1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 
| 
		 
  | 
		|||||||||||||||
| 
		 part of state in our control system.  | 
		|||||||||||||||
| 
		 computational effort required to construct a model of the discrete system. We will use Q  | 
		|||||||||||||||
| 
		 Q  | 
		
		 
  | 
		||||||||||||||
| 
		 Note that choosing to work strictly in the reduced state space carries the imlicit assumption that controlling the reduced state is sufficient to control the complete system state in a desireable way. such an appropriate choice exists.  | 
		|||||||||||||||
| 
		 Replacing the full state in Eq. 3.3 with the reduced  | 
		
		 state,  | 
		
		 Q,  | 
		
		 and  | 
		
		 substituting  | 
		
		 the  | 
		
		 control  | 
		|||||||||
| 
		 formulation of Eq. 3.4 yields the reduced-order system which we will control directly:  | 
		|||||||||||||||
| 
		 Qi+1  | 
		|||||||||||||||
| 
		 (3.6)  | 
		|||||||||||||||
| 
		 For a given cycle, Qi, Unom, and [!]U as a convinient short form of Eq. 3.6 when we are interested in discussing only the effect of K the system. 
  | 
		|||||||||||||||
| 
		 Qi+1  | 
		|||||||||||||||
| 
		 (3.7) 
  | 
		|||||||||||||||
| 
		 Qnom  | 
		|||||||||||||||
| 
		 where  | 
		|||||||||||||||
| 
		 We choose to approximate the response of this system about the nominal operating point  (where K=0) using the following linear predictive model:  | 
		|||||||||||||||
| 
		 DQ  | 
		
		 (3.9)  | 
		||||||||||||||