computer Graphics, 22(4):309-315, 1988.

[BC89] Armin Bruderlin, Thomas Calvert. Goal-Directed, Dynamic Animation of

Human Walking. Computer Graphics, 23(3):233-242, 1989.

 [BC93] Armin Bruderlin, Tom Calvert. Interactive Animation of Personalized Human

Locomotion. Proceedings of Graphics Interface, pages 17-23, 1993.

[BC96] Armin Bruderlin, Tom Calvert. Knowledge-Driven, Interactive Animation of

Human Running. Proceedings of Graphics Interface, pages 213-221, 1996.

 [BW95] Armin Bruderlin, Lance Williams. Motion Signal Processing. Computer

Graphics Proceedings, Annual Conference Series, pages 97-104, 1995.

175

[CS86] Danny Cachola, Gunther Schrack. Modeling and Animating Three-

Dimensional Articulated Figures. Proceedings of Graphics Interface, pages

152-157, 1986.

[Cha87] D. Chaffin. Biomechanical Aspects of Workplace Design. Handbook of

Human Factors, John Wiley and Sons (ed.), New York, pages 602-619, 1987.

[Cor90] Paul Cordo. Kinesthetic Control of a Multi-joint Movement Sequence.

Journal of Neurophysiology, 63(1):161-172, Jan. 1990.

[CB76] E. Corlett, R. Bishop. A technique for assessing postural discomfort.

Ergonomics, 19(2):175-182 , 1976.

[DMSB95] Keith Doty, Claudio Melchiorri, Eric Schwartz, Claudio Bonivento. Robot

Manipulability. IEEE Transactions on Robotics and Automation, 11(3), June

1995.

[DT86] Karin Drewery, John Tsotsos. Goal-Directed Animation using English Motion

Commands. Proceedings of Graphics Interface, pages 131-135, 1986.

[FN71] R. Fikes, N. Nilsson. STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Artificial Intelligence, Vol. 2, pages

189-208, 1971.

[FvDFH90] J. Foley, A. van Dam, S. Feiner, J. Hughes. Computer Graphics: Principles

and Practice. Second edition, Addison-Wesley, Reading, MA, 1990.

[FTT99] John Funge, Xiaoyuan Tu, Demetri Terzopoulos. Cognitive Modeling:

Knowledge, Reasoning and Planning for Intelligent Characters. Computer

Graphics Proceedings, Annual Conference Series, pages 29-38, 1999.

176

[GLM94] Christopher Geib, Libby Levison, Michael Moore. SodaJack: an architecture

for agents that search for and manipulate objects. Technical Report MS-CIS-

94-16/LINC LAB 265, Department of Computer and Information Science,

University of Pennsylvania, 1994.

 [GC95] K. Glass, R. Colbaugh. Real-Time Collision Avoidance for Redundant

Manipulators. IEEE Transactions on Robotics and Automation, 11(3), June

1995.

[Gle98] Michael Gleicher. Retargetting Motion to New Characters. Computer

Graphics Proceedings, Annual Conference Series, pages 33-42, 1998.

[GCJA88] G. Gottlieb, D. Corcos, S. Jarie, G. Agarwal. Practice improves even the

simplest movements. Experimental Brain Research, Vol. 73, pages 436-440,

1988.

[GTH98] Radek Grzeszczuk, Demetri Terzopoulos, Geoffrey Hinton. NeuroAnimator:

Fast Neural Network Emulation and Control of Physics-Based Models.

Computer Graphics Proceedings, Annual Conference Series, pages 9-20,

1998.

[HWBO95] Jessica Hodgins, Wayne Wooten, David Brogan, James O’Brien. Animating

Human Athletics. Computer Graphics Proceedings, Annual Conference

Series, pages 71-78, 1995.

[HP97] Jessica Hodgins, Nancy Pollard. Adapting Simulated Behaviors for New

Characters. Computer Graphics Proceedings, Annual Conference Series,

pages 153-162, 1997.

