
An Implementation of the MRRR Algorithm
on a Data-Parallel Coprocessor

Christian Lessig∗

Abstract

The Algorithm of Multiple Relatively Robust Representations (MRRRR)
is one of the most efficient and most accurate solvers for the symmetric
tridiagonal eigenvalue problem. We present an implementation of the
MRRR algorithm on a data-parallel coprocessor using the CUDA pro-
gramming environment. We obtain up to 50-fold speedups over LA-
PACK’s MRRR implementation and demonstrate that the algorithm can
be mapped efficiently onto a data-parallel architecture. The accuracy of
the obtained results is currently inferior to LAPACK’s but we believe that
the problem can be overcome in the near future.

1 Introduction

The eigenvalue problem Aui = λiui
1 for a real symmetric matrix A ∈ Rn×n with eigen-

values λi ∈ R and (right) eigenvectors ui ∈ Rn is important in many disciplines. This
lead to the development of a variety of algorithms for the symmetric eigenvalue prob-
lem [33, 51]. The efficacy of these eigen-solver depends on the required computational
resources and the accuracy of the obtained results. With the advent of mainstream parallel
architectures such as multi-core CPUs and data-parallel coprocessors also the amenability
to parallelization is becoming an important property.

Many eigen-solver are however difficult to parallelize. Notable exceptions are the Divide
and Conquer algorithm [14] and the Algorithm of Multiple Relatively Robust Represen-
tations (MRRR) [21] for which efficient parallel implementations exist. Both algorithms
provide additionally highly accurate results [19]. The computational costs of the Divide
and Conquer algorithm are with O(n3) however significantly higher than the O(n2) op-
erations required by the MRRR algorithm. The Divide and Conquer algorithm also does
not allow to efficiently compute a subset of eigen-pairs (λi,ui) which is possible with
MRRR. Task-parallel implementations of the MRRR algorithm are available [8] but to our
knowledge it has not yet been realized on a data-parallel architecture.

In this report we present an implementation of the MRRR algorithm on a data-parallel co-
processor using the CUDA programming environment [48]. We show that the MRRR algo-
rithm can be mapped efficiently onto a data-parallel architecture and obtain up to 50-fold
speedups compared to sstemr, LAPACK’s [3] implementation of the MRRR algorithm.

∗lessig@dgp.toronto.edu
1 In this report we will employ Householder’s notation. Matrices will be denoted by bold capital

letters such as A and T; vectors by bold small letters such as a and b; and scalars by non-bold letters
such as a, b, and α.

1

Although our implementation does currently not provide the same accuracy and robustness
as sstemr, we believe that these problems can be overcome in the near future.

The remainder of the report is organized as follows. In the next section we will review
algorithms for the symmetric eigenvalue problem. A brief introduction to data-parallel
coprocessors and the CUDA programming environment is given in Section 3, before the
mathematical background of the MRRR algorithm is presented in Section 4. A detailed dis-
cussion of our implementation and design choices is provided in Section 5, and in Section 6
we present experimental results comparing our implementation of the MRRR algorithm to
LAPACK’s sstemr routine. We conclude the report with a discussion of possible direc-
tions of future work. Appendix B provides a liner algebra primer with most of the math-
ematical background which underlies our implementation. Readers not familiar with the
theoretical aspects of eigen-solvers are encouraged to consult the appendix before reading
the remainder of the report.

2 Related Work

Algorithms for the symmetric eigenvalue problem have been studied extensively in numer-
ical analysis, applied mathematics, physics, and many other fields. To limit the scope of
this section we will restrict ourselves to approaches which have been implemented on par-
allel architectures. More complete discussions can be found in the books by Golub and van
Loan [32, 33] and Parlett [51], and various LAPACK working notes [44].

The first algorithm for the symmetric eigenvalue problem was proposed by Jacobi as early
as 1846 [40]. Jacobi iteration performs a sequence of similarity transformations2 on the
full symmetric input matrix A annihilating at each step one off-diagonal element. A is
guaranteed to converges to a diagonal matrix D and the eigenvalues of the input matrix
are the non-trivial elements of D [12]. The eigenvectors can be obtained by accumulating
the similarity transformations starting with the identity matrix [12]. The eigenvalues and
eigenvectors obtained with Jacobi iteration are usually highly accurate [15]. The algorithm
suffers however from high computational costs of at least O(n3) and in practice usually
requires an order of magnitude more work than for example the QR algorithm [5]. Today it
is therefore only used for special problems [21]. Due to its simplicity, Jacobi iteration was
the first symmetric eigen-solver which was implemented on a parallel architecture [10, 4,
63, 7, 6]. We are however not aware of any recent parallel implementations.

In contrast to Jacobi iteration which operates on an unreduced matrix, most algorithms for
the symmetric eigenvalue problem in use today determine the eigen-analysis for a tridiag-
onal matrix.3 Householder transformations [33, pp. 206] are usually employed to reduce
the input to tridiagonal form, requiring 4

3n3 multiplications and additions for the reduction
and 2n3 additional operations for the back-transformation. The BLAS library [25], for
which various processor and architecture specific implementations exist, including one for
data-parallel coprocessors [41], can be employed to compute the transformations.

The canonical algorithm for the symmetric tridiagonal eigenvalue problem is QR it-
eration [33, pp. 414] which was discovered independently by Francis [30] and
Kublanovskaya [43]. The QR algorithm applies a sequence of orthogonal transformations,
each formed by (n−1) elementary Givens rotations, to the input matrix T. The eigenvalues
are again the non-trivial elements of the resulting diagonal matrix D and the eigenvectors

2 Let X ∈ Rn×n and be non-singular, and B = X−1AX. It can be shown that the spectrum of
A and B [33, p. 311]. X is therefore called a similarity transformation.

3 A notable exception are algorithms which determine only a specific eigen-pair such as power
iteration. Problems where this is of interest arise in many applications, for example internet search
algorithms. In this report we restrict ourselves however to algorithms which can efficiently determine
the whole spectrum of a matrix.

2

can be obtained by accumulating the transformations. The QR algorithm requires O(n2)
operations to determine all eigenvalues and O(n3) operations to compute all eigenvectors.
These costs remain approximately constant even if only a subset of the eigen-pairs (λi,ui)
is required. Despite its serial nature, different parallel implementation of the QR algorithm
have been proposed [26, 59, 63, 42]. Today, the accumulation of the Givens rotations is
usually distributed equally across all processors, and the eigenvalues are computed redun-
dantly on all nodes [5].

In the early 1980’s, Cuppen developed the Divide and Conquer Algorithm as an efficient
and accurate eigen-solver for parallel architectures [14]. Given a symmetric tridiagonal
matrix T, a solution is obtained recursively by considering sub-matrices until these are
small enough to efficiently determine eigenvalues and eigenvectors. The eigen-pairs of the
sub-matrices are then related back to the original matrix in a back-propagation step [60].
Initially, the Divide and Conquer algorithm could not guarantee that the obtained eigen-
vectors are orthogonal but Gu and Eisenstat [38] devised a strategy which overcomes this
problem. Similar to QR iteration, the Divide and Conquer algorithm requires O(n3) oper-
ations. In contrast to most other eigen-solvers it demands however also O(n2) additional
memory. A parallel implementation of the Divide and Conquer algorithm can be obtained
by distributing the work for different sub-matrices across different nodes [13]. It is inter-
esting to note that although Cuppen developed the algorithm for parallel architectures in
many cases it also outperforms other eigen-solvers on a single processor [5, 19].

An alternative algorithm for the symmetric tridiagonal eigenvalue problem combines bi-
section [31] and inverse iteration [56]. Although the eigen-pairs obtained with this tech-
nique satisfy Tui − λiui to high relative accuracy, the orthogonality of the ui cannot be
guaranteed. In practice the eigenvectors of clustered eigenvalues have therefore to be or-
thogonalized, for example with the Gram-Schmidt algorithm. It is also known that inverse
iteration can fail entirely [20] although this seems to be a mostly theoretical problem [19].
Bisection and inverse iteration both require O(n2) operations but the orthogonalization re-
quires O(n3) work. An efficient parallel implementation of bisection and inverse iteration
is possible but orthogonalizing the eigenvectors requires a considerable amount of commu-
nication. ScaLAPACK [8] computes the eigenvectors of a cluster of eigenvalues therefore
on one node. This avoids excessive communication but can lead to load imbalance [5].

In the 1990’s, Dhillon and Parlett proposed the Algorithm of Multiple Relatively Robust
Representations (MRRR) [21, 52, 53, 22, 23, 24] for the symmetric tridiagonal eigenvalue
problem. The MRRR algorithm also employs bisection and a version of inverse iteration
but can guarantee the orthogonality of the computed eigenvectors to high relative accuracy
without explicit orthogonalization. Parlett and Vömel [54] showed that the original MRRR
algorithm can fail on tight eigenvalue clusters but Dhillon [54] devised a simple strategy
to circumvents this problem. In contrast to other eigen-solvers which can require O(n3)
operations, MRRR has a worst case complexity of O(n2) for obtaining all eigen-pairs,
and it requires only O(kn) operations to determine a subset of k eigenvalues and eigen-
vectors. Similar to the Divide and Conquer algorithm, the MRRR algorithm generates a
computation tree which can guide a parallel implementation.

The previous discussion raises the question what the most efficient algorithm for the sym-
metric tridiagonal eigenvalue problem is. The efficacy of an eigen-solver depends however
on the input matrix, the hardware architecture on which the algorithm is implemented, the
desired accuracy, and many other parameters so that in general no answer exist. Nonethe-
less, Demmel et al. [19] recently compared LAPACK’s implementations [3] of QR iter-
ation, bisection and inverse iteration, the Divide and Conquer algorithm, and the MRRR
algorithm on a variety of single processor systems. They concluded that Divide and Con-
quer and MRRR are the fastest algorithm, and that QR iteration and Divide and Conquer
are the most accurate once, although the MRRR algorithm provides the relative accuracy
of O(ε n) it promises.

