1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
||||||||||||||||||
and, as a side effect, can also reduce the excursions in the lateral dimension. |
Figure 4.15 shows |
|||||||||||||||||
the results for a set of trials which use the same balance control parameters as the walks of Figure |
||||||||||||||||||
4.3. |
In this set of trials, |
torso servoing is applied using a desired angle of 5 degrees forward |
||||||||||||||||
from vertical.
|
||||||||||||||||||
servoed results. The useful range of Qdincreases in general. |
|
|||||||||||||||||
illustrates the effectiveness of torso servoing at reducing the |
bobbing |
effect |
caused |
by |
the |
|||||||||||||
particular stance hip perturbation used. |
In this trial, torso servoing reduces the range of torso |
|||||||||||||||||
pitch from approximately 12 degrees to 3 degrees. |
||||||||||||||||||
|
||||||||||||||||||
Qlat |
||||||||||||||||||
Figure 4.16- |
Continuous-time up vector component phase diagram for |
|||||||||||||||||
4. 5 |
Robo-bird Running |
|||||||||||||||||
Figure 4.17 shows the base PCG used to generate a running motion for the robo-bird model, |
||||||||||||||||||
shown in Figure 4.18. |
While the base PCG differs from that used for the human model, it is |
|||||||||||||||||
balanced using up-vector RVs and stance hip pitch and roll perturbations as with the human model. |