177

[HS86] Donna Hoffman, Peter Strick. Step-Tracking Movements of the Wrist in

Humans: Kinematic Analysis. The Journal of Neuroscience, 6(11):3309-3318,

Nov. 1986.

[HvP96] Pedro Huang, Michiel van de Panne. A Planning Algorithm for Dynamic

Motions. Computer Animation and Simulation ’96, pages 169-182.

Eurographics Workshop, September 1996.

[KvP00] Maciej Kalisiak, Michiel van de Panne. A Grasp-based Motion Planning

Algorithm for Character Animation. Computer Animation and Simulation

2000, pages 43-58. Eurographics Workshop, August 2000.

[KMMS98] Prem Kalra, Nadia Magnenat-Thalmann, Laurent Moccozet, Gael Sannier,

Amaury Aubel, Daniel Thalmann. Real-Time Animation of Realistic Virtual

Humans. IEEE Computer Graphics and Applications, pages 42-55, Sept./Oct.

1998.

[KKKL94] Yoshihito Koga, Koichi Kondo, James Kuffner, Jean-Claude Latombe.

Planning Motions with Intentions. Computer Graphics Proceedings, Annual

Conference Series, pages 395-408, 1994.

[Kon94] Koichi Kondo. Inverse Kinematics of a Human Arm. Technical Report CS-

TR-94-1508, Deparment of Computer Science, Stanford University, 1994.

[KB82] James Korein, Norman Badler. Techniques for Generating the Goal-Directed

Motion of Articulated Structures. IEEE Computer Graphics and Applications,

pages 71-81, Nov. 1982.

[LvP96] Alexis Lamouret, Michiel van de Panne. Motion Synthesis by Example.

Computer Animation and Simulation ’96, pages 199-212. Eurographics

Workshop, September 1996.

178

[Las87] John Lasseter. Principles of Traditional Animation Applied to 3D Computer

Animation. Computer Graphics, 21(4):35-44, 1987.

[LvP00] Joseph Laszlo, Michiel van de Panne. Interactive Control and Composition of

Physically-Based Animations. Computer Graphics Proceedings, Annual

Conference Series, pages 201-208, 2000.

[LvPF96] Joseph Laszlo, Michiel van de Panne, Eugene Fiume. Limit Cycle Control and

its Application to the Animation of Balancing and Walking. Computer

Graphics Proceedings, Annual Conference Series, pages 155-162, 1996.

[Lat93] Mark Latash. Control of Human Movement. Human Kinetics Publishers,

Champaign, IL, 1993.

[LS99] Jehee Lee, Sung Yong Shin. A Hierarchical Approach to Interactive Motion

Editing for Human-like Figures. Computer Graphics Proceedings, Annual

Conference Series, pages 39-48, 1999.

[LWZB90] Philip Lee, Susanna Wei, Jianmin Zhao, Norman Badler. Strength Guided

Motion. Computer Graphics, 24(4):253-262, 1990.

[LB94] Libby Levison, Norman Badler. How Animated Agents Perform Tasks:

Connecting Planning and Manipulation Through Object-Specific Reasoning.

Toward Physical Interaction and Manipulation, AAAI Spring Symposium

Series, 1994.

[LMY97] R. Loftin, J. Maida, J. Yang. Inverse Kinematics of the Human Arm. Annual

Report 1996-1997, Institute for Space Systems Operations, University of

Houston, TX, 1997.

179

[Mai96] R. Maiocchi. 3-D character animation using motion capture, in Interactive

Computer Animation. N. M. Thalmann and D. Thalmann (ed.), Prentice-Hall,

Englewood Cliffs, NJ, pages 10-39, 1996.

[MFV84] Ann Marion, Kurt Fleischer, Mark Vickers. Towards Expressive Animation

for Interactive Characters. Proceedings of Graphics Interface, pages 17-20,

1984.

[Mat99] Michael Mateas. An Oz-Centric Review of Interactive Drama and Believable

Agents. Lecture Notes in Artificial Intelligence, pages 297-321, Springer-

Verlag, Berlin, 1999.

