1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
6 |
|||||||||||||||||||||||||||||||
directly manipulate the DOFs of an object [Mez68, BW71, Csu71, KB84, Stu84, MTT85b, |
|||||||||||||||||||||||||||||||
SB85, Las87]. |
Later systems allowed the animator to specify the position of specific points on |
||||||||||||||||||||||||||||||
the objects being animated (such as a hand or foot ) and used inverse kinematics to determine the |
|||||||||||||||||||||||||||||||
appropriate values for the creature's internal DOFs [KB82] [GM85] [BMW87]. |
Procedural |
||||||||||||||||||||||||||||||
descriptions of motion, often based on real-world data and observations, can be used to model very specific classes of movement, effectively "programming" the animated movement [Zel82] [GM85]. In all cases, the quality of the resulting motion is heavily dependent on the ability of the |
|||||||||||||||||||||||||||||||
animator |
who |
is |
responsible |
for |
ensuring |
that |
the |
perceived |
dynamics |
of |
the |
motion |
are |
||||||||||||||||||
appropriate. |
This is a task which requires significant skill. |
It potentially distracts the animator |
|||||||||||||||||||||||||||||
from the primary task at hand, but it also allows him or her complete artistic control.
|
|||||||||||||||||||||||||||||||
real-world sources. |
Directly recording a phenomenon to be animated guarantees realistic and |
||||||||||||||||||||||||||||||
natural-looking motion. |
Specialized hardware is generally required, |
but |
such |
equipment |
is |
||||||||||||||||||||||||||
becoming more accessible. |
A number of problems with this approach make the investigation of |
||||||||||||||||||||||||||||||
other motion generation techniques desirable. |
First, captured motions are limited to real-world |
||||||||||||||||||||||||||||||
motions that can easily be recorded. Essentially, motion capture has many of the same restrictions as live actors. Also, approaches to parameterizing captured motions often produce results that are |
|||||||||||||||||||||||||||||||
no longer fully realistic. |
Physical constraint violations, such as ground interpenetration and |
||||||||||||||||||||||||||||||
sliding are common examples of failure. |
While solutions to enforcing such constraints for |
||||||||||||||||||||||||||||||
particular classes of motion have been demonstrated [BMTT90] [KB93], no general solution |
|||||||||||||||||||||||||||||||
currently exists. |
More recent parameterization approaches seem oriented toward more broadly |
||||||||||||||||||||||||||||||
modifying captured motions and are likely to have similar problems [BW95] [WP95] [UAT95]. Finally, captured motions cannot easily be modified to respond realistically to environments different from the one in which they are obtained. Varying terrain and collisions are two examples of such potentially desirable changes. As the demand for fully interactive environments increases, |
|||||||||||||||||||||||||||||||
this issue becomes more important. |
In recent years the interactive home-entertainment industry |