1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
|
![]() |
|||||||||||||||||
and, as a side effect, can also reduce the excursions in the lateral dimension. |
Figure 4.15 shows |
![]() |
||||||||||||||||
the results for a set of trials which use the same balance control parameters as the walks of Figure |
![]() |
|||||||||||||||||
4.3. |
In this set of trials, |
torso servoing is applied using a desired angle of 5 degrees forward |
![]() |
|||||||||||||||
from vertical.
|
![]() |
|||||||||||||||||
servoed results. The useful range of Qd |
|
![]() |
||||||||||||||||
illustrates the effectiveness of torso servoing at reducing the |
bobbing |
effect |
caused |
by |
the |
![]() |
||||||||||||
particular stance hip perturbation used. |
In this trial, torso servoing reduces the range of torso |
![]() |
||||||||||||||||
pitch from approximately 12 degrees to 3 degrees. |
![]() |
|||||||||||||||||
|
![]() |
|||||||||||||||||
Q |
![]() |
|||||||||||||||||
Figure 4.16 |
Continuous-time up vector component phase diagram for |
![]() |
||||||||||||||||
4. 5 |
Robo-bird Running |
![]() |
||||||||||||||||
Figure 4.17 shows the base PCG used to generate a running motion for the robo-bird model, |
![]() |
|||||||||||||||||
shown in Figure 4.18. |
While the base PCG differs from that used for the human model, it is |
![]() |
||||||||||||||||
balanced using up-vector RVs and stance hip pitch and roll perturbations as with the human model. |
![]() |