3

The parallelization strategies discussed above, which have been used for example in
ScaLAPACK [8], PLAPACK [1], or PeIGS [27], have been developed for distributed mem-
ory systems. Our target hardware is however a task-parallel array of data-parallel process-
ing units. Disregarding some preliminary work on the Connection Machine [28, 57, 58],
we are not aware of implementations of eigen-solvers on data-parallel architectures; in par-
ticular the Divide and Conquer algorithm and the MRRR algorithm, which naturally lend
themselves to parallel implementations [14, 21] and which are highly efficient [19], have
not been implemented on such systems. In this report we will present an implementa-
tion of the MRRR algorithm on a data-parallel coprocessor using the CUDA programming
environment.

3 Data Parallel Coprocessors

Traditionally, highly parallel architectures such as the Connection Machine [62] and Cray’s
vector computers were prohibitively expensive and available only to large institutions and
companies. With the transition from graphics supercomputers to off-the-shelf graphics
processing units (GPUs) in the late 1990’s highly parallel architectures with thousands
of threads in flight simultaneously became however commodity. Today, these provide a
readily available data-parallel coprocessor available in almost every computer with a raw
compute power which exceeds the latest CPUs by more than an order of magnitude [49].

In the early 2000’s, the widespread availability and high performance of GPUs combined
with emerging programmability spurred the interest of the research community to employ
the processors not only for calculations in computer graphics but also for general-purpose
computations (GPGPU). Significant speedups have been reported for a variety of applica-
tions, ranging from numerical analysis to databases [49], where the algorithms mapped well
onto the GPU. From the beginning, the practicality of GPGPU was however compromised
by a variety of shortcomings; graphics APIs had to be used to write programs which made
it inaccessible for most people; the hardware was optimized for direct lighting calculations
and the parallelism was exposed only implicitly which led to cumbersome program de-
sign and often to large inefficiency for general-purpose computations; and synchronization
between threads, which is necessary for most non-trivial computations, was prohibitively
expensive; to name a few examples.

In the last years, a variety of approaches have been proposed to overcome these limitations.
Middleware solutions such as SH [47] and Brook [11] provide an additional software layer
on top of the graphics API. In most cases this simplifies program design considerably, in
particular for people outside of computer graphics. It does however not overcome hard-
ware limitations such as the lack of scatter writes and in fact might incur additional costs
at runtime. ATI [55] proposed Close-To-Metal (CTM), a low-level general-purpose API
for its GPUs, which is for many computations more efficient than OpenGL or DirectX.
The software-only nature of CTM limits however its impact and it shares many of the
limitations of traditional GPGPU and middleware solutions. NVIDIA’s Compute Unified
Device Architecture (CUDA) [48] improves on GPGPU with both software and hardware
enhancements and exposes the GPU as a highly multi-threaded data-parallel coprocessor
with a single-program multiple-data (SPMD) execution model which is programed with a
superset of ANSI C, providing the most compelling approach to mainstream data-parallel
programming so far.

In the remainder of the section we will provide an overview of the CUDA programming en-
vironment. A detailed discussion can be found in the CUDA programming guide [48]. We
refer to the survey article by Owens et al. [49] for a more complete treatment of GPGPU.

4

3.1 CUDA Hardware

The latest generation of NVIDIA “graphics” hardware provides for the first time function-
ality specifically designed for general-purpose computations. Depending on the API used
– OpenGL / DirectX or CUDA – it is therefore either employed as a graphics processing
unit or as a general-purpose data-parallel coprocessor. In fact, time slicing allows to use
the hardware (virtually) simultaneously for image synthesis and general-purpose computa-
tions.

The computational elements of CUDA-enabled hardware are arranged as a task-parallel
array of data-parallel multiprocessors. Each multiprocessor has an independent SPMD
execution unit and can run up to 512 threads simultaneously. Barriers are available for syn-
chronization. User-controlled shared memory, which is also local to each multiprocessor
and has thus a very low latency, allows to efficiently share data between threads and to
cache it close to the computational units. Although the practicality of shared memory is
often compromised by the small size of 16kB, it remains one of the distinguishing features
of CUDA. Next to on-chip memory, CUDA hardware also provides three types of DRAM
memory: global memory, texture memory, and constant memory. These are accessible from
the host4 and the device and thus serve as interface between the execution units. In contrast
to texture and constant memory which are similar to their analogs on traditional graphics
hardware, global memory provides read and write access on the device. This overcomes
the gather-only limitation of traditional GPUs. The access is however un-cached which
makes the efficient use of global memory often difficult, although with enough threads in
flight in parallel on a multiprocessor it is possible to hide the memory latency [48].

3.2 CUDA Software

The most important components of the CUDA software layer are an extension of ANSI
C [2] for data-parallel coprocessors, which supports also many useful features of C++ [61],
and a meta-compiler which separates program parts executed on the host and device. The
host code is compiled with a standard CPU compiler such as gcc and the device code
compiler is again part of the CUDA software layer. In contrast to traditional GPGPU
programming [49], this allows to develop data-parallel programs in a way very similar to
CPU applications; for example if a function is executed on the device or on the host is
determined by an intrinsic which is part of the function declaration and on the GPU the
same standard math library is available as on the CPU.

CUDA programs, one often refers to them as kernels, are executed as a grid of thread blocks
and each block runs on one multiprocessor. The execution environment for a kernel, that
is how many blocks and how many threads per block are used when the program is run, is
specified at launch time.

4 The MRRR Algorithm

The Algorithm of Multiple Relatively Robust Representations (MRRR) [21] computes k
eigen-pairs (λi,ui) of a symmetric tridiagonal matrix T ∈ Rn×n in O(nk) time while
guaranteeing small residuals of the eigen-decomposition

‖Tui − λiui‖ = O (nε‖T‖) (1)

and orthogonality of the eigenvectors

‖uT
i uj‖ = O (nε) , i 6= j. (2)

4 In the literature it is common practice to denote the CPU as host and the data-parallel coproces-
sor as device.

5

Algorithm 1: MRRR algorithm for the tridiagonal symmetric eigenvalue problem.
Input: Tridiagonal symmetric matrix T ∈ Rn×n

Output: List of eigen-pairs (λi,ui) of T.
Find an RRR for T.1

Compute approximation λ̃i of eigenvalue λi and classify as singleton or cluster.2
for each singleton λi do3

Compute the eigenvalue and eigenvector to high relative accuracy.4

for each cluster λk1:km
do5

Shift T with a shift index µ close to the cluster to obtain T̄.6

Let T ≡ T̄ and go to line 2.7

An overview of the MRRR algorithm is given in Algo. 1. Its three parts, eigenvalue classi-
fication (line 2), eigen-pair computation (line 3), and cluster shift (line 5), will be detailed
in the following. A more complete discussion can be found in the thesis by Dhillon [21].

4.1 Eigenvalue Classification

Definition 1 (Relative Distance and Relative Gap [22]). Let λi and λj be two eigenval-
ues of a tridiagonal symmetric matrix T ∈ Rn×n, with λi < λj . The relative distance
reldist (λi, λj) between two eigenvalues is

reldist (λi, λj) ≡
|λi − λj |
|λi|

.

The relative gap relgap (λi) of an eigenvalue λi is the minimum over all relative distances:

relgap (λi) ≡ min {reldist (λi, λj) |λi 6= λj ∈ λ (T)} .

An eigenvalue λi is (relatively) isolated, or a singleton, if its relative gap exceeds a given
threshold tc. It can be shown that for a singletons λi the eigen-pair (λi,ui) can be com-
puted to high relative accuracy [21]. A group λk1:km of m non-isolated eigenvalues forms
an eigenvalue cluster of multiplicity m.

For the practicality of the MRRR algorithm it is important that an approximation λ̃i of
the eigenvalue λi is sufficient to classify it as singleton or cluster. A common methods
to obtain λ̃i is the bisection algorithm [29, 16] which approximates the eigenvalue as an
interval around λi with size tc. Singletons thus correspond to intervals containing one
eigenvalue and cluster to intervals containing multiple eigenvalues. Bisection relies on
Sturm count computations5 to determine the number of eigenvalues in an interval. For a
symmetric tridiagonal matrix the Sturm count can be obtained with a qds transform similar
to those in Algo. 2 and Algo. 3.

4.2 Cluster Shift

For eigenvalues that are part of a cluster the eigen-pairs (λi,ui) cannot be computed ac-
curately [21]. Matrix shifts are employed to increase the relative distance between the
eigenvalues in a cluster until these become singletons.

5 Given a symmetric matrix A and a shift µ, the Sturm count sA(µ) is the number of eigenvalues
smaller than µ (cf. Def. 4 in Appendix B).

6

Figure 1: Representation tree T for a matrix T8×8. Singletons are the leaf nodes of the
tree, shown in blue, and clusters are inner nodes, shown in black. Here we assumed that
bisection was used to classify and approximate the eigenvalues so that λ̃i is the midpoint of
the blue intervals shown in the figure. The interval at level l = 1 is the Gerschgorin interval
GT of the input matrix. Through the matrix shifts which are used for every cluster on level
j − 1 to create the corresponding matrix Tj,k the relative distance of clustered eigenvalues
is increased from level to level until all eigenvalues are singletons.

Let the eigenvalues λk1 to λkm
form the kth cluster λk1:km

of T, and let µ be an approxima-
tion of the cluster location. The relative gap of an eigenvalue λ̄ki

∈ λ̄k1:km
of the shifted

matrix T̄ = T− µI6 is then

relgapT̄

(
λ̄ki

)
= relgapT (λki

)
|λki |

|λki
− µ|

.

With the choice µ ≈ λki
the denominator |λki

− µ| becomes small and

relgapT̄

(
λ̄ki

)
� relgapT (λki

) .

The shifted eigenvalues λ̄k1 to λ̄km are thus likely to be singletons which has to be verified
by classifying the λ̄ki with respect to T̄. For eigenvalues λ̄ki that are again part of a cluster,
now with respect to T̄, a new shift µ̄ ≈ λ̄ki is applied to T̄. This process is repeated until
all eigenvalues are classified as singletons and the corresponding eigen-pairs have been
computed to high relative accuracy. The eigenvalues of the shifted matrices can be related
back to those of the input matrix T by accumulating the shifts.

Classifying eigenvalues and shifting clusters generates a representation tree of matrices

T = {Tj,k | j ∈ J , k ∈ K(j)} , (3)

where singletons are leaf nodes and clusters are inner nodes, and the root node T1,1 ≡ T
is the original input matrix (cf. Fig. 1). The representation tree describes all computations
necessary to determine the eigenvalues and eigenvectors of T.

