1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||
|
![]() |
|||||||||||||
effective. |
The criteria for good PCG perturbations are related to the criteria for suitable RVs, |
![]() |
||||||||||||
discussed in Section 3.5. In general, the following should hold:
|
![]() |
|||||||||||||
model of the discrete system can be constructed. |
The inverse of this model is used to |
![]() |
||||||||||||
determine the appropriate scaling factors for each perturbation for each step. |
For |
![]() |
||||||||||||
They are shown in Figure 3.14. Items (c) and (d) show the pose table form of the perturbations |
![]() |
|||||||||||||
which are scaled and added to a base PCG pose table such as that of Figure 3.7 (b). |
In our case, |
![]() |
||||||||||||
each of the chosen PCG perturbations affects a single DOF. |
Unity-valued perturbations are used |
![]() |
||||||||||||
so that the scalar multiplier units are in degrees. |
Each perturbation is applied to all poses (i.e. all |
![]() |
||||||||||||
states) of the related step, left or right. perturbation. |
This provides a smoother and more effective control |
![]() |
||||||||||||
Figure 3.14 illustrates the hip pitch and roll perturbations for a body in free space. |
When applied |
![]() |
||||||||||||
to a body in contact with the ground, the perturbations primarily affect the biped as shown in Figure 3.15. Applying a stance hip pitch perturbation varies the torso angle in the sagittal plane. Applying a stance hip roll perturbation varies the torso angle in the coronal plane. |
![]() |