1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||||||||||||||||||||||||||||
technique has also been applied to human running [BC96]. |
![]() |
||||||||||||||||||||||||||||
kinematic techniques as well as rotoscoped data with dynamic enhancements to achieve many |
![]() |
||||||||||||||||||||||||||||
human motions and behaviours. |
Boulic, Magnenat-Thalmann and Thalmann [BMTT90] and Ko |
![]() |
|||||||||||||||||||||||||||
and Badler [KB93] present techniques to generalize rotoscoped or motion captured walking data to other subjects and step lengths while reducing or eliminating the resulting ground constraint violations.
|
![]() |
||||||||||||||||||||||||||||
control to attain various bounding gaits for biped and quadruped robot models. |
As well, |
![]() |
|||||||||||||||||||||||||||
similarly controlled planar kangaroo model is shown to compare well to its real-world counterpart. Stewart and Cremer [SC92] use their flexible constraint-based approach to generate fully dynamic |
![]() |
||||||||||||||||||||||||||||
3D bipedal walking on level terrain and up a flight of stairs. |
One of the required constraints, |
![]() |
|||||||||||||||||||||||||||
however, is a 0 DOF "magnetic boot" on the stance foot. |
Van de Panne, Fiume and Vranesic |
![]() |
|||||||||||||||||||||||||||
[VFV92] use optimal state-space control tables to control walking on level terrain and up and down ramps, smooth curved surfaces and stairs for a planar biped model. This approach requires a suitable control decomposition to make the generation of the state-space controllers tractable.
motions but meet with difficulty in their initial attempts to extend this approach directly to 3D |
![]() |
||||||||||||||||||||||||||||
[Aus+95]. |
Van de Panne and Lamouret propose the use of guiding external forces to initially |
![]() |
|||||||||||||||||||||||||||
attain reasonable controllers using similar automatic synthesis [vL95]. The forces are then reduced |
![]() |
||||||||||||||||||||||||||||
in a number of |
steps |
and |
can |
sometimes |
be |
entirely |
eliminated |
to |
yield |
a |
fully-balanced, |
![]() |
|||||||||||||||||
automatically synthesized motion. |
Examples of human walking, skipping and |
running |
and |
![]() |
|||||||||||||||||||||||||
walking over varying terrain for a simple 3D biped are given. One difficulty with this approach is |
![]() |
||||||||||||||||||||||||||||
that the removal of guiding forces must be performed incrementally over the |
entire |
motion |
![]() |
||||||||||||||||||||||||||
sequence (for example, each step of a walk). |
This process |
that |
can |
become |
prohibitively |
![]() |
|||||||||||||||||||||||
expensive for more complex creatures. |
Hodgins et al. [H+95] show how Raibert's hopping |
![]() |