1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
39 |
|||||||||||||||||||||
|
|||||||||||||||||||||
useful. |
RV interdependencies can be complex (e.g. non-smooth), making it more |
||||||||||||||||||||
difficult to find parametric perturbations which cause only smooth variations over a wide range of RV values. For our bipedal control, we assume near-independent RVs. |
|||||||||||||||||||||
|
|
|
|||||||||||||||||||
(a) |
|
(c) |
|||||||||||||||||||
|
|||||||||||||||||||||
Figure 3.12 - Balance RV vectors |
|||||||||||||||||||||
In this thesis, we experiment with three choices of RVs, based on the vectors shown in Figure |
|||||||||||||||||||||
3.12. |
The first, the up-vector, is based on the notion of torso "uprightness". |
The up-vector is |
|||||||||||||||||||
fixed to and runs along the length of the torso in the human model and the head in the robo-bird model. The swing-centre of mass (swing-COM) vectordescribes the position of the COM of the |
|||||||||||||||||||||
biped with respect to the current swing foot. |
The stance-centre of mass (stance-COM) vector |
||||||||||||||||||||
indicates the position of the COM with respect to the stance foot. |
The sampling time for all three |
||||||||||||||||||||
types of RV are at the end of states S3 and S6. For the purpose of computing RVs, the swing and |
|||||||||||||||||||||
stance legs do not exchange until after the last base PCG state of the step. |
The leg which is the |
||||||||||||||||||||
swing leg for most of the current step is used to compute the swing-COM RV. RV is treated in a similar fashion. |
The stance-COM |