
Guided Control : A System for Directable Characters
Daniel Taranovsky and Michiel van de Panne

Department of Computer Science, University of Toronto
{dannyt | van} @ dgp.utoronto.ca

Introduction
Controlling the motion of virtual characters with many
degrees of freedom can be difficult and time-consuming.
For some applications, complete control of all joints at
every time step is not necessary and actually hinders the
creative process. On the other hand, endowing the
character with autonomous behaviour and decision-
making capabilities does not allow the user to clearly
specify his/her intentions. In many circumstances the
ideal level of control is task-level specification
accompanied by timing and stylistic parameters. We
implemented a prototype animation system that
addresses this relatively unexplored level of motion
control termed guided control.
 Guided control endows the user with less
ambiguous motion specification than behavioural
techniques without cumbersome low-level details
typical of keyframing methods. The contribution of this
work is a guided control prototype that realistically
responds to a rich set of motion directives specified
interactively by the user.
 There are several main issues to be resolved in
implementing guided control. First, the user must have a
mechanism for specifying objects, space, and tasks to
generate relatively complex motions. In particular,
object manipulation, cooperative use of both hands, and
concurrent execution of tasks is supported by our
prototype system. Second, the puppet should respond to
the user’s directives with human realism. Some
synthetic intelligence must be endowed to realistically
execute tasks in arbitrary environments.

Task Specification
The prototype implements a virtual puppet seated at a
table as illustrated in Figure 1. The user inputs a script
indicating the position and dimensions of the table and
objects in the scene. The user associates objects and
space with tasks, and the puppet adapts its motion
according to the state of the environment. Figure 1
illustrates the command “reach object A with left hand”
executed in four different scenarios.
 Ideally one would like to offer a set of tasks
and motion primitives rich enough to not limit the user’s
creativity. There are three categories of tasks
implemented in our system, each associated with a
different set of motion parameters. Reaching motions
place one of the puppet’s hands at an object or pre-
defined point in space. When reaching for an object the
user specifies whether the top, side, or bottom of the

Figure 1: Performing a task in variable environments.

object is to be grasped. Sliding motions move one of the
puppet’s hands relative to its current position. The user
specifies a vector and matrix corresponding to the
hand’s differential position and goal orientation
respectively. Finally, general tasks are pre-defined
motions that cannot easily be produced as reaching or
sliding tasks. An example of each type of task is
presented in Table 1.

Reaching “reach object A with left hand”
Sliding “move left hand (x, y, z, θ, ψ, δ)”
General “wave with left hand”

Table 1: User-specified commands.

 Every task is associated with a set of critical
body segments, which refer to the subset of the puppet’s
anatomy that is preoccupied with the current task. What
to do with non-critical parts (referred to as secondary
body segments) is an issue to be resolved. Our system
assigns default motion to the secondary segments that
can be overridden interactively by the user. For
example, the torso and left arm are critical to the task
“reach object A with left hand”, while the head and right
arm are secondary. The system default will position the
head to observe the reaching hand while the right arm
rests on the table, as illustrated in Figure 1.
 Default secondary motion can be overridden
by the user with locks or concurrent execution. Locking
a task to a hand will result in overriding the system
default whenever the particular hand is among the set of
secondary body segments. For example, if one locks the
task “reach object A with left hand”, then the left hand

Figure 2: Moving cauldron with both hands.

will rest on object A while the right hand is free to
perform other tasks as directed by the user.

The user can also specify two tasks to be
executed concurrently. If two tasks’ sets of critical
segments are mutually exclusive, or the intersection of
the two sets can be shared among multiple tasks, then
motion concurrency is possible. The user can direct the
puppet to perform two independent tasks, or use both
hands cooperatively to perform one task. Figure 2
illustrates the puppet grasping and lifting a cauldron
with both hands.

Motion Synthesis
Ideally, the system should map elements in task-space to
a motion signal that satisfies the intentions of the user
with realism indistinguishable from human motion. In
our prototype, motion is synthesized by interpolating
between humanly natural postures.
 Modeling unconstrained multi-joint
movements is an on-going research area, although some
scientists have observed a relationship between a joint’s
velocity and its potential for moving the end effector
towards the target. The velocity function of constrained
single joint movements is observed to be a smooth bell-
shaped curve. This curve is used as an interpolation
function for the entire body after scaling the function to
each joint’s amplitude of motion.

The system computes postures by translating
the user’s command into a hand position and orientation
that accomplishes the task. Once end effector goals are
determined, an inverse kinematics engine is invoked.
The algorithm proceeds as follows:
1. Estimate initial natural posture.
2. Invoke IK algorithm to satisfy hand position

and orientation constraints.
3. Score the solution(s) found in step 2 to

determine the best posture.
The first step uses neurophysiological data to position
the arm naturally with respect to the hand’s positional
goal. The IK algorithm is invoked three times with
varying stiffness applied to the joints. From the three
postures computed, the best is determined according to a

score function. The IK algorithm attempts to satisfy the
geometric constraints imposed by the task while
preserving the naturalness of the original estimate.

Our score function quantifies the naturalness
of a posture based on principles from ergonomics
research. Certain posture characteristics are responsible
for uncomfortable working conditions and serious injury
if maintained for long periods. To achieve a comfortable
seated position, one should :
• Avoid the limits of joints’ range of motion.
• Minimize torsion of the torso and waist.
• Keep elbows low.
The score function rewards postures for satisfying
position and orientation constraints while respecting the
above characteristics of a natural seated posture.

Conclusions and Future Work
The prototype implemented has produced animations
such as stacking blocks, pouring coffee, and playing
cards. The experience gained from this project suggests
that guided control is most practical for producing
motion where cost is a priority over quality. Characters
found in the background of scenes, a large crowd of
figures each performing unique tasks, or preliminary
motion for foreground characters to be later refined are
all cases that would benefit from a guided control
system.

The postures in Figure 1 each took
approximately thirty seconds to compute on a Pentium II
processor. More complicated postures, such as the one
demonstrated in Figure 2, can take several minutes to
compute. Much more can be done to improve the
performance of the IK engine. However, if a real-time
algorithm is developed, interaction issues will arise when
trying to quickly specify sophisticated tasks.

The current motion model of interpolating
between natural postures needs to be upgraded in two
respects. First, applying a scaled interpolation function
to all joints does not correspond to observed
biomechanical data. It is clear that not all joints achieve
their peak velocity at the same time even though a
general relationship between a joint’s acceleration and
the hand’s target location has not been discovered.
Furthermore, planning motions to navigate arbitrary
environments is an on-going research area. Our current
implementation ensures collisions with the table is
avoided, but does not consider objects placed in the
scene.

References
[1] Norman Badler, Cary Phillips, Bonnie Webber.

Simulating Humans. Oxford University Press,
Oxford, NY, 1993.

[2] Mark Latash. Control of Human Movement.
Human Kinetics Publishers, Champaign, IL, 1993.

