1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
22 |
||||||||||||||||||
has 15degrees of freedom, including 2 DOF hips and 2 DOF ankles. |
||||||||||||||||||
incorporate any physical joint limits. can be found in Appendix B. |
Dimensions, mass and inertia parameters for both models |
|||||||||||||||||
These models are quite complex compared to much of the previous work on bipedal systems which have often assumed very simple bipedal models. In the next chapter, we will present an approach to generating animations of balanced motion for these creatures, which represents one of the major contributions of this thesis. |
||||||||||||||||||
|
|
|||||||||||||||||
|
||||||||||||||||||
1 m |
||||||||||||||||||
(a) |
(b)
|
(c)
|
||||||||||||||||
|
|
|||||||||||||||||
|
|
|||||||||||||||||
Degrees of Freedom |
||||||||||||||||||
1 |
-neck yaw (transverse plane) |
|||||||||||||||||
7:0-left hip roll (coronal plane) |
||||||||||||||||||
Figure 2.10 - Robo-bird creature |