1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|||||||||||||||||
has 15 |
![]() |
|||||||||||||||||
incorporate any physical joint limits. can be found in Appendix B. |
Dimensions, mass and inertia parameters for both models |
![]() |
||||||||||||||||
These models are quite complex compared to much of the previous work on bipedal systems which have often assumed very simple bipedal models. In the next chapter, we will present an approach to generating animations of balanced motion for these creatures, which represents one of the major contributions of this thesis. |
![]() |
|||||||||||||||||
|
|
![]() |
||||||||||||||||
|
![]() |
|||||||||||||||||
1 m |
![]() |
|||||||||||||||||
(a) |
|
|
![]() |
|||||||||||||||
|
|
![]() |
||||||||||||||||
|
|
![]() |
||||||||||||||||
Degrees of Freedom |
![]() |
|||||||||||||||||
1 |
- |
![]() |
||||||||||||||||
7:0 |
![]() |
|||||||||||||||||
Figure 2.10 - Robo-bird creature |
![]() |