Important for the practicality of the MRRR algorithm is that no precision is lost when the
representation tree is traversed and shifted matrices Tj,k are obtained. Dhillon showed

6It is easy to show that the eigenvalues of T − µI are those of T shifted by µ, and that the
eigenvector are unaffected by the shift (cf. Theorem 2 in Appendix B).

7

Algorithm 2: DSTQDS
Input: L, D, µ
Output: L+, D+, S+

s+
1 = −µ ;1

for i = 1 : n− 1 do2

d+
i = di + s+

i ;3

l+i = dili/d+
i ;4

s+
i+1 = l+i lis

+
i − µ5

d+
n = dn + s+

n6

Algorithm 3: DPQDS
Input: L, D, µ
Output: U+, R+, P+

p+
n = dn − µ ;1

for i = n− 1 : −1 : 1 do2

r+
i+1 = dil

2
i + p+

i+1 ;3

u+
i = lidi/r+

i+1 ;4

p+
i = p+

i+1di/r+
i+1 − µ5

r+
1 = p+

16

Figure 2: Differential stationary and differential progressive qds transforms which yield
the L+D+ (L+)T and U+R+ (U+)T factorizations of LDLT − µI, respectively.

that this is satisfied when relatively robust representations (RRR)7 are employed for the
computations. For a symmetric tridiagonal matrix the LDLT factorization8 is in most cases
an RRR [21] and the dstqds transform in Algo. 2 can be employed to perform the matrix
shifts. Care is however required to avoid element growth. An appropriate choice of the
shift µ can usually circumvent this problem.

4.3 Eigenvector Computation

After λs ≡ λi has been classified as singleton an accurate approximation λ̄s of the eigen-
value is obtained from λ̃s, for example again by using the bisection algorithm with a re-
finement threshold tr, with tr ≤ tc. With λ̄s, we seek ūs such that Eq. 1 holds. Then the
classic gap theorem [50] guarantees that the eigenvectors are orthogonal and Eq. 2 is satis-
fied [66]. A vector q ≡ ūs with elements q = {qi}n

i=1 can be obtained by first determining
the double factorization

LDLT − λ̄sI = L+D+
(
L+

)T = U+R+
(
U+

)T

using the differential stationary and differential progressive qds transforms, dstqds and
dpqds in Algo. 2 and Algo. 3, respectively, and then computing

qk = 1,

qi = −l+i qi+1 for i = k − 1, . . . , 1 (4)

qi+1 = −u+
i qi for i = k, . . . , n− 1.

The remaining question is which index k should be employed in Eq. 4. Dhillon showed in
his dissertation [21] that Eq. 1 is satisfied when k is chosen such that |γk| is minimal or
sufficiently small, with

γk = s+
k + p+

k + µ, (5)

and s+
k and p+

k being the non-trivial elements of S+ and P+ from the dstqds and dpqds
transforms, respectively.

7 A representation of a matrix, that is any set of numbers that uniquely identifies the matrix,
is relatively robust (w.r.t the eigen-decomposition) if small relative changes to the elements of the
representation cause only small relative changes to the eigenvalues and eigenvectors.

8 For a symmetric tridiagonal matrix T the LDLT factorization T = LDLT is formed by the
diagonal matrix D and L = I + L̄, where L̄ has nonzero elements only on the first lower diagonal.

8

50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

Matrix Size

E
xe

cu
tio

n
T

im
e

(m
s)

unsafe

safe

fallback

Figure 3: Execution time with different implementations of the dstqds and dpqds trans-
forms. The try-and-fallback strategy outperforms the safe implementation. Using only the
unsafe implementation is the fastest approach but can lead to incorrect results.

5 Implementation

In this section our CUDA implementation of the MRRR algorithm on a data-parallel co-
processor will be detailed. We will first discuss how the eigenvalues and eigenvectors for
matrices with at most 512× 512 elements can be determined to high relative accuracy, and
then explain how this implementation can be used to compute the eigen-pairs for arbitrary
size matrices.

5.1 Small Matrices

5.1.1 Overview

Input The diagonal and off-diagonal elements a and b of a symmetric tridiagonal matrix
T ∈ Rn×n with n ≤ 512, thresholds tc and tr for classifying and refining eigenvalue
approximations, and the number of thread blocks K used for the computations.9

Output All eigenvalues and eigenvectors of T computed to high relative accuracy.

9 If the specified number of thread blocks exceeds the number of multiprocessors available in
hardware then some of the work will be serialized. Assume for example that K = 8 but that only two
multiprocessors are available in hardware. Then the computations for two thread blocks are executed
in parallel (assuming equal execution time) and a four-way serialization occurs. CUDA handles such
serializations transparently, exposing to the programmer a device with an virtually infinite number of
multiprocessors. In the remainder of the report we will therefore allow any value for K, disregarding
possible performance penalties.

9

10
−6

10
−5

10
−4

10
−3

6

8

10

12

14

16

18

20

Classification Precison p
c

E
xe

cu
tio

n
T

im
e

(m
s)

Figure 4: Execution time as a function of the classification threshold tc for a matrix with
512 × 512 elements. A significant performance improvement can be observed for tc ≤
0.00001 compared to tc ≥ 0.00005.

Host Computations Given a and b, first the Gerschgorin interval GT of T is com-
puted [33, p. 395] and K subintervals {Ik}K

k=1 ⊂ GT with Ik = (lk, uk] and
⋃

k∈K Ik =
GT are determined.10 Then the initial relatively robust representation is obtained

L1,1D1,1LT
1,1 = T− µ1,1I

where µ1,1 is chosen close to the end of the spectrum of T which contains the most eigen-
values [23]. Next, the data of the initial LDLT factorization is copied to the device and
the device kernel is launched with a one-dimensional grid of thread blocks where the num-
ber of threads per block equals the matrix size n. The parameters passed to the kernel
are the pointers to the initial LDLT factorization, the bounds for the intervals Ik, the ini-
tial shift µ1,1, the matrix size n, the thresholds tc and tr, and pointers to arrays in global
memory which are used to store the result and intermediate data; for the eigenvalues a
one-dimensional array is employed, and for the eigenvectors and the intermediates two-
dimensional arrays are used.

Device Computations We compute the eigen-pairs (λi,ui) for all eigenvalues λi ∈ Ik
in an interval Ik on one multiprocessor. Instead of creating one representation tree we thus
create a forest of trees. In the remainder of the report it will therefore be sufficient to
consider only one interval Ik for arbitrary k.

At the heart of the MRRR algorithm is the qds transform in its different forms. It is
used to determine shifted matrices when the representation tree is traversed and to compute
eigenvectors for leaf nodes. Additionally, it also underlies the Sturm count computation;

10 In practice we currently also compute the Sturm counts sT(lk) and sT(uk) but this could be
avoided if necessary.

10

struct SharedMem {

// interval bounds
float left[MAX_THREADS_BLOCK];
float right[MAX_THREADS_BLOCK];

// number of eigenvalues that are smaller than left / right
short left_count[MAX_THREADS_BLOCK];
short right_count[MAX_THREADS_BLOCK];

// shift for each interval / representation tree node
float shift[MAX_THREADS_BLOCK];

// helper for stream compaction
short row_index[MAX_THREADS_BLOCK];

// helper for compaction of arrays
short compaction[MAX_THREADS_BLOCK + 1];

};

Figure 5: Arrays wrapped in a C struct are used to store the representation tree nodes in
shared memory.

an integral part of bisection, our algorithm of choice for classifying and refining eigenvalue
approximations. Parallelizing the transform is however not possible because it consists of
a loop with dependent iterations (cf. Algo. 2 and Algo. 3).

The tree structure of the MRRR algorithm – the representation tree T – suggests however
that the computations for all nodes on the same level of T are independent and thus amend-
able to parallelization. Moreover, for nodes of the same type, inner nodes or leaf nodes,
the computations are identical and differ only by their input data, providing a natural map-
ping onto a data-parallel architecture. Instead of parallelizing the qds transform we thus
compute the transform for all nodes of T on the same level and of the same type in parallel
using one thread per node. This leads to a breadth-first traversal of the representation tree.

The performance of CUDA programs does however not only depend on sufficient paral-
lelism but also on an effective use of the memory hierarchy. In particular shared memory
with its very low latency has to be employed efficiently. In our implementation we use
shared memory as user-managed cache and store the interval information of the represen-
tation tree nodes on the current tree level (cf. Fig. 5):

• left and right interval bounds,
• Sturm counts of the bounds,
• accumulated shift index of the representation tree node,
• a row pointer providing an offset for the global memory arrays which are used to

store intermediate results.

The intervals data is needed for most computations of the MRRR algorithm and it is thus
beneficial to retain it close to the computational units.

At execution time, first the pointers to the two-dimensional global memory arrays are ini-
tialized with the Sturm count sT(lk) as offset to guarantee that different multiprocessors are
operating on non-overlapping parts of the memory. Next, the parameters of Ik are stored in
shared memory and bisection is employed to classify the eigenvalues as singletons or clus-
ters. The generated intervals are then sorted according to the number of eigenvalues they

11

// make sure the shared memory is not used
__syncthreads();

// read data into shared memory
if(threadIdx.x < s_num_intervals) {
smem.d[threadIdx.x] = gmem.d[threadIdx.x];
smem.l[threadIdx.x] = gmem.l[threadIdx.x];

}

// make sure every thread read the data before it is used
__syncthreads();

// compute qds transform
...

Figure 6: On level 2, for an n × n matrix n threads are employed to load d1,1, and l1,1

in parallel from global to shared memory. For the computation of the qds transform then
only (fast) shared memory has to be accessed.

contain and for singletons the eigenvalue approximations are refined and the eigenvectors
are obtained by first computing the dstqds and dpqds transforms (Algo. 2 and Algo. 3)
and determining the twist index k with argmink|γk| (Eq. 5), and then solving Eq. 4 for the
eigenvectors.

After singletons have been resolved, for each cluster k a new LDLT factorization

L2,kD2,kLT
2,k = L1,1D1,1LT

1,1 − µ1,kI

is computed using the dstqds transform in Algo. 2. The non-trivial elements of L2,k and
D2,k are stored in global memory in two of the arrays for intermediates. The generated
tree nodes are then processed analogously to the root node, although for l > 2 there are
in general multiple nodes as input. This process is continued until all eigenvalues and
eigenvectors have been determined to high relative accuracy, or until a maximum tree level
has been reached.

