1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||||||||||||||
part of state in our control system. |
![]() |
||||||||||||||
computational effort required to construct a model of the discrete system. We will use Q |
![]() |
||||||||||||||
Q |
|
![]() |
|||||||||||||
Note that choosing to work strictly in the reduced state space carries the imlicit assumption that controlling the reduced state is sufficient to control the complete system state in a desireable way. such an appropriate choice exists. |
![]() |
||||||||||||||
Replacing the full state in Eq. 3.3 with the reduced |
state, |
Q, |
and |
substituting |
the |
control |
![]() |
||||||||
formulation of Eq. 3.4 yields the reduced-order system which we will control directly: |
![]() |
||||||||||||||
Qi+1 |
![]() |
||||||||||||||
(3.6) |
![]() |
||||||||||||||
For a given cycle, Qi, Unom, and [!]U as a convinient short form of Eq. 3.6 when we are interested in discussing only the effect of K the system.
|
![]() |
||||||||||||||
Qi+1 |
![]() |
||||||||||||||
(3.7)
|
![]() |
||||||||||||||
Qnom |
![]() |
||||||||||||||
where |
![]() |
||||||||||||||
We choose to approximate the response of this system about the nominal operating point (where K=0) using the following linear predictive model: |
![]() |
||||||||||||||
DQ |
(3.9) |
![]() |