[vMGvGG90] J. van der Meulen, R. Gooskens, J. Denier van der Gon, C. Gielen, K.

Wilhelm. Mechanisms Underlying Accuracy in Fast Goal-Directed Arm

Movements in Man. Journal of Motor Behavior, 22(1):67-84, 1990.

[MC90] Claudia Morawetz, Thomas Calvert. Goal-Directed Human Animation of

Multiple Movements. Proceedings of Graphics Interface, pages 60-67, 1990.

[ML87] B. Mustard, R. Lee. Relationship between EMG patterns and kinematic

properties for flexion movements at the human wrist. Experimental Brain

Research, Vol. 66, pages 247-256, 1987.

[NA89] B. Naderi, M. Ayoub. Cumulative Hand Trauma Disorders. Technical Report,

Institute for Ergonomics Research, Texas Technical University, 1989.

[Nag89] H. Nagasaki. Asymmetric velocity and acceleration profiles of human arm

movements. Experimental Brain Research, Vol.74, pages 319-326, 1989.

180

[OGH92] Lee Ostrom, Gay Gilbert, Susan Hill. Development of an ergonomic

assessment checklist and its use for evaluating and EG&G Idaho print shop: A

Case Study. Advances in Industrial Ergonomics and Safety IV, pages 469-474,

1992.

[OCM87] D. Ostry, J. Cooke, K. Munhall. Velocity curves of human arm and speech

movements. Experimental Brain Research, Vol. 68, pages 37-46, 1987.

[vPF93] Michiel van de Panne, Eugene Fiume. Sensor-Actuator Networks. Computer

Graphics Proceedings, Annual Conference Series, pages 335-342, 1993.

[vPKF94] Michiel van de Panne, Ryan Kim, Eugene Fiume. Virtual Wind-up Toys for

Animation. Proceedings of Graphics Interface, pages 208-215, 1994.

[Pau81] Richard Paul. Robot Manipulators: mathematics, programming, and control.

MIT Press, Cambridge, MA, 1981.

[Per93] Ken Perlin. Layered Composition of Facial Expression. Visual Proceedings of

Computer Graphics (SIGGRAPH '97), pages 226-227, 1993.

[Per97] Ken Perlin. Real-time Responsive Animation with Personality. Siggraph ’97 :

Course Notes, Vol. 17, 1997.

[PG96] Ken Perlin, Athomas Goldberg. Improv: A System for Scripting Interactive

Actors in Virtual Worlds. Computer Graphics Proceedings, Annual

Conference Series, pages 205-216, 1996.

[PG99] Ken Perlin, Athomas Goldberg. Improvisational Animation. Proceedings of

The Society for Computer Simulation International Conference on Virtual

Worlds and Simulation (VWSIM'99), San Francisco, California. January 17-

20. 1999.

181

[PB91] Cary Phillips, Norman Badler. Interactive Behaviors for Bipedal Articulated

Figures. Computer Graphics, 25(4):359-363, 1991.

[PZB90] Cary Phillips, Jianmin Zhao, Norman Badler. Interactive Real-time

Articulated Figure Manipulation Using Multiple Kinematic Constraints.

Computer Graphics, 24(2):245-250, 1990.

[PW99] Zoran Popovic, Andrew Witkin. Physically-Based Motion Transformation.

Computer Graphics Proceedings, Annual Conference Series, pages 11-20,

1999.

[RH91] Marc Raibert, Jessica Hodgins. Animation of Dynamic Legged Locomotion.

Computer Graphics, 25(4):349-358, 1991.

[Ree81] William Reeves. Inbetweening for Computer Animation Utilizing Moving

Point Constraints. Computer Graphics, 15(3):263-269, 1981.

[Rey87] Craig Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model.

Computer Graphics, 21(4):25-34, 1987.

[RHC86] G. Ridsdale, S. Hewitt, T.W. Calvert. The Interactive Specification of Human

Animation. Proceedings of Graphics Interface, pages 121-130, 1986.

