1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|||||||||
periodically. |
![]() |
|||||||||
walking or running to be discussed in terms limit cycles. |
![]() |
|||||||||
|
![]() |
|||||||||
|
![]() |
|||||||||
(a) |
(b) |
![]() |
||||||||
Figure 3.1 - Passive Limit Cycle Stability |
![]() |
|||||||||
Limit cycles may be stable |
![]() |
|||||||||
the state-space trajectory are driven back into the limit cycle as indicated in Figure 3.1 |
An |
![]() |
||||||||
unstable limit cycle is one in which slight perturbations to the trajectory result in the system deviating further from the limit cycle as shown in Figure 3.1 (b). We will call limit cycles that do |
![]() |
|||||||||
not require explicit control forces to maintain them passive |
Note that this definition |
![]() |
||||||||
does not preclude a system with active components (motors etc.) from exhibiting passive limit cycles. A motorized or windup toy is an example of such a system.
|
![]() |
|||||||||
suitable control forces to periodically drive the system back into an active |
We define |
![]() |
||||||||
an active the explicit purpose of maintaining the cyclic trajectory. Figure 3.2 illustrates this idea. |
![]() |