1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
||||||||||||||||
|
|
|||||||||||||||
where Jis the NxNdiscrete system Jacobian, defined as |
||||||||||||||||
|
|
|||||||||||||||
L
|
||||||||||||||||
O |
||||||||||||||||
J |
|
|||||||||||||||
O |
||||||||||||||||
Jrelates the change in Qi+1over a single cycle to the applied perturbation scaling, Ki.
system's cyclic motion in state space for a 1D system. In this example, the linear predictive model is constructed using two sample points on Qi+1= h(k), corresponding to applied perturbation |
||||||||||||||||
scalings of k1and k2. Qi+1. |
The figure illustrates that we can predict (and hence control) the value of |
|||||||||||||||
|
||||||||||||||||
Figure 3.4 - Linear parameters of a 1D discrete system in state space. |