5.1.2 qds Transform

The qds transform in its different forms is employed at all stages of the MRRR algorithm
(cf. Sec. 4). It takes as input vectors d and l formed by the non-trivial elements of the
LDLT factorization of a symmetric tridiagonal matrix and the result is determined with a
loop over the elements of d and l. The low arithmetic intensity of the computations in the
loop body makes an efficient memory management thereby particularly important for high
performance.

Except for the eigenvector computation, on level l = 2 the inputs d and l are identical for
all representation tree nodes (or threads). Thus, instead of loading the elements of d and
l separately for every thread we can employ shared memory as user-managed cache. The
expensive reads from global memory have then only to be performed once and we can hide
latency further by using multiple threads in parallel to load the data as shown in Fig. 6.

However, even for small matrices shared memory is in general too small to store both d
and l and the interval information for the current level of T (cf. Fig. 5). We therefore
use ShareMem.left and ShareMem.right to cache the non-trivial matrix elements.
The interval data is in the meantime stored in registers. Although “swapping” the data to
registers has considerable overhead it is still beneficial because it allows to access d and l
from shared instead of global memory during the computation of the qds transform.

12

0 50 100 150 200 250 300 350 400 450 500
6

6.5

7

7.5

Number of Splits of the Initial Interval

E
xe

cu
tio

n
T

im
e

(m
s)

Figure 7: Execution time as a function of the number of interval splits used for the initial
bisection step for a matrix with 512× 512 elements. Employing 448 initial splits provides
a speedup of 21%.

For all computations on levels l > 2 and for the eigenvector computation on levels l ≥ 2,
every representation tree node has a different shifted matrix as input. There is thus no
shared information which can be cached and every thread has to read its input directly
from global memory.

The qds transform includes a division (line 4 in Algo. 2 and Algo. 3) which can generate
a NaN in the i + 1 iteration if the denominator becomes very small in iteration i [46].
Although in the literature it has been reported that this occurs only in rare cases [46] we
observed the problem quiet frequently. Marques et al. [46] discuss different strategies to
circumvent NaNs and in our current implementation we employ an approach devised by
Demmel and Li [17]: First a naı̈ve but fast implementation is used which does not account
for the possibility of a division by zero and only if the final value of d+ or r+ is NaN (cf.
Algo. 2 and Algo. 3) then a safe but more expensive version is executed which tests in every
iteration if the denominator is less than some threshold tqds and in this case sets it to the
negative threshold value [46]. Note that we do not employ the try-and-fallback strategy for
l > 2. There, the costs of the if-statement in the loop body are hidden by the high latency
of reads from global memory.

5.1.3 Bisection

We employ bisection [33, p. 439] to classify eigenvalues as singletons or clusters and
to refine eigenvalue approximations. The algorithm takes as input an interval I ⊆ GT

and recursively subdivides I until every non-empty interval is smaller than a predefined
threshold. The resulting intervals are leaf nodes of a bisection tree. The Sturm count sT(µ)
at the interval bounds is used to determine the number of eigenvalues in the interval. See
for example the paper by Demmel et al. [16] for a more detailed discussion.

13

During the refinement of singletons, after every bisection step it is guaranteed that exactly
one child interval is non-empty. The number of intervals remains thus constant and refined
approximation can be computed by choosing the number of threads equal to the number of
singletons.

When bisection is employed for classification, from all intervals generated on level l of the
(unbalanced) bisection tree only non-empty ones are retained for level l+1. We use stream
compaction [39] to remove empty intervals. First, the prefix sum algorithm [9] is employed
to generate an index for every interval containing eigenvalues and during the compaction
step this index provides the address for the data in shared memory [45].

We employ two optimizations in our implementation. With a two-fold subdivision every
interval is guaranteed to have one non-empty child interval. Thus, only the set of second
child intervals has to be compacted, reducing costs by half. Additionally, the compaction
is only performed when necessary and on level l + 1 intervals with two non-empty child
intervals exist; in particular on deep tree levels intervals are often only refined and no new
ones are generated.

The convergence of an interval is currently determined using a combination of a relative
and an absolute interval size criterion:

float t0 = right - left;
float t1 = max(abs(left), abs(right)) * t_c;

is_converged = (t0 <= max(MIN_ABS_INTERVAL, t1)) 1 : 0;

where left and right are the left and right interval bounds, and MIN ABS INTERVAL
is a minimal absolute interval size which is necessary if eigenvalues are close to zero; this
occurs frequently for shifted matrices at representation tree levels l > 2.

The classic bisection algorithm creates an unbalanced binary tree starting with a single
interval as root node. Parallelism arises thus only slowly and the hardware is exploited
inefficiently at low tree levels. The problem can be alleviate by using multi-section but we
believe that a k-nary tree would generate a considerable overhead, possibly outweighing the
performance benefit obtained by additional parallelism. In our implementation we therefore
subdivide only the root node of the bisection tree k times. This leads to an speedup of about
20% when k is close to n as shown in Fig. 7. After the set of intervals generated by the
k-fold subdivision is compacted and empty intervals are removed, the regular bisection
algorithm with two-fold subdivision is employed. For nodes at levels l > 2 the input to
the bisection algorithm are multiple intervals containing usually only a small number of
eigenvalues. We therefore do not employ multi-section in this case.

For the MRRR algorithm two thresholds tc and tr, for classification and refinement, re-
spectively, have to be specified. In particular an appropriate choice of tc is critical both for
the accuracy and the performance of the MRRR algorithm. Choosing tc too small can lead
to non-orthogonal eigenvectors but choosing a large value for tc can significantly increase
the running time. We will discuss this issue in more detail in Sec. 6.

5.1.4 Distribution of the Computations across Multiprocessors

The representation tree of the MRRR algorithm has a single root node and it would there-
fore be natural to perform the computations on one multiprocessor. This would however
exploit only a fraction of the available compute power. To circumvent this inefficiency we
split the initial Gerschgorin interval GT heuristically into K subintervals Ik and process
each with one thread block, thereby distributing the work across multiprocessors. When
K = 2, GT is split symmetrically but with K = 8 the first and the last subinterval are
chosen to be larger. The Gerschgorin interval provides only upper and lower bounds on the

14

0 5 10 15 20 25 30
3

4

5

6

7

8

9

10

Number of Thread Blocks

E
xe

cu
tio

n
T

im
e

(m
s)

Figure 8: Execution time as function of thread blocks K for a matrix with 512 × 512
elements. On our data-parallel coprocessors with eight multiprocessors using 16 blocks
provides a more than three-fold speedup over a naı̈ve implementation with only one thread
block.

spectrum of T and the “fringes” of GT contain usually far less eigenvalues than its center,
making an asymmetric split beneficial.

Using multiple thread blocks (and thus multiprocessors) results in up to three-fold perfor-
mance improvements as shown in Fig. 8. Interestingly, the highest speedup was obtained
when K = 16, despite the fact that our test hardware had only eight multiprocessors. Note
that the splitting of the initial Gerschgorin interval also allows to easily distribute the work
across multiple coprocessors.

5.1.5 Memory Management

LAPACK’s CPU implementation of the MRRR algorithm, sstemr, has memory require-
ments of (n2 + O(n)). For our implementation we require (7n2 + 4n) (global) memory.
The large memory footprint is a direct consequence of the data-parallelism which is em-
ployed to speed up computations. For example, if all intervals on level 2 of the extended
interval tree are classified as singletons then n double factorizations are obtained in parallel
and for all of them L+ and U+ have to be stored for the eigenvector computation, requir-
ing 2n2 memory. Additional n memory is necessary to determine the twist index k with
argmink|γk|. The indices in the dstqds and dpqds transforms (Algo. 2 and Algo. 3) run
in opposite direction but for the computation of the twist index s+ and p+ are indexed in
lock-step so that at least one of the auxiliary vectors s+ or p+ has to be stored in memory.
In our implementation, we currently store s+ and determine k during the computation of
U+R+(U+)T . The remaining 4n2 memory are required to store the non-trivial elements
of the representation tree nodes as well as the precomputed quantity lld, and the eigenvec-
tors.

With CUDA it is in general crucial to coalesce global memory access. Interestingly, we

15

observed in our implementation that un-coalesced access was slightly faster than partially
coalesced access.

5.2 Arbitrary Size Matrices

The limited size of shared memory prevents that the implementation discussed in the last
section can be used for arbitrary size matrices. Minor modifications are however sufficient
to allow the computation of eigenvalues and eigenvectors for matrices with n > 512.

The interval information can still be stored in shared memory if we require that the Ik ⊂ Gk

contain not more than 512 eigenvalues. For this, we initially split GT into a fixed number of
intervals and then recursively subdivide all intervals with more than 512 eigenvalues until
the constraint is met.

For arbitrary size matrices, shared memory is too small to serve as user-managed cache
for the qds transform even for level l = 2. Although we could read the matrix elements
directly from global memory, this would leave shared memory unexploited and thus be
inefficient. In our current implementation we load the input matrix block-wise to shared
memory so that the data can still be read from fast on-chip memory during the computation
of the qds transform on level l = 2. Loading the data in blocks provides an almost three-
fold performance benefit over a naı̈ve implementation which does not use shared memory.

At this point it should be noted that the significant memory requirements of our implemen-
tation (cf. Sec. 5.1.5) impede currently its use for true arbitrary size matrices. This would
require a dynamic memory management where eigenvectors and eigenvalues are read to
the host after they have been computed and where the global memory arrays are reused.
We believe however that only minor modifications are necessary to incorporate such an
advanced memory management.

5.3 Discussion

In contrast to traditional GPGPU programming [49] CUDA allows to develop data-parallel
programs in a way very similar to CPU applications (cf. Sec. 3). Particularly useful for our
implementation proved the ability to use template classes and to employ them transparently
in both the host and device code. We developed for example an abstraction for CUDA’s
two-dimensional arrays which are otherwise often cumbersome to use because of a pitch
which has to be considered for every data access. Our implementation consists of a host
class which provides a convenient and safe interface to initialize and access the array on
the CPU, and a device class which can be passed directly to a kernel and automatically
takes the necessary pitch into account when the data is accessed. The same pattern of
tightly linked host and device classes was successfully used also for other purposes in
our implementation. Templates proved also to be useful when we extended our initial
implementation for small matrices to arbitrary size matrices. Since the two versions differ
only at minor points (cf. Sec. 5.2) we used a template argument for the kernel functions and
static branching to distinguish between the two code paths, minimizing code-duplication to
almost zero without performance penalty at runtime.

