next up previous notation contents
Next: 3.3.7 Linear Functions Up: 3.3 Linear Interval Arithmetic Previous: 3.3.5 Charts

3.3.6 Monotonic Sections

In the previous section, we designed tex2html_wrap_inline31397 for a given function g, tex2html_wrap_inline33809 . We used tex2html_wrap_inline34489 to limit our attention to monotonic sections of g. Monotonic sections will also help us design tex2html_wrap_inline31401 .

Consider a monotonically increasing function g, tex2html_wrap_inline34165 . Let both

math18079

and

math18084

hold, for tex2html_wrap_inline32851 . Since g is monotonically increasing,

math18089

Combining this with the previous bounds results in the following:

math18097

for tex2html_wrap_inline35895 . This may be simplified to:

math18105

for tex2html_wrap_inline35897 . It is now established that tex2html_wrap_inline35899 bounds tex2html_wrap_inline35901 .

Consider a monotonically decreasing function g, tex2html_wrap_inline34165 . Let both

math18117

and

math18122

hold, for tex2html_wrap_inline32851 . Since g is monotonically decreasing,

math18127

Reasoning as before forces us to conclude that tex2html_wrap_inline35899 bounds tex2html_wrap_inline35901 .

So, for a monotonic g, we may evaluate tex2html_wrap_inline35733 by proceeding as follows:

math18141

Let tex2html_wrap_inline35919 and tex2html_wrap_inline35921 denote two functions, from tex2html_wrap_inline32451 to tex2html_wrap_inline32451 , defined as follows:

eqnarray18152

We now focus on determining tex2html_wrap_inline35927 and tex2html_wrap_inline35929 , for tex2html_wrap_inline35931 and tex2html_wrap_inline35933 . As will be seen, this will give us a method for computing tex2html_wrap_inline35935 rather than tex2html_wrap_inline31401 ; appropriate demotions may be used to ensure the result is in tex2html_wrap_inline32653 , if necessary.


next up previous notation contents
Next: 3.3.7 Linear Functions Up: 3.3 Linear Interval Arithmetic Previous: 3.3.5 Charts
Jeff TupperMarch 1996