1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
30 model construction are presented later in the thesis (Section 3.6), after the particular choices of RVs and LPPs have been described.
|
||||||||
following. |
Once the linear discrete system model has been constructed, the control perturbation |
|||||||
scalings required to drive Qi+1to a desired value, can be computed using the inverse model: |
||||||||
Ki=J-1DQid |
||||||||
(3.11) |
||||||||
where [!]Qid
controlled cycles of a 1D discrete system are shown in this diagram, Tis the cycle period, kiis the perturbation scaling for cycle i, and Viis the resulting state trajectory for cycle i. In this example, |
||||||||
|
||||||||
t |
||||||||
|