6 Experimental Evaluation

6.1 Experimental Setup

To asses the efficacy of our CUDA implementation of the MRRR algorithm, mrrr dp, we
compared it to CLAPACK’s sstemr routine. Our test system was a Intel Pentium D CPU
(3 GHz) with 1 GB RAM, and an NVIDIA GeForce 8800 GTX (driver version 169.07).

16

The operating system employed for the experiments was Fedora Core 6 and all programs
were compiled using gcc 4.1.2. We used CUDA version 1.1 and CLAPACK version 3.1.1.

To determine the numerical accuracy of the computed eigenvalues we used LAPACK’s
double-precision function dsterf, which implements the highly accurate QR / QL al-
gorithm [19], to obtain a ground truth and compared the results of both mrrr dp and
sstemr to those of dsterf. We also computed the residual of the eigen-decomposition
‖Tui − λiui‖ and the error of 〈ui,uj〉 over all eigen-pairs. Reported is always the `∞
norm.

6.2 Parameters

We employed random matrices (rand) with elements in [−1, 1] and the Wilkinson matrix
(wilkinson) [18] as input for our experiments. Random matrices are interesting because
they allow to estimate the robustness of an algorithm when different random inputs are used
for otherwise fixed parameter settings. In the figures in Appendix A we report the mean,
minimal and maximal errors over a set of random matrices for each parameter configura-
tion. Note that the range of the random matrix elements is fixed independent of the matrix
size. The eigenvalue clustering – and therefore the degree of difficulty for the MRRR al-
gorithm – increases therefore with increasing matrix size. It is known that the Wilkinson
matrix has significant eigenvalue clustering and we therefore employed it as stress test for
our implementation.

Two different sets of matrix sizes have been employed for the experiments, “arbitrary” size
matrices with n ∈ [32, 4096] and “small” matrices with n ∈ [32, 512]. The latter cate-
gory gave us more flexibility in choosing the parameter tc without affecting the correctness
of our implementation, whereas the first category is better suited to show the asymptotic
behaviour of mrrr dp and sstemr. Matrix sizes were both generated randomly and prede-
termined.

The performance numbers shown in Appendix A are without preprocessing times on the
CPU. These were usually negligible compared to the overall execution times.

6.3 Arbitrary Size Matrices

Fig. 9 to Fig. 16 show the experimental results for rand and wilkinson with n ∈
[32, 4096] and 16 and 8 multiprocessors, respectively. Fig. 9 and Fig. 10 show clearly the
superior performance of mrrr dp with an up to 16-fold speedup over sstemr . The width
of the quadratic is for mrrr dp thereby significantly larger than for sstemr so that even
higher speedups can be expected for larger matrices.

The accuracy of mrrr dp and sstemr is shown in Fig. 11 to Fig. 16. The results reveal that
sstemr is usually an order of magnitude more accurate than mrrr dp . It is interesting to
not that for the Wilkinson matrix the eigenvalues obtained with mrrr dp are more accurate
than those of sstemr .

6.4 Small Matrices

Performance graphs for rand with n ∈ [32, 512] and different values of tc are presented
in Fig. 17 and Fig. 18. The results show that the choice of tc significantly affects the
performance of mrrr dp and that a minimal execution time is obtained when classification
and refinement threshold are chosen equal. Our implementation then provides a 50-fold
speedup over the CPU. LAPACK’s sstemr routine outperforms mrrr dp only for very
small matrices with n = 32. The accuracy of mrrr dp and sstemr for rand and n ∈
[32, 512] is shown in Fig. 19 to Fig. 24. It can be observed that the choice of tc is here

17

largely irrelevant and mrrr dp yields the same accuracy independent of tc. sstemr is
however again about an order of magnitude more accurate.

It is interesting to note that for n ∈ [32, 512] the performance of mrrr dp scales linearly
in contrast to the quadratic complexity of the MRRR algorithm which clearly governs the
performance of sstemr. This suggests that the data-parallel coprocessor is not fully used
for small matrices. With increasing matrix size more and more parallelism is utilized which
compensates for one O(n) factor.

In Fig. 25 to Fig. 32 results for the Wilkinson matrix with n ∈ [32, 512] and different
values of tc are shown, largely resembling those for rand . The eigenvalues obtained with
mrrr dp are however again approximately as accurate as those of sstemr .

6.5 Discussion

Our experimental results demonstrate that the MRRR algorithm can be mapped efficiently
onto a data-parallel coprocessor and that significant speedups over optimized CPU im-
plementations are possible. Currently, mrrr dp provides however not the accuracy and
robustness which is required for many applications. sstegr, LAPACK’s original imple-
mentation of the MRRR algorithm, suffered from similar problems and we believe that it
will be possible to incorporate the improvements from sstegr to sstemr into our imple-
mentation. Note that the performance will not necessarily be affected negatively by these
changes; it has for example be shown that an improved representation tree can reduce the
computation time [64]. We currently do not believe that the limited accuracy of mrrr dp
results from CUDA hardware limitations but so far did not explore this question in detail.

The presented results show that the efficacy of mrrr dp depends on an appropriate choice
of tc. Choosing a small value close or equal to the refinement threshold allows higher
performance but incurs the risk of non-orthogonal eigenvectors, whereas a large value of tc
yields a more robust algorithm at the cost of reduced performance. For example choosing
tc and tr equal for n ∈ [32, 4096] would result in non-orthogonal eigenvectors for large
n due to the increasing eigenvalue clustering for rand. More work will be necessary to –
ideally automatically – determine values of tc which are appropriate for the input matrix at
hand.

In Sec. 5 we reported that the performance of mrrr dp can be improved significantly by us-
ing multiple thread blocks (and hence multiple multiprocessors) and by using multi-section
instead of bisection for the initial eigenvalue classification. Our experiments showed how-
ever that these optimizations have to be used with care. When multiple thread blocks are
employed the intervals Ik are currently determined irrespectively of the eigenvalue distri-
bution of the input matrix. One cluster can thus be distributed across multiple intervals.
The correct classification of eigenvalues is however only possible if clusters are treated as
being atomic. For the Wilkinson matrix this made it necessary to use only 8 instead of
16 multiprocessor for n ∈ [32, 4096]. When multi-section is performed too aggressively,
the resulting intervals might be smaller than tc, preventing that clustered eigenvalues are
isolated before eigenvectors are computed. In the experiments we thus did not use multi-
section for n ∈ [32, 4096].

7 Future Work

The implementation of the MRRR algorithm presented in this report can be improved in
a variety of ways. Of great importance for the practicality of an eigen-solver is the accu-
racy of the obtained results. In this respect our implementation is clearly inferior to LA-
PACK’s sstemr routine. We believe however that it will be relatively easy to incorporate
the improvements over the basic MRRR algorithm in sstemr into our own implementa-

18

tion. These changes might affect performance but we do not expect a dramatically different
runtime or that the conclusions presented in this paper have to be altered (cf. Sec. 5.3).

Similar to our implementation, LAPACK’s sstemr routine employs the try-and-fallback
strategy proposed by Demmel and Li [17] for the qds transform (cf. Section 5.1.2). In
sstemr the loop is however subdivided into blocks so that after every kth iteration a test
for a NaN is performed and accordingly only the previous block has to be re-computed
with the safe implementation if that was the case. So far we have not investigated if such a
blocking is also beneficial on a data-parallel coprocessor.

Efficient data and memory management is one of the most difficult aspects of CUDA and
there are a variety of ways to improve our current implementation. For very small ma-
trices it would be possible to use shared memory much more extensively, for example by
reading the input matrix only once into shared memory and retaining it there, and also to
employ more registers per thread which should reduce the spilling to global memory which
occurs at the moment quiet extensively. Independent of any other factor, in our experience
coalescing global memory access always improved performance. We believe that it will
therefore be worthwhile to investigate in more detail why partial coalescing deteriorates
performance for our MRRR implementation.

For an effective load balancing across multiprocessors an appropriate splitting of the Ger-
schgorin interval is crucial. Currently, we subdivide GT only heuristically and so far did
not investigate different strategies. We believe however that a thorough analysis will be
valuable; for example, to determine what an effective size for the “fringe” intervals is. The
splitting of the Gerschgorin interval is currently performed on the CPU. Although this does
not incur significant overhead, it will in some cases be beneficial to perform all compu-
tations on the device; for example when the input matrix is already in device memory or
when the host is used for other computations.

A major limitation of our implementation are the significant memory requirements. A mild
reduction could be obtained by not pre-computing lld although we believe that it will be
very challenging to achieve further improvements without reducing the parallelism and
possibly affecting performance. Note however that for current data-parallel coprocessors
with at most eight multiprocessors the memory requirements are bound by (7× (4096)2 +
4 × 4096) independent of the matrix size because at most 8 × 512 = 4096 eigen-pairs
can be “in flight” at the same time on the device. With the modifications we hinted at in
Sec. 5.1.5 it will thus in fact be possible to compute eigen-decompositions for true arbitrary
size matrices even with the current memory requirements.

The MRRR algorithm operates on a symmetric, tridiagonal matrix. Eigenvalue problems
arising in practice involve however often unreduced matrices. CPU implementations of
Householder transformations are available but we believe that CUDA can provide signifi-
cant performance benefits for these computations.

In many applications only a subset of k eigen-pairs is of interest. It would thus be worth-
while to extent the current implementation to allow an efficient subset computation. Care
is however required when k � n because the available parallelism might then not be suf-
ficient to provide a performance benefit over an implementation on a serial processor. We
observed a similar problem in the current implementation for deep levels of the represen-
tation tree where the number of nodes, and therefore the available parallelism, is usually
very small. We believe that it is in this case more efficient to read an almost complete
eigen-decomposition back to the host and to resolve the remaining clusters there.

We currently use bisection with its linear convergence to classify and refine eigenvalues.
LAPACK’s sstemr routine employs the dqds transform which has quadratic conver-
gence if it is sufficiently close to the true eigenvalue and bisection is only employed when
the dqds algorithm fails. Until now we favored the bisection algorithm over the dqds

19

transform for its simplicity and because it is guaranteed to succeed. A more thorough
comparison of the two algorithms would however be valuable.

