1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
48 |
![]() |
|||||||||||||||
|
![]() |
|||||||||||||||
iii |
![]() |
|||||||||||||||
|
![]() |
|||||||||||||||
3. 7. 2 |
![]() |
|||||||||||||||
Once an RV target has been chosen, the discrete system model is reconstructed and applied at each |
![]() |
|||||||||||||||
step as shown in Figure 3.20. |
In general, a single fixed model is not sufficient to represent all |
![]() |
||||||||||||||
possible steps. |
While RVs provide a reduced, low dimensional representation of system state, |
![]() |
||||||||||||||
they are also an incomplete and ambiguous representation of the system state. |
For example, the |
![]() |
||||||||||||||
chosen RVs use position information and no velocity information. |
Such unobserved parts of the |
![]() |
||||||||||||||
system state cause variations in both Qnom |
|
|
![]() |
|||||||||||||
evident in graphs of Figure 3.16 and Figure 3.17 where both the average slope and the offset of |
![]() |
|||||||||||||||
the curves can vary from one step to the next. lateral control dimension. |
These variations are especially apparent in the |
![]() |
||||||||||||||
|
![]() |
|||||||||||||||
Figure 3.20 - Balancing process for each step. |
![]() |