next up previous notation contents
Next: 3.2.3 Charts Up: 3.2 Constant Interval Arithmetic Previous: 3.2.1 Constant Functions

3.2.2 Interpolating Polynomials

Given the set tex2html_wrap_inline34169 , consider the two functions tex2html_wrap_inline34171 and tex2html_wrap_inline34173 , defined as follows:

math11323

tex2html_wrap_inline34175 is a d-degree polynomial with

math11340

The above defines tex2html_wrap_inline34179 , the   Kronecker delta. The set G   represents the function tex2html_wrap_inline34165 using two distinct elements of g:  

math11357

we here envision the unary function g as a set, as defined in section gif. From this, we may deduce that G is also a function, and that tex2html_wrap_inline34191 . It follows that the functions tex2html_wrap_inline34193 and tex2html_wrap_inline34195 are well defined, for our choice of G. Since tex2html_wrap_inline34199 , the function tex2html_wrap_inline34201 ,

math11373

interpolates G:

math11383

tex2html_wrap_inline31337 is the linear Lagrange interpolating polynomial   of G.

tex2html_wrap_inline31337 may be expressed in standard polynomial form:

math11388

tex2html_wrap_inline34211 is the coefficient of tex2html_wrap_inline34213 in tex2html_wrap_inline34215 , a d-degree polynomial. The leading coefficient,   tex2html_wrap_inline34219 , is of special interest, and may be denoted simply by tex2html_wrap_inline34221 :

math11421

The set G, and the associated polynomial tex2html_wrap_inline31337 , are:       where:

math11435

Consider tex2html_wrap_inline34233 , a richer representation of g,

math11445

The representation tex2html_wrap_inline34233 has one of the preceding properties if all two-member subsets of tex2html_wrap_inline34233 have the same property:  

math11451

All three properties are considered to be satisfied by sparse representations of g since

math11456

where tex2html_wrap_inline34243 . For G = g, the usual definitions of constancy and monotonicity are equivalent to those given here. Let   tex2html_wrap_inline34247 state that tex2html_wrap_inline34233 has one of the above properties:

math11462

For all representations tex2html_wrap_inline34251 ,

math11466

The Lagrange interpolating polynomial tex2html_wrap_inline31337 for tex2html_wrap_inline34255 is defined as follows:

math11470

Using the constant and linear interpolating polynomials we will construct constant bounds for many common functions.


next up previous notation contents
Next: 3.2.3 Charts Up: 3.2 Constant Interval Arithmetic Previous: 3.2.1 Constant Functions
Jeff TupperMarch 1996