Recently, Vömel [64] suggested an improved representation tree for the MRRR algorithm
which provides better results in particular for matrices with many clusters [65]. We believe
that it would be beneficial to employ the new tree also in our data-parallel implementation.

The recent comparison of LAPACK’s eigen-solvers by Demmel et al. [18, 19] and later
results by Vömel [64] showed that clustered matrices which are particularly difficult for
the MRRR algorithm are relatively easy for the Divide and Conquer algorithm, and that
matrices which are difficult for Divide and Conquer are tackled with less effort by MRRR.
It would therefore be interesting to investigate the possibility to implement the Divide and
Conquer algorithm on a data-parallel coprocessor. With efficient CUDA implementations
of the MRRR and the Divide and Conquer algorithm a viable alternative to LAPACK’s
eigen-solvers could be provided which needs only a fraction of the computation time.

Based on the MRRR algorithm, Großer and Lang [35, 34, 36, 37] developed an algorithm
for the bidiagonal singular value decomposition (SVD). The importance of the SVD in
many fields would justify to extend our current implementation to the algorithm proposed
by Großer and Lang.

8 Conclusion

We reported on an implementation of the Algorithm of Multiple Relatively Robust Rep-
resentations (MRRR) for the symmetric tridiagonal eigenvalue problem on a data-parallel
coprocessor using the CUDA programming environment. Our results demonstrate that
the algorithm maps well onto a data-parallel architecture and we achieved up to 50-fold
speedups over LAPACK’s sstemr routine. Although our accuracy lacks currently behind
those of LAPACK we believe that these problems can be overcome in the near future.

The source code of our implementation is available online.

Acknowledgement

An initial version of the bisection algorithm was implement during an internship at
NVIDIA in Summer 2007 and the idea to implement the MRRR algorithm with CUDA
was also born during this time. I want to thank my colleagues at NVIDIA in London for
fruitful discussions and for providing hardware.

I also wish to acknowledge the Natural Sciences and Engineering Research Council of
Canada (NSERC) for funding this basic research project.

20

http://www.dgp.toronto.edu/people/lessig/mrrr/

References
[1] ALPATOV, P., BAKER, G., EDWARDS, C., GUNNELS, J., MORROW, G., OVER-

FELT, J., VAN DE GEIJN, R., AND WU, Y.-J. J. PLAPACK: Parallel Linear Al-
gebra Package Design Overview. In Supercomputing ’97: Proceedings of the 1997
ACM/IEEE conference on Supercomputing (CDROM) (New York, NY, USA, 1997),
ACM, pp. 1–16.

[2] AMERICAN NATIONAL STANDARDS INSTITUTE. American National Standard Pro-
gramming Language C, ANSI X3.159-1989”. 1430 Broadway, New York, NY 10018,
USA, Dec. 1989.

[3] ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DON-
GARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY, A.,
AND SORENSEN, D. LAPACK Users’ Guide, third ed. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[4] BERRY, M., AND SAMEH, A. H. Multiprocessor Jacobi Algorithms for Dense Sym-
metric Eigenvalue and Singular Value Decompositions. In ICPP (1986), pp. 433–440.

[5] BIENTINESI, P., DHILLON, I. S., AND VAN DE GEIJN, R. A. A Parallel Eigensolver
for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations.
SIAM J. Sci. Comput. 27, 1 (2005), 43–66.

[6] BISCHOF, C., AND VAN LOAN, C. The WY Representation for Products of House-
holder Matrices. SIAM J. Sci. Stat. Comput. 8, 1 (1987), 2–13.

[7] BISCHOF, C. H. The Two-Sided Block Jacobi Method on Hypercube Architectures.
In Hypercube Multiprocessors, M. T. Heath, Ed. SIAM Publications, Philadelphia,
1987.

[8] BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEVEDO, E., DEMMEL, J.,
DHILLON, I., DONGARRA, J., HAMMARLING, S., HENRY, G., PETITET, A.,
STANLEY, K., WALKER, D., AND WHALEY, R. C. ScaLAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[9] BLELLOCH, G. E. Prefix Sums and Their Applications. In John H. Reif (Ed.), Syn-
thesis of Parallel Algorithms, Morgan Kaufmann. 1993.

[10] BRENT, R. P., AND LUK, F. T. The Solution of Singular Value and Symmetric
Eigenvalue Problems on Multiprocessor Arrays. 69–84.

[11] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON,
M., AND HANRAHAN, P. Brook for gpus: stream computing on graphics hardware.
ACM Trans. Graph. 23, 3 (2004), 777–786.

[12] BYRON, F. W., AND FULLER, R. W. Mathematics of Classical and Quantum
Physics. Dover Publications, 1964 (1992).

[13] CLEARY, A., AND DONGARRA, J. Implementation in ScaLAPACK of Divide-
and-Conquer Algorithms forBanded and Tridiagonal Linear Systems. Tech. rep.,
Knoxville, TN, USA, 1997.

[14] CUPPEN, J. J. M. A Divide and Conquer Method for the Symmetric Eigenproblem.
177–195.

[15] DEMMEL, J., AND VESELIC, K. Jacobi’s Method is More Accurate Than QR. Tech.
rep., Knoxville, TN, USA, 1989.

[16] DEMMEL, J. W., DHILLON, I., AND REN, H. On the Correctness of Some Bisection-
Like Parallel Eigenvalue Algorithms in Floating Point Arithmetic. Electron. Trans.
Numer. Anal. 3 (1995), 116–149.

[17] DEMMEL, J. W., AND LI, X. Faster Numerical Algorithms Via Exception Handling.
IEEE Trans. Comput. 43, 8 (1994), 983–992.

21

[18] DEMMEL, J. W., MARQUES, O. A., PARLETT, B. N., AND VÖMEL, C. LAPACK
Working Note 182: A Testing Infrastructure for LAPACK’s Symmetric Eigensolvers.
Tech. rep., EECS Department, University of California, Berkeley, Apr 2007.

[19] DEMMEL, J. W., MARQUES, O. A., PARLETT, B. N., AND VÖMEL, C. LAPACK
Working Note 183: Performance and Accuracy of LAPACK’s Symmetric Tridiagonal
Eigensolvers. Tech. rep., EECS Department, University of California, Berkeley, Apr
2007.

[20] DHILLON, I. Current Inverse Iteration Software Can Fail. BIT Numerical Mathemat-
ics 38, 4 (1998), 685–704.

[21] DHILLON, I. S. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenval-
ue/Eigenvector Problem. PhD thesis, EECS Department, University of California,
Berkeley, 1997.

[22] DHILLON, I. S., AND PARLETT, B. N. Orthogonal Eigenvectors and Relative Gaps.
SIAM J. Matrix Anal. Appl. 25, 3 (2003), 858–899.

[23] DHILLON, I. S., AND PARLETT, B. N. Multiple Representations to Compute Or-
thogonal Eigenvectors of Symmetric Tridiagonal Matrices. Linear Algebra and its
Applications 387, 1 (Aug. 2004), 1–28.

[24] DHILLON, I. S., PARLETT, B. N., AND VÖMEL, C. The design and implementation
of the mrrr algorithm. ACM Trans. Math. Softw. 32, 4 (2006), 533–560.

[25] DONGARRA, J. J., CROZ, J. D., HAMMARLING, S., AND DUFF, I. Algorithm 679:
A set of level 3 Basic Linear Algebra Subprograms: Model implementation and test
programs. ACM Transactions on Mathematical Software 16, 1 (Mar. 1990), 18–28.

[26] ELDÈN, L. A Parallel QR Decomposition Algorithm. Tech. Rep. LiTh Mat R 1988-
02, Mathematics, Linkoping University, Sweden, 1988.

[27] ELWOOD, D., FANN, G., AND LITTLEFIELD, D. PeIGS User’s Manual. Tech. rep.,
Pacific Northwest National Laboratory, 1993.

[28] EMAD, N. Data Parallel Lanczos and Pad’e-Rayleigh-Ritz Methods on the CM5.
Tech. rep., Laboratoire PRiSM, Université Versaille St. Quentin, 1999.

[29] FERNANDO, K. V. Accurately Counting Singular Values of Bidiagonal Matrices and
Eigenvalues of Skew-Symmetric Tridiagonal Matrices. SIAM J. Matrix Anal. Appl.
20, 2 (1999), 373–399.

[30] FRANCIS, J. G. F. The QR transformation: A unitary analogue to the LR transfor-
mation, parts I and II. 265–272, 332–345.

[31] GIVENS, W. J. Numerical Computation of the Characteristic Values of a Real Sym-
metric Matrix. Tech. rep., Oak Ridge National Laboratory, 1954.

[32] GOLUB, G. H., AND LOAN, C. F. V. Matrix Computations, 2nd ed. Johns Hopkins
University Press, Baltimore, 1983.

[33] GOLUB, G. H., AND LOAN, C. F. V. Matrix Computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[34] GROSSER, B. Ein paralleler und hochgenauer O(n2) Algorithmus für die bidiag-
onaler Singulärwertzerlegung. PhD thesis, Bergische Universität Wuppertal, Fach-
bereich Mathematik, Wuppertal, Germany, 2001. In German.

[35] GROSSER, B., AND LANG, B. Efficient Parallel Reduction to Bidiagonal Form.
Parallel Comput. 25, 8 (1999), 969–986.

[36] GROSSER, B., AND LANG, B. An O(n2) Algorithm for the Bidiagonal SVD. Linear
Algebra and its Applications 358, 1–3 (Jan. 2003), 45–70.

[37] GROSSER, B., AND LANG, B. On Symmetric Eigenproblems Induced by the Bidi-
agonal SVD. SIAM J. Matrix Anal. Appl. 26, 3 (2005), 599–620.

22

[38] GU, M., AND EISENSTAT, S. C. A Divide-and-Conquer Algorithm for the Symmet-
ric TridiagonalEigenproblem. SIAM J. Matrix Anal. Appl. 16, 1 (1995), 172–191.

[39] HARRIS, M., SENGUPTA, S., AND OWENS, J. D. Parallel Prefix Sum (Scan) with
CUDA. In GPU Gems 3, H. Nguyen, Ed. Addison Wesley, Aug. 2007.

