1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
57 |
![]() |
|||||||||
4.
|
![]() |
|||||||||
generating successful limit cycles and their effect on the resulting motion. |
Control of the human |
![]() |
||||||||
model is the primary focus of these experiments, although trials using the robo-bird model are |
![]() |
|||||||||
also included to demonstrate success with a significantly different bipedal model. |
Sections 4.1, |
![]() |
||||||||
4.2, and 4.3 present results obtained using each of the three choices of RVs introduced in Section 3.5. Section 4.4 examines the effectiveness of applying a torso servo to the human model.
|
![]() |
|||||||||
continues to walk in a straight line for the full 60 steps of the trial. |
Using the nominal open-loop |
![]() |
||||||||
control alone results in only 5 steps before the human figure falls over. |
The results clearly |
![]() |
||||||||
demonstrate that with suitable parameter choices, active stabilization of bipedal locomotion cycles is both possible and useful. |
![]() |
|||||||||
|
![]() |
|||||||||
|
![]() |
|||||||||
depending on the choice of RVs and other parameter values. |
Many choices of parameter values |
![]() |