1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

29


(3.10)

IMAGE Imgs/thesis.final.w629.gif


i,j[!][1,N][!]
[!] [!] :

where Jis the NxNdiscrete system Jacobian, defined as

IMAGE Imgs/thesis.final.w630.gif

IMAGE Imgs/thesis.final.w632.gif

L


IMAGE Imgs/thesis.final.w631.gif

[!]ki


L

O

J


=

O

Jrelates the change in Qi+1over a single cycle to the applied perturbation scaling, Ki.


Figure 3.4 illustrates the relationship between the parameters of the linear model and the perturbed

system's cyclic motion in state space for a 1D system. In this example, the linear predictive model

is constructed using two sample points on Qi+1= h(k), corresponding to applied perturbation

scalings of k1and k2.

Qi+1.

The figure illustrates that we can predict (and hence control) the value of

IMAGE Imgs/thesis.final.w633.gif

Figure 3.4 - Linear parameters of a 1D discrete system in state space.
Here, [!]k= k
2- k1

[CONVERTED BY MYRMIDON]