[40] JACOBI, C. G. J. Über ein leichtes verfahren die in der theorie der säculärstörungen
vorkommenden gleichungen numerisch aufzulösen. 51–94.

[41] JUFFA, N. CUDA CUBLAS Library, first ed. NVIDIA Corporation, 2701 San Toman
Expressway, Santa Clara, CA 95050, USA, 2007.

[42] KAUFMAN, L. A parallel QR algorithm for the symmetric tridiagonal eigenvalue
problem. J. Parallel Distrib. Comput. 23, 3 (1994), 429–434.

[43] KUBLANOVSKAYA, V. N. On Some Algorithms for the Solution of the Complete
Eigenvalue Problem. 637–657.

[44] LAPACK. LAPACK Working Note Directory. http://www.netlib.org/
lapack/lawns/downloads/.

[45] LESSIG, C. Eigenvalue Computation with CUDA. Tech. rep., NVIDIA Corporation,
August 2007.

[46] MARQUES, O. A., RIEDY, E. J., AND VÖMEL, C. LAPACK Working Note 172:
Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers. Tech.
Rep. UCB/CSD-05-1414, EECS Department, University of California, Berkeley, Sep
2005.

[47] MCCOOL, M. D., QIN, Z., AND POPA, T. S. Shader metaprogramming. In HWWS
’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (Aire-la-Ville, Switzerland, Switzerland, 2002), Eurographics Association,
pp. 57–68.

[48] NVIDIA CORPORATION. CUDA Programming Guide, first ed. NVIDIA Corpora-
tion, 2701 San Toman Expressway, Santa Clara, CA 95050, USA, 2007.

[49] OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRGER, J.,
LEFOHN, A. E., AND PURCELL, T. J. A Survey of General-Purpose Computation
on Graphics Hardware. In Eurographics 2005, State of the Art Reports (Aug. 2005),
pp. 21–51.

[50] PARLETT, B. N. The new qd algorithms. 1995, pp. 459–491.
[51] PARLETT, B. N. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1998.
[52] PARLETT, B. N., AND DHILLON, I. S. Fernando’s solution to Wilkinson’s prob-

lem: An application of double factorization. Linear Algebra and its Applications 267
(1997), 247–279.

[53] PARLETT, B. N., AND DHILLON, I. S. Relatively Robust Representations of Sym-
metric Tridiagonals. Linear Algebra and its Applications 309, 1–3 (Apr. 2000), 121–
151.

[54] PARLETT, B. N., AND VÖMEL, C. LAPACK Working Note 163: How the MRRR
Algorithm Can Fail on Tight Eigenvalue Clusters. Tech. Rep. UCB/CSD-04-1367,
EECS Department, University of California, Berkeley, 2004.

[55] PEERCY, M., SEGAL, M., AND GERSTMANN, D. A performance-oriented data par-
allel virtual machine for gpus. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches
(New York, NY, USA, 2006), ACM, p. 184.

[56] PETERS, G., AND WILKINSON, J. H. The Calculation of Specified Eigenvectors by
Inverse Iteration. In Handbook for Automatic Computation Vol. 2: Linear Algebra,
J. H. Wilkinson and C. Reinsch, Eds. New York, NY, USA, 1971, pp. 418–439.

23

http://www.netlib.org/lapack/lawns/downloads/
http://www.netlib.org/lapack/lawns/downloads/

[57] PETITION, S. G. Parallel QR Algorithm for Iterative Subspace Methods on the Con-
nection Machine (CM2). In Proceedings of the Fourth SIAM Conference on Parallel
Processing for Scientific Computing (Philadelphia, PA, USA, 1990), Society for In-
dustrial and Applied Mathematics, pp. 42–47.

[58] PETITON, S. G. Parallel subspace method for non-Hermitian eigenproblems on the
Connection Machine (CM2). In Selected papers from the symposia on CWI-IMACS
symposia on parallel scientific computing (Amsterdam, The Netherlands, The Nether-
lands, 1992), Elsevier North-Holland, Inc., pp. 19–35.

[59] RALHA, R. M. S. Parallel QR algorithm for the complete eigensystem of symmet-
ric matrices. In PDP ’95: Proceedings of the 3rd Euromicro Workshop on Parallel
and Distributed Processing (Washington, DC, USA, 1995), IEEE Computer Society,
p. 480.

[60] RUTTER, J. D. A Serial Implementation of Cuppen’s Divide and Conquer Algo-
rithm for the Symmetric Eigenvalue Problem. Tech. Rep. UCB/CSD-94-799, EECS
Department, University of California, Berkeley, 1994.

[61] STROUSTRUP, B. The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[62] TUCKER, L. W., AND ROBERTSON, G. G. Architecture and applications of the
connection machine. Computer 21, 8 (1988), 26–38.

[63] VAN DE GEIJN, R. A. Storage Schemes for Parallel Eigenvalue Algorithms. Tech.
rep., Austin, TX, USA, 1988.

[64] VÖMEL, C. LAPACK Working Note 194: A Refined Representation Tree for MRRR.
Tech. rep., EECS Department, University of California, Berkeley, Nov 2007.

[65] VÖMEL, C. LAPACK Working Note 195: ScaLAPACK’s MRRR Algorithm. Tech.
rep., EECS Department, University of California, Berkeley, Nov 2007.

[66] WILLEMS, P. R., LANG, B., AND VÖMEL, C. LAPACK Working Note 166: Com-
puting the Bidiagonal SVD Using Multiple relatively robust representations. Tech.
Rep. UCB/CSD-05-1376, EECS Department, University of California, Berkeley, May
2005.

24

A Evaluation Results

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Execution Time

Matrix Size

T
im

e
(m

s)

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 9: Mean / min / max execution time for 32 random matrices for each matrix size n
and n ∈ [32, 4096] with tc = 0.01.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

4 Execution Time

Matrix Size

T
im

e
(m

s)

sstemr
mrrr_dp

Figure 10: Execution time for the Wilkinson matrix and n ∈ [32, 4096] with tc = 0.01.

25

0 500 1000 1500 2000 2500 3000 3500 4000

10
−6

10
−5

10
−4

Eigenvalue Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 11: Mean / min / max `∞ error of eigenvalues for 32 random matrices for each
matrix size n and n ∈ [32, 4096] with tc = 0.01.

0 500 1000 1500 2000 2500 3000 3500 4000
10

−6

10
−5

10
−4

10
−3

Eigenvalue Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 12: `∞ norm of the eigenvalues for the Wilkinson matrix and n ∈ [32, 4096] with
tc = 0.01.

26

0 500 1000 1500 2000 2500 3000 3500 4000
10

−6

10
−5

10
−4

10
−3

10
−2

Decomposition Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 13: Mean / min / max `∞ error of the eigen-decomposition for 32 random matrices
for each matrix size n and n ∈ [32, 4096] with tc = 0.01.

0 500 1000 1500 2000 2500 3000 3500 4000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Decomposition Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 14: `∞ norm of the eigen-decomposition for the Wilkinson matrix and n ∈
[32, 4096] with tc = 0.01.

27

0 500 1000 1500 2000 2500 3000 3500 4000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Orthogonality Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 15: Mean / min / max `∞ error in the orthogonality of the eigenvectors for 32
random matrices for each matrix size n and n ∈ [32, 4096] with tc = 0.01.

0 500 1000 1500 2000 2500 3000 3500 4000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Orthogonality Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 16: `∞ norm in the orthogonality of eigenvectors for the Wilkinson matrix and
n ∈ [32, 4096] with tc = 0.01.

28

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

180

200
Execution Time

Matrix Size

T
im

e
(m

s)

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 17: Mean / min / max execution time for 32 random matrices for each matrix size n
and n ∈ [32, 512] with tc = 0.0001.

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

180

200
Execution Time

Matrix Size

T
im

e
(m

s)

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 18: Mean / min / max execution time for 32 random matrices for each matrix size n
and n ∈ [32, 512] with tc = tr = 0.000001.

29

0 100 200 300 400 500
10

−6

10
−5

10
−4

Eigenvalue Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 19: Mean / min / max `∞ error of the eigenvalues for 32 random matrices for each
matrix size n and n ∈ [32, 512] with tc = 0.0001.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5 Eigenvalue Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 20: Mean / min / max `∞ error of the eigenvalues for 32 random matrices for each
matrix size n and n ∈ [32, 512] with tc = tr = 0.000001.

30

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Decomposition Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 21: Mean / min / max `∞ error of the eigen-decomposition for 32 random matrices
for each matrix size n and n ∈ [32, 512] with tc = 0.0001.

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Decomposition Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 22: Mean / min / max `∞ error of the eigen-decomposition for 32 random matrices
for each matrix size n and n ∈ [32, 512] with tc = tr = 0.000001.

31

0 100 200 300 400 500

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Orthogonality Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 23: Mean / min / max `∞ error in the orthogonality of the eigenvectors for 32
random matrices for each matrix size n and n ∈ [32, 512] with tc = 0.0001.

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Orthogonality Error

Matrix Size

E
rr

or

sstemr mean
sstemr min
sstemr max
mrrr_dp mean
mrrr_dp min
mrrr_dp max

Figure 24: Mean / min / max `∞ error in the orthogonality of the eigenvectors for 32
random matrices for each matrix size n and n ∈ [32, 512] with tc = tr = 0.000001.

32

0 100 200 300 400 500
0

50

100

150

200

250

300
Execution Time

Matrix Size

T
im

e
(m

s)

sstemr
mrrr_dp

Figure 25: Execution time for the Wilkinson matrix for n ∈ [32, 512] with tc = 0.01.

0 100 200 300 400 500
0

50

100

150

200

250

300
Execution Time

Matrix Size

T
im

e
(m

s)

sstemr
mrrr_dp

Figure 26: Execution time for the Wilkinson matrix and n ∈ [32, 512] with tc = 0.000001.

33

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Eigenvalue Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 27: `∞ norm of the eigenvalues for the Wilkinson matrix and n ∈ [32, 512] with
tc = 0.01.

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Eigenvalue Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 28: `∞ norm of the eigenvalues for the Wilkinson matrix and n ∈ [32, 512] with
tc = 0.000001.

34

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Decomposition Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 29: `∞ norm of the eigen-decomposition for the Wilkinson matrix and n ∈ [32, 512]
with tc = 0.01.

