1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
|
![]() |
|||||||||||
used to construct the linear discrete system model. |
That is, the model applies over a |
![]() |
||||||||||
large change in state. Table 4.1 shows this for a number of desired values of Qd |
|
![]() |
||||||||||
|
![]() |
|||||||||||
similar way to the periodic motions of this thesis. |
Such motions would typically require a much |
![]() |
||||||||||
larger controllable range of Q |
![]() |
|||||||||||
initial state to final state. sitting in a chair. |
An example of such an aperiodic motion |
![]() |
||||||||||
|
![]() |
|||||||||||
Table 4.1 - Results of first controlled step using stance-COM RVs. |
![]() |
|||||||||||
table). |
![]() |
|||||||||||
Finally, because the particular choice of perturbation is the primary cause of the poor stability results with the stance-COM, it is quite possible that a better choice of perturbations might give better results. Using a stance ankle pitch perturbation to vary the force with which the stance foot pushes off the ground is one possible example. |
![]() |