[RG91] Hans Rijpkema, Michael Girard. Computer Animation of Knowledge-Based

Human Grasping. Computer Graphics, 25(4):339-348, 1991.

[RGBC96] Charles Rose, Brian Guenter, Bobby Bodenheimer, Michael Cohen. Efficient

Generation of Motion Transitions using Spacetime Constraints. Computer

Graphics Proceedings, Annual Conference Series, pages 147-154, 1996.

182

[SS91] Bruno Siciliano, Jean-Jacques Slotine. A General Framework for Managing

Multiple Tasks in Highly Redundant Robotic Systems. Proceedings of

ICAR ’91, Vol. 2, pages 1211-1215, 1991.

[SF89a] J. Soechting, M. Flanders. Sensorimotor Representations for Pointing to

Targets in Three-Dimensional Space. Journal of Neurophysiology, 62(2):582-

594, Aug. 1989.

[SF89b] J. Soechting, M. Flanders. Errors in Pointing are Due to Approximations in

Sensorimotor Transformations. Journal of Neurophysiology, 62(2):595-608,

Aug. 1989.

[Sor89] Peter Sorenson. Felix the Cat – Real-time Computer Animation. Animation

Magazine, pages 13-14, Winter 1989.

[SB85] Scott Steketee, Norman Badler. Parametric Keyframe Interpolation

Incorporating Kinetic Adjustment and Phrasing Control. 19(3):255-262,

1985.

[Stu84] David Sturman. Interactive Keyframe Animation of 3-D Articulated Models.

Proceedings of Graphics Interface, pages 35-40, 1984.

[Stu94] David Sturman. Character Motion Systems. Siggraph ’94 : Course Notes,

Vol. 9, 1994.

[Stu98] David Sturman. Computer Puppetry. IEEE Computer Graphics and

Applications, pages 38-45, Jan./Feb. 1998.

[TS00] Gaurav Tevatia, Stefan Schaal. Inverse Kinematics for Humanoid Robots.

Proceedings of IEEE International Conference on Robotics and Automation,

pages 294-299, Apr. 2000.

183

[Tha99] Daniel Thalman. Towards Autonomous, Perceptive, and Intelligent Virtual

Actors. Lecture Notes in Artificial Intelligence, pages 297-321, Springer-

Verlag, Berlin, 1999.

[Tis78] E. Tischauer. The Biomechanical Basis of Ergonomics. John Wiley and Sons

(ed.), New York, 1978.

[TvP98] Nick Torkos, Michiel van de Panne. Footprint-based Quadruped Motion

Synthesis. Proceedings of Graphics Interface, pages 151-160, 1998.

[TT94] Xiaoyuan Tu, Demetri Terzopoulos. Artificial Fishes: Physics, Locomotion,

Perception, Behaviour. Computer Graphics Proceedings, Annual Conference

Series, pages 43-50, 1994.

[UAT95] Munetoshi Unuma, Ken Anjyo, Ryozo Takeuchi. Fourier Principles for

Emotion-based Human Figure Animation. Computer Graphics Proceedings,

Annual Conference Series, pages 91-96, 1995.

[Wel93] Chris Welman. Inverse Kinematics and Geometric Constraints for Articulated

Figure Manipulation. MSc. Thesis, 1993.

[WP95] Andrew Witkin, Zoran Popovic. Motion Warping. Computer Graphics

Proceedings, Annual Conference Series, pages 105-108, 1995.

[Zel82] David Zeltzer. Motor Control Techniques for Figure Animation. IEEE

Computer Graphics and Applications, Vol.2, pages 53-59, Nov. 1982.

[Zel85] David Zeltzer. Towards an Integrated View of 3-D Computer Character

Animation. Proceedings of Graphics Interface, pages 105-115, 1985.

184

[Zha96] Xinmin Zhao. Kinematic Control of Human Postures for Task Simulation.

PhD. Thesis, 1996.