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

Decomposition Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 30: `∞ norm of the eigen-decomposition for the Wilkinson matrix and n ∈ [32, 512]
with tc = 0.000001.

35

0 100 200 300 400 500
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Orthogonality Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 31: `∞ norm in the orthogonality of the eigenvectors for the Wilkinson matrix and
n ∈ [32, 512] with tc = 0.01.

0 100 200 300 400 500
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Orthogonality Error

Matrix Size

E
rr

or

sstemr
mrrr_dp

Figure 32: `∞ norm in the orthogonality of the eigenvectors for the Wilkinson matrix and
n ∈ [32, 512] with tc = 0.000001.

36

B Linear Algebra Primer

B.1 Notation

In this report we employ Householder’s notation. Scalars are denoted by lowercase roman
or greek letters such as a, b, and c and α, β, and γ. Lowercase bold letters such as a =
{ai}n

i=1, b = {bi}n
i=1, and c = {ci}n

i=1 are used to represent vectors. If not mentioned
otherwise, all vectors are assumed to be column vectors. Matrices are denoted by uppercase
bold letters such as A, B, and T. Matrix elements are scalars indexed with two indices
i and j, where i denotes the row index and j the column index. The matrix B ∈ Fn×m

defined over the field F can thus be written as

B =

b11 b1m

... ¨
...

... ¨
...

bn1 bnm

 .

In this report we will be only concerned with real-valued matrices, that is F = R. A matrix
A is symmetric if aij = aji,∀(i, j). We will use symmetric letters such as A and T to
denote symmetric matrices.

The main diagonal of a matrix B ∈ Rn×n is formed by the elements bii. In most cases
we will represent the diagonal by a vector b = {bi} ≡ {bii} of length n. The elements
bij with i + k = j, k ∈ {1, . . . , n− 1}, form the k-th upper diagonal, and the elements
bij with i = j + k the k-th lower diagonal of B. Analogous to the main diagonal, we can
represent k-th upper and lower diagonals by vectors of length n − k. B can therefore be
written as

A =

aii . . . cij

bij aii cij

bij
.

. cij

. cij

bij aii

...
bij aii

,

where the elements aii form the main diagonal, the elements bij the first lower diagonal,
and the element cij the k-th upper diagonal of B. A matrix which has non-zero elements
only on the main diagonal is called a diagonal matrix. An important diagonal matrix is the
identity matrix I with aij = δij , where δij is the Kronecker delta.

The transpose of a matrix B will be denoted with BT . We will sometimes also transpose
vectors. In this case we treat a vector of length n as a matrix of size n× 1.

A symmetric tridiagonal matrix, which is of particular importance for this report, has non-
zero elements only on the main diagonal and the upper and lower first diagonals. We will
usually use T to denote such a matrix.

B.2 Eigenanalysis

Definition 2 (Eigenanalysis). Let B ∈ Rn×n. A scalar λ is an eigenvalue of B if
Bu = λu. (6)

where u 6= 0 is a right eigenvector. A vector v 6= 0 satisfying

vT B = λvT . (7)

37

is a left eigenvector of B. All left and right eigenvectors are orthogonal

〈ui,uj〉 = δi,j and 〈vi,vj〉 = δi,j , (8)

where 〈·, ·〉 denotes the inner product.

Unless stated otherwise, in the following “eigenvector” refers to a right eigenvector. The
set of all eigenvalues of a matrix is denoted as spectrum.

Definition 3 (Spectrum). The spectrum λ(M) of a matrix M ∈ Rn×n is the set of all of
its eigenvalues

λ (M) = {λi} .

If M is not degenerate then the cardinality of λ (M) is n, that is |λ (M) | = n.

Corollary 1. The spectrum of a non-degenerate diagonal matrix D ∈ Rn×n is the set of
diagonal elements

λ (D) = {di}n
i=1 .

Alternatively to Eq. 6 and Eq. 7, eigenvalues can also be understood as the roots of the
characteristic polynomial of a matrix.

Remark 1 (Characteristic Root). Let B ∈ Rn×n and λ (M) = {λi}n
i=1 be its spectrum.

The roots of the characteristic polynomial

det (M− λiI) = 0 (9)

of M are the eigenvalues λi. Eigenvalues can thus in general be real or complex. For a
symmetric matrix the eigenvalues are guaranteed to be real [32, p. 393].

The Gerschgorin interval GA provides lower and upper bounds for the spectrum λ(A) of a
matrix.

Theorem 1 (Gerschgorin Circle Theorem). Let A ∈ Rn×n be a symmetric matrix and
Q ∈ Rn×n be orthogonal. If QT AQ = D + F, where D is diagonal and F has zero
diagonal entries, then

λ(A) ⊆
n⋃

i=1

[di − ri, di + ri]

with ri =
∑n

j=1 |fij | for i = 1, . . . , n, where di are the non-zero entries of D and fij the
off-diagonal elements of F.

Proof. See [32, pp. 395].

Note that one can always choose Q to be the (trivially orthogonal) identity matrix to satisfy
QT AQ = D + F in Theorem 1. In practice one wants to employ a matrix Q such that
QT AQ is diagonally dominant. This improves the bounds provided by the Gerschgorin
interval GA ≡

⋃n
i=1 [di − ri, di + ri] which can otherwise be rather pessimistic.

Corollary 2 (Gerschgorin Circle Theorem for Symmetric Tridiagonal Matrices). Let T ∈
Rn×n be symmetric and tridiagonal, and let a and b the vectors containing the diagonal
and off-diagonal elements of T, respectively. The spectrum of T is then bound by

λ(T) ⊆
n⋃

i=1

[ai − ri, ai + ri]

with ri = bi + bi−1, for i = 2, . . . , (n− 1), r1 = b1, and rn = bn−1.

38

It is often convenient to arrange the eigenvalues of B ∈ Rn×n in a diagonal matrix D, and
to define U to be the matrix whose columns are the eigenvectors. Eq. 6 can then be written
as

BU = UD, (10)
and, analogously, we can restate Eq. 7 as

VT B = DVT . (11)

It follows from the orthogonality of the left and right eigenvectors that UUT = UT U = I
and VVT = VT V = I.
Theorem 2 (Eigenvalue Shift). Let M ∈ Rn×n be a matrix with eigenvalues λi, and let
µ ∈ R be a shift index. The eigenvalues λ̄i of the shifted matrix M̄µ = M − µI are
λ̄i = λi − µ, and the eigenvectors of M̄ are those of M.

Proof. Consider the characteristic polynomial of M

det
((

M̄µ + µI
)
− λiI

)
= 0.

Substituting M by M = M̄µ + µI and rearranging the terms shows the desired result

det
(
M̄µ − (λiI− µI)

)
= 0,

det
(
M̄µ − (λi − µ) I

)
= 0.

For the second claim, simplifying

(M− µI)U = (D− µI)U.

which is Eq. 10 for M̄µ with M̄µ = M−µI and D̄ = D−µI, shows that the eigenvectors
of M and M̄ are identical.

In practice, it is often numerically more stable and more efficient to determine an eigenvalue
of a shifted matrix, and then to employ Theorem 2 to relate the computed eigenvalues to
those of the original matrix.
Definition 4 (Sturm Count). Let A ∈ Rn×n be symmetric and let µ ∈ R be a shift index.
The Sturm count sµ(A) is the number of eigenvalues of A smaller then µ.

Sturm counts are important for the bisection algorithm which determines the eigenvalues
of a real symmetric matrix A ∈ Rn×n [31]. Starting with the Gerschgorin interval GA

as root node, bisection generates an unbalance binary tree by splitting intervals on level
l − 1 and retaining for level l only those containing eigenvalues. The Sturm counts at the
interval bounds are employed to determine if an interval is empty. The algorithm converges
when the size of all intervals falls below a thresholds t, where t governs the accuracy of the
obtained eigenvalues. See for example the book by Golub and van Loan [32, pp. 437], and
the papers by Demmel et al. [16] and Marques et al. [46] for a more detailed introduction.

Most eigenanalysis algorithms do not operate on general matrices but first reduce the input
matrix to a canonical form. Orthogonal transformations are employed for this reduction.
Theorem 3. Let Qi ∈ Rn×n with i = 1, . . . ,m be a sequence of orthogonal matrices, and
let A ∈ Rn×n be symmetric. Then, every matrix Ai with

A0 = A and Ai+1 = QT
i AQi

has the same eigenvalues as A, and computing the orthogonal transformation QT
i AQi is

numerically stable.

Proof. The proof follows directly from Theorem 7.1.3 in [32].

39

In practice a common canonical representation is a symmetric tridiagonal matrix, and
one then seeks the solution to the symmetric tridiagonal eigenvalue problem. House-
holder transformations are employed to reduce an arbitrary symmetric matrix to tridiagonal
form [33, pp. 206].
Theorem 4 (LDLT Factorization). Let T ∈ Rn×n be symmetric, tridiagonal, and positive
definite, and let a and b be the vectors containing the diagonal and off-diagonal elements
of T, respectively. If aibi 6= 0 for i = 1, . . . , n then there exists a LDLT factorization such
that

T = LDLT ,

where D is diagonal and L is lower bidiagonal with all diagonal elements being 1.

Proof. Consider the Cholesky factorization T = L̄L̄T of T. The result then follows im-
mediately from L̄ = LD1/2.

The Cholesky factorization of T, and therefore also its LDLT factorization, exists only if
M is positive definite. In practice we can shift T to ensure its positive definiteness.

40

	1 Introduction
	2 Related Work
	3 Data Parallel Coprocessors
	3.1 CUDA Hardware
	3.2 CUDA Software

	4 The MRRR Algorithm
	4.1 Eigenvalue Classification
	4.2 Cluster Shift
	4.3 Eigenvector Computation

	5 Implementation
	5.1 Small Matrices
	5.1.1 Overview
	5.1.2 qds Transform
	5.1.3 Bisection
	5.1.4 Distribution of the Computations across Multiprocessors
	5.1.5 Memory Management

	5.2 Arbitrary Size Matrices
	5.3 Discussion

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Parameters
	6.3 Arbitrary Size Matrices
	6.4 Small Matrices
	6.5 Discussion

	7 Future Work
	8 Conclusion
	A Evaluation Results
	B Linear Algebra Primer
	B.1 Notation
	B.2 Eigenanalysis

