On Parallelizing the MRRR Algorithm for Data-Parallel Coprocessors.

Christian Lessig, Dynamic Graphics Project, University of Toronto. Paolo Bientinesi, AICES, RWTH Aachen.

Symmetric Eigenproblem

• Matrix form:

$\mathbf{T}\mathbf{U}=\mathbf{U}\boldsymbol{\Lambda}$

Symmetric Eigenproblem

• Matrix form:

$\mathbf{T}\mathbf{U}=\mathbf{U}\boldsymbol{\Lambda}$

• Vector form:

 $\mathbf{T}\mathbf{u}_i = \lambda_i \mathbf{u}_i$

Numerical Symmetric Eigenproblem

• Small residual:

$$\|\mathbf{T}\tilde{\mathbf{U}} - \tilde{\mathbf{U}}\tilde{\boldsymbol{\Lambda}}\| = \mathcal{O}\left(n\,\epsilon\,\|\mathbf{T}\|\right)$$

• Orthogonality of the eigenvectors:

$$\|\tilde{\mathbf{U}}^T\tilde{\mathbf{U}} - \mathbf{I}\| = \mathcal{O}\left(n\,\epsilon\right)$$

Dynamic Graphics Project

Data-Parallel Coprocessors

Data-Parallel Coprocessors

Dynamic Graphics Project

• Well separated:

$$\lambda_i : \min_{\lambda_j} (\operatorname{reldist}(\lambda_i, \lambda_j)) > \delta_c$$

• Well separated:

$$\lambda_i : \min_{\lambda_j} (\operatorname{reldist}(\lambda_i, \lambda_j)) > \delta_c$$

• Relative distance:

reldist
$$(\lambda_i, \lambda_j) = \frac{|\lambda_i - \lambda_j|}{|\lambda_i|}$$

• Matrix shifts:

$\hat{\mathbf{T}} = \mathbf{T} - \sigma \mathbf{I}$

• Matrix shifts:

$$\hat{\mathbf{T}} = \mathbf{T} - \sigma \mathbf{I}$$

• Matrix shifts using Relatively Robust Representations (RRR's):

$\hat{\mathbf{L}}\hat{\mathbf{D}}\hat{\mathbf{L}}^{T} = \mathbf{L}\mathbf{D}\mathbf{L}^{T} - \sigma\mathbf{I}$

Dynamic Graphics Project

Dynamic Graphics Project

For each node (*l*,*m*) of the representation tree:

- 1. Classify eigenvalues as singletons or clustered.
- 2. Compute eigenpairs for singletons.
- 3. Compute a shifted matrix and create a new tree node (*l*+1,*m*) for every cluster.

For each node (*l*,*m*) of the representation tree:

- 1. Classify eigenvalues as singletons or clustered.
- 2. Compute eigenpairs for singletons.
- 3. Compute a shifted matrix and create a new tree node (*l*+1,*m*) for every cluster.

For each node (*l*,*m*) of the representation tree:

- 1. *For each* eigenvalue, classify it as singletons or part of a cluster.
- 2. *For each* singleton, compute the eigenpair.
- 3. *For each* cluster, compute a shifted matrix and create a representation tree node (*l*+1,*m*).

- **Task parallelism:** Representation tree allows to process nodes on the same level or in different subtrees independently.
- **Data parallelism:** Computations per cluster are data-parallel.

Process root node

29

lessig@dgp.toronto.edu

Dynamic Graphics Project

30

lessig@dgp.toronto.edu

Dynamic Graphics Project

31

lessig@dgp.toronto.edu

Dynamic Graphics Project

lessig@dgp.toronto.edu

Dynamic Graphics Project

33

lessig@dgp.toronto.edu

Dynamic Graphics Project

Conclusion

- MRRR algorithm can be mapped efficiently onto data parallel coprocessors.
 - Representation tree provides task parallelism.
 - Computations for each tree node provide data parallelism.

Conclusion

- MRRR algorithm can be mapped efficiently onto data parallel coprocessors.
 - Representation tree provides task parallelism.
 - Computations for each tree node provide data parallelism.
- Significant speedups over single-threaded CPU implementation possible.

Open Problems and Future Work

- Resolve remaining accuracy issues.
- Load balancing between processing units.
 - For nodes on the first representation tree level.
 - Load balancing at every level of the representation tree?
- Load balancing between host and device.
- Port to OpenCL and Larrabee.

More details: www.dgp.toronto.edu/people/lessig/mrrr/

lessig@dgp.toronto.edu

Dynamic Graphics Project