1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
31 |
![]() |
||||||||||||||||||||
|
![]() |
||||||||||||||||||||
K* |
|
![]() |
|||||||||||||||||||
various elements of the bipedal control system have been described. |
![]() |
||||||||||||||||||||
3. 3 |
Application to Bipedal Locomotion |
![]() |
|||||||||||||||||||
In attempting to generate balanced locomotion for a biped, we must first select the number control dimensions to be used. For successful balance, the base of support must, on average, |
![]() |
||||||||||||||||||||
remain under the centre of mass and the torso should remain generally upright. |
Only two control |
![]() |
|||||||||||||||||||
dimensions are required to achieve this, one in each dimension of the horizontal plane. |
Thus to |
![]() |
|||||||||||||||||||
balance each step, our bipedal control system will use two RV dimensions and require two LPPs |
![]() |
||||||||||||||||||||
which span the RV space. |
Since we use pose control exclusively with our biped we will use B |
![]() |
|||||||||||||||||||
and [!]P
steps. For bipedal walking we choose to split the cycle into two symmetric halves and apply our |
![]() |
||||||||||||||||||||
control |
formulation |
to |
each |
step. |
The |
PCG |
control |
perturbations, |
[!]P, |
affect |
the |
motion |
![]() |
||||||||
throughout the cycle, rather than at a single point in the cycle.
|
![]() |
||||||||||||||||||||
The |
![]() |
||||||||||||||||||||
structure is an expansion of Eq. 3.4, for N=2, with the left step and right step perturbations specified explicitly. In summary, each step is balanced by the choice of two scalar parameters, for example, k10 system model. |
![]() |