1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
87 |
||||||||||||||||||||||
tighter. |
The |
16 |
degree |
turning |
perturbations |
fail, |
resulting |
in |
a |
turning |
limit |
cycle |
||||||||||
approximately 0.75 meters in radius, a more useful lower limit in terms of the motion that can be |
||||||||||||||||||||||
animated. |
The walks still suffer from the biped facing too much toward the centre of the turn. |
|||||||||||||||||||||
For tight turns, the biped's outside swing leg interpenetrates the stance leg in a noticeable fashion. Nonetheless, the perturbations provide a good basis for higher level control of the biped's path. |
||||||||||||||||||||||
5. 3. 1 |
Point and Path Following |
|||||||||||||||||||||
By applying simple feedback control, the biped can be made to walk in a desired direction. Proportional control of the angle of the current facing direction and the desired direction as given by a target point is used to generate an appropriate turning rate.
|
||||||||||||||||||||||
( B + kturn[!]Pturn) + k1[!]P1+ k2[!]P2 |
||||||||||||||||||||||
In the case of separate left and right turning control perturbations,
and kturnis computed according to the proportional control law: |
||||||||||||||||||||||
kturn= kqq |
||||||||||||||||||||||
where qis the angle between the biped's current facing direction and a vector to the target point, |
||||||||||||||||||||||
as illustrated in Figure 5.10. |
kqis a gain constant which determines how tightly the biped turns |
|||||||||||||||||||||
for a given error in direction.
|
kturnis bounded to a predetermined maximum value in order to |