1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
|||||||||||||||||||||||
|
|
||||||||||||||||||||||
Rear view |
Right side view |
||||||||||||||||||||||
DOF: |
1 |
2 |
3:0 |
3:1 |
4 |
5:0 |
5:1 |
6:0 |
6:1 |
7 |
8:0 |
8:1 |
|||||||||||
|
|||||||||||||||||||||||
3. 5 |
|||||||||||||||||||||||
As discussed earlier, the discrete balance control of Eq. 3.6 is applied only once per step. |
|||||||||||||||||||||||
implies that each regulation variable must represent the behaviour of some part of the system state over an entire step as a single scalar value. It is important to choose suitable functions of state and sampling times which give a reasonably smooth response to perturbations as we assume in Section 3.2 by using the discrete system Jacobian.
|
|||||||||||||||||||||||
cycle as shown in Figure 3.11. |
The sample times correspond to the approximate time of foot |
||||||||||||||||||||||
placement for each step. Variations such as sampling an average or peak value of some function of state over the whole step are also promising but unexplored possibilities. |