1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
57 |
||||||||||
4.BALANCED WALKING RESULTS
approach of Chapter 3. Various parameter choices are explored to determine their importance in |
||||||||||
generating successful limit cycles and their effect on the resulting motion. |
Control of the human |
|||||||||
model is the primary focus of these experiments, although trials using the robo-bird model are |
||||||||||
also included to demonstrate success with a significantly different bipedal model. |
Sections 4.1, |
|||||||||
4.2, and 4.3 present results obtained using each of the three choices of RVs introduced in Section 3.5. Section 4.4 examines the effectiveness of applying a torso servo to the human model.
|
||||||||||
continues to walk in a straight line for the full 60 steps of the trial. |
Using the nominal open-loop |
|||||||||
control alone results in only 5 steps before the human figure falls over. |
The results clearly |
|||||||||
demonstrate that with suitable parameter choices, active stabilization of bipedal locomotion cycles is both possible and useful. |
||||||||||
|
||||||||||
|
||||||||||
depending on the choice of RVs and other parameter values. |
Many choices of parameter values |