1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
|
![]() |
||||||||||||||||||||||
|
|
![]() |
|||||||||||||||||||||
Rear view |
Right side view |
![]() |
|||||||||||||||||||||
DOF: |
1 |
2 |
3:0 |
3:1 |
4 |
5:0 |
5:1 |
6:0 |
6:1 |
|
8:0 |
8:1 |
![]() |
||||||||||
|
![]() |
||||||||||||||||||||||
3. 5 |
![]() |
||||||||||||||||||||||
As discussed earlier, the discrete balance control of Eq. 3.6 is applied only once per step. |
![]() |
||||||||||||||||||||||
implies that each regulation variable must represent the behaviour of some part of the system state over an entire step as a single scalar value. It is important to choose suitable functions of state and sampling times which give a reasonably smooth response to perturbations as we assume in Section 3.2 by using the discrete system Jacobian.
|
![]() |
||||||||||||||||||||||
cycle as shown in Figure 3.11. |
The sample times correspond to the approximate time of foot |
![]() |
|||||||||||||||||||||
placement for each step. Variations such as sampling an average or peak value of some function of state over the whole step are also promising but unexplored possibilities. |
![]() |