1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
109 |
![]() |
|||||||||||||||||
a simple swinging pendulum plotted with respect to time. |
The two near-sinusoidal |
![]() |
||||||||||||||||
curves are out of phase since the peak joint velocity occurs when the joint angle is zero and the peak angle occurs when the velocity is zero. |
![]() |
|||||||||||||||||
|
![]() |
|||||||||||||||||
|
t |
![]() |
||||||||||||||||
q |
![]() |
|||||||||||||||||
|
|
![]() |
||||||||||||||||
Figure A-1 - State vs time for a 1 degree-of- |
![]() |
|||||||||||||||||
State space |
![]() |
|||||||||||||||||
state space of an object describes its motion. representation of the trajectories of Figure A-1. |
Figure |
![]() |
||||||||||||||||
Limit cycle |
The trajectory in Figure A-2 |
![]() |
||||||||||||||||
is an example of a limit cycle which represents the periodic motion of a simple |
![]() |
|||||||||||||||||
pendulum. |
Throughout this thesis, the term limit cycle is used to refer to cyclic, |
![]() |
||||||||||||||||
periodic motion in part of the state space rather than strictly applying to the full state space.
|
![]() |
|||||||||||||||||
|
![]() |
|||||||||||||||||
q |
![]() |
|||||||||||||||||
Figure A-2 - State-space trajectory of a simple |
![]() |