1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

94

Figure 5.19 shows the composite perturbation for the human

used to avoid overhead obstacles.

model used with the bent-over perturbation.

transition
info


0
0
0
0
0
0

DOF:


state

1

5
5
5
5
5
5

2

40
40
40
40
40
40

3:03:13:2

4

20
20
20
20
20
20

5:05:16:06:16:2

7

20
20
20
20
20
20

8:08:1

9

-52
-52
-52
-42
-33
-33

10

-5
-5
-5
-5
-5
-2

11

-42
-33
-33
-52
-52
-52

12

-5
-5
2
-5
-5
-5

13

15
15
15
15
15
15

S1
S2
S3
S4
S5
S6

0
0
0
0
0
0

-20
-20
-20
-20
-20
-20

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

-20
-20
-20
-20
-20
-20

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Figure 5.19 - Composite bent-knee, bent-over and bent-neck perturbation

Figure 5.20shows the transitions to and from "ducking".

Note

that

while

the

bent-knee

perturbation was originally designed for a slower rate walk which uses speed control, it also

works well when applied to a different basic walk (bent-over) without speed control.

IMAGE Imgs/thesis.final.w6184.gif

(a)


(b)

Figure 5.20 - Ducking
(a) straight to ducking transition
(b) ducking to straight transition

While the ducking perturbation is demonstrated here in an open loop configuration, one can

imagine using feedback to provide the biped with the ability to automatically duck under obstacles

in its path.

[CONVERTED BY MYRMIDON]