1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
109 |
||||||||||||||||||
a simple swinging pendulum plotted with respect to time. |
The two near-sinusoidal |
|||||||||||||||||
curves are out of phase since the peak joint velocity occurs when the joint angle is zero and the peak angle occurs when the velocity is zero. |
||||||||||||||||||
|
||||||||||||||||||
|
t |
|||||||||||||||||
q |
||||||||||||||||||
|
|
|||||||||||||||||
Figure A-1 - State vs time for a 1 degree-of- |
||||||||||||||||||
State space- The set of all possible values of the state of an object. A trajectory through the |
||||||||||||||||||
state space of an object describes its motion. representation of the trajectories of Figure A-1. |
FigureA-2 shows the state space |
|||||||||||||||||
Limit cycle- A periodic, cyclic trajectory through state space. |
The trajectory in Figure A-2 |
|||||||||||||||||
is an example of a limit cycle which represents the periodic motion of a simple |
||||||||||||||||||
pendulum. |
Throughout this thesis, the term limit cycle is used to refer to cyclic, |
|||||||||||||||||
periodic motion in part of the state space rather than strictly applying to the full state space.
|
||||||||||||||||||
|
||||||||||||||||||
q |
||||||||||||||||||
Figure A-2 - State-space